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Why Do We Need Word Embeddings?

N
e Numerical Input F o & & o o
e Shows Similarity and Distance &S g &R
cat 0.6 0.9 0.1 04 -07 -03 -0.2
0.5 08 -01 02 -06 -05 -01
dog 0.7 -01 04 03 -04 -01 -03
ho:ses houses| -08 -04 -0.5 0.1 -09 03 0.8
man 06 -02 08 09 -01 -09 -07
cat woman| 07 03 08 -07 01 05 -04
¢ king 05 -04 07 038 09 -0.7 -0.6
dog Queen | 08 -01 08 -09 08 -05 -09

embedding using features of words
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Word2Vec

e \We want vectors for words so that the context of a word can suggest the
vector of this word, and vice versa
e Idea: Similar words appear in similar contexts

A cup of coffee is on the table.
Coffee helps me focus.
Espresso is my favorite type of coffee.
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Word2Vec - Training

SkipGram - Predict context from target

P(wg_g|wy) P(wyo|wy)

P(w;1|w;) P(wii2|w)

A cup of coffee is on the

| > J \ v J v J
context words in context words In
window of size 2 Center word window of size 2

table
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Word2Vec Architecture - SkipGram

Predict every target word from each context word!

coffee — cup
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Big Question: How to model sequences of words?

J| 07 01 04 03 -04 -01 -03
hke 06 -02 08 09 -01 -09 -07
cats 06 09 01 04 -07 -03 -02

because 05 08 -01 02 -06 -05 -0.1
they -08 -04 -05 01 -09 03 08
look 05 04 07 08 09 -07 -06

08 -09 08 -05 -09

Cllte 0.8 -0.1

V1 ERd
V9 ERd

vT ERd




How to use word vectors with neural networks?

.I O\ ® o O J'aime
like O\. ® O — O Les
cats Chats

: . - : D O ]
e O O Q— O mignons

e Inputs and outputs don’t have fixed lengths
e \Weights are not shared




Let’s simplify!

What if we have a single word and a single output?

: d
cat o6 09 01 04 -07 -03 -0.2‘ Vz G R

Yq
0 = not animal
1 = animal

)

Output
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Towards RNNs
@ ® @ o
| yi = M;h,
M,
@ Q @ Hidden State
hi — O‘(UZ’V@)
U;
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Towards RNNs

Sequence Timesteps

>

Output

y; = M;h;

Hidden State

hi = O'(UiVi

+ W;h;_1)
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Towards RNNs

Sequence Timesteps

>

Output

y; = M;h;

Hidden State

hi — O'(UiVi

+ W;h;_1)




What's the issue with this setup?

Sequence Timesteps

>

e Too many parameters if we
have a long sequence!

e Longer sequence parameters
will not receive many updates

Output

y; = M;h,
Hidden State
hi = O'(UiVi
+ W;h;_1)




Recurrent neural network (RNN)

Sequence Timesteps

>

Use the same parameters across
different timesteps.

Output

y; = M h;
Hidden State
hi — O'(U V;
5 W ,hf,;_l)




Recurrent neural network (RNN)

Sequence Timesteps

>

Use the same parameters across
different timesteps.




Discuss: Which tasks can you perform with RNNs?
Can you find an example of each task?

one to one one to many many to one many to many many to many
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RNN: Issues under Loooooooong Context

H H I @
>

Recurrent forward will rewrite the

hidden states on every timestep!
o What will happen? Let’s discuss!
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Forward prop




