
Deep Learning
Week 02: Word Embeddings

Thanks to:
Varsha Kishore
Justin Lovelace

Vivian Chen
Anissa Dallmann

Wentao Guo

Logistics

● HW1 is due on Today

● Submit on gradescope
○ If you worked in a group, create a group and then submit

● Clarifications are on Ed

● Come to office hours if you have questions

Recap

- MLPs
- Loss functions
- Optimizers
- Regularization
- Architecture types (CNNs for images)

- Today: Words

Summary of Image Models

“Plain” CNN Google Net ResNet DenseNet

Simple connection
from previous to next

layer

1x1, 3x3, 5x5
convolutions and

pooling between each
layer

Skip connections

Add output of previous
layer to next layer

Dense connections

Concatenate output of
previous layer to next

layer

x

F(x)

x
x

[,]

From ResNets

ResNet

DenseNet

[Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017.]

to DenseNets

DenseNets - feature concatenation

MLPs:

● Fully connected layers
● Require more parameters and

computational resources
● Flexible and can handle various input

types

CNNs:

● Convolutional layers with filters
● Designed specifically for structured

input like images
● Inherently translation invariant due to

shared weights
● Requires fewer parameters

https://www.researchgate.net/figure/The-architecture-of-MLP-and-CNN-MLP-is-consisted-of-fullyconnected-FC-layers-and-CNN_fig2_334489445

How to handle text data?

Language Modeling: predict the next word

P(I like cats because they look cute) = P(I) P(like | I) P(cats | I like) P(as | I like cats) P(they | I like cats because)

 P(look | I like cats because they) P(cute | I like cats because they look)

Predict the next word given current text!

Assign probabilities to text.

[C. E. Shannon. Prediction and entropy of printed English. Bell Sys. Tech. Jour., Vol. 30, pp. 51-64, 1951.]

n-Gram Language Model
n-Gram: chunk of n consecutive words

P(I like cats as they look cute) = P(I) P(like | I) P(cats | like) P(as | cats) P(they | because) P(look | they) P(cute | look)

In bi-gram LM

Uni-gram: “I” “like” “cats” “as” “they” “look” “cute”

Bi-gram: “I like” “like cats” “cats as” “as they” …

Tri-gram: “I like cats” “like cats as” “cats as they” …
Count the frequency of each n-grams and
predict next word!

Assume each word only depends
on previous n - 1 words.

Discuss:
Do you want to have a large n or a small n in a n-gram

model?

What is special about this sentence by Noam Chomsky:
“Colorless green ideas sleep furiously.”

n-Gram Language Model: issue
n-Gram: chunk of n consecutive words Uni-gram: “I” “like” “cats” “as” “they” “look” “cute”

Bi-gram: “I like” “like cats” “cats as” “as they” …

Tri-gram: “I like cats” “like cats as” “cats as they” …

Increasing n provides contextual information, but exponentially
increases the size of the counting table!

Count the frequency of each n-grams and
predict next word!

Assume each word only depends on
previous n - 1 words.

Bag of Words (to represent documents)

https://koushik1102.medium.com/nlp-bag-of-words-and-tf-idf-explained-fd1f49dce7c4

Drawbacks:
● High dimensionality
● No semantic information

Document similarity?

Documents have no words in common.
How can we quantify that they convey

similar meanings?
(Assume B