LRI A Back prop through time L(ys, U3)
)

oL l{
dy3

Unfold a recurrent neural @

network in time

Gradients are accumulated (9h1 @hz OM
across all time steps by OW oW OW

applying the chain rule °

Propagate gradients 5h2

backwards through time steps




LRI Back prop through time L(ys, 3)
)

oc 0L 0ys
oM 0y3 OM

Gradients wrt W from last time step:

a—ﬁ o 6’5 (9@3 3}13
OW 073 ohs OW

Gradients wrt W from time step 2:

a_ﬁ s oL 8@3 ohs (3’h2
oW - 8@3 8h3 8h2 8W

Gradients wrt W from time step 1:

oL oL 8@3 8h3 ohs 6h1

ﬁ %, 8@3 8h3 8h2 8h1 aW

oh,

Or O

8h1

i
9Y3
093
ahQ 8h3 aM
6h2 Ohg
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T=3

Gradients wrt W from time step 3:
a—ﬁ o 6’£ 8@3 8}13
OW 073 ohs OW

Gradients wrt W from time step 2:

oc  OL dfz Ohg Ohy
ﬁ % 8@3 8h3 8h2 aW
Gradients wrt W from time step 1:

oL B Cl 8@3 8h3 8h2 8h1
OW i3 Ohg Ohy Oh; OW

What is the general form of
OL with T=T, at time step t?
OW




LRI A Back prop through time L(ys, 3)
)

Gradients wrt W from time step t:

i ¥
dy3
9ys
Each timestamp contributes to the gradient! Ohy Ohy aM
Summing over all timestamps: @%0
Z oL 8yT ahm) Oh, ahz
oYr 3hT -: oh; oW

1
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RNN: Issues under Loooooooong Context

aL@T) OL(Jr) H dh,
oh, ohr it oh;_
oh, .
= diag(c’(Wh;_1 + Uv;))W
Oh; dh,
e Vanishing gradients: grad to 0
Oh, : OL(Jr)
If Hﬁhi_l | <1 and T is large, | o, | —
e Exploding gradients: grad to inf
oh; OL(Yr)
If H(?hi_ | > 1 and T is large, || oh, | — inf.

Oh,

8h

@ﬂ@
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Recall: ResNet

“Plain” Network

image
7x7 conv, 64, /2
pool, /2

34-layer plain
3x3 conv, 128, /2
3x3 conv, 128
3x3 conv, 128
3x3 conv, 128
3x3 conv, 256, /2
3x3 conv, 512, /2
3x3 conv, 512

ResNet

[He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016.]

>,

34-layer residual
image
7x7 conv, 64, /2
pool, /2
3x3 conv, 64 .
Waconv, 128,72 |
3x3 conv, 128
3x3 conv, 128
3x3 conv, 128
3x3 conv, 128
3x3 conv, 128
3x3 conv, 128
B, 256,72 | e
3x3 cony, 512

3x3 cony, 512, /2

avg pool

avg pool

fc 1000

fc 1000




RNN

Long-short Term
Memory (LSTM)




Long-short Term Memory (LSTM)

e Main idea: add a “cell” state that allows information to flow easily

o  Similar to residual connections
o No repeated matrix multiplications!

®
®

https://colah.github.io/posts/2015-08-Understanding-LSTMs/




LSTMs- Gates

e Control the flow of information with “gates”
o Element-wise product with the output of a sigmoid activation

Sigmoid
Function

o(z) = —

- l+e*

https://colah.github.io/posts/2015-08-Understanding-LSTMs/




LSTMs- Forget Gate

e Forget gate- function of current input and previous hidden state
e Controls what should be remembered in the cell state

Ji fe=0 Wy [ht—1,2¢] + bf)

Tt https://colah.github.io/posts/2015-08-Understanding-LSTMs/




LSTMs- Input Gate

e Input gate- function of current input and previous hidden state
e Decides what information to write to the cell state

it =0 (Wi'[ht_l,CCt] + bz)
C:;Inh ét = tanh(W¢g-|hi—1,2¢] + bo)

Tt https://colah.github.io/posts/2015-08-Understanding-LSTMs/




LSTM- Cell Update

e Forgetirrelevant information
e Add new information from the current token

ftT Ztﬂ% Cy = fexCi1 + iy % Gy

https://colah.github.io/posts/2015-08-Understanding-LSTMs/




LSTM- Output Gate

e Qutput gate- function of current input and previous hidden state
e Controls flow of information from the cell state to the hidden state
e Given some weight matrix W_o, how do we write to o_tand h_t?

https://colah.github.io/posts/2015-08-Understanding-LSTMs/




fe=0 Wy [hi—1,2¢] + by)

LSTMs .
ir =0 (W;-lhi—1,2¢] + b;)
e Add a cell state to store information C~'t = tanh(W¢ - [hi—1,2¢] + bo)
o Gradient flows along the cell state Ct _ ft " Ct—l + it « ét

e Update cell state with parameterized
gating functions
e Performs better with long sequences hy = 0 * tanh (C})

Ot :U(Wo [ht—laxt] =+ bo)

° o ®
a [T A

@ @ https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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RNN vs. LSTM

e RNN o LSTM
o Can be applied to o Mitigates the vanishing gradient
variable-length sequences problem with the cell state

o Share parameters across time o Betterforlong sequences
o Hard to train!

@ (0 () &) ()
J (U (PR
A ﬂ A }‘ A Letot
| | | g 7Y
&) D &) &) ) &)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/




Gated recurrent units (GRUSs)

Forget gate '/@
BEL B K

A\ 4

X: ) [Inputgate Output gate Xe Reset gate Update gate

LSTM GRU

https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21




Sequence-to-Sequence Generation

e Map some input sequence to a target sequence

e Applications:
o Machine translation

o News summarization
o ChatGPT!

https://web.stanford.edu/~jurafsky/slp3/

Total loss is the average
cross-entropy loss per
target word:

Decoder
A
gold
Ilego bruya verde </|S> e
J’I Y4 Vs

’ﬂ |

T
Z per-word
i=1 y - loss
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|T[ \TI layer(s)
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layer
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Encoder




Bottleneck Problem

e All the information about the source sequence must be stored in a single

vector

o How to translate a long paragraph?
o How to summarize long articles?

bottleneck

Encoder Decoder

*

https://web.stanford.edu/~jurafsky/slp3/




RNN for Machine Translation

Would be nice if we could “look back” at previous hidden states

Encoder Hidden
States E—) Ich
G R N

Encod
r;fN°Ner > > > >
Decoder
R il Rt bR - RNN
f ___________ f
[ Embedding ] [ Embedding ]
A A

| like black coffee <START>




Visualizing Attention

e Plot attention weights to see where the model is “looking”
o Learns language alignment for translation!
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Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua environnement
Bengio. "Neural machine translation by jointly

learning to align and translate." <end>

<end>




Attention Application- Image Captioning!

e Extract image features with a CNN
e Use an LSTM with attention to generate image captions

Figure 1. Our model learns a words/image alignment. The visual-
ized attentional maps (3) are explained in section 3.1 & 5.4

s

A
bird
flying
over

14x14 Feature Map

=

a
body
of
water
1. Input 2. Convolutional 3. RNN with attention 4. Word by

Image Feature Extraction over the image word

Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with generation
visual attention." International conference on machine learning. PMLR, 2015. \ /




Visualize Attention Weights

e Learns to focus on relevant regions of the image

Figure 3. Examples of attending to the correct object (white indicates the attended regio

P

A little girl sitting on a bed with A group of people sitting on a boat
a teddy bear. in the water.

Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with
visual attention." International conference on machine learning. PMLR, 2015.

ns, underlines indicated the corresponding word)
F

A stop sign is on a road with a
mountain in the background.

[ S8 E

A giraffe standing in a forest with
trees in the background.




Recap

e RNNSs can be applied to arbitrary length sequences
o Run into vanishing/exploding gradient problems

e LSTMs add a cell state to RNNs to improve gradient flow
o Better a handling long sequences

e Attention can look back at past feature vectors!
o Scales better to long sequences
o Can incorporate image features
o Many, many more applications!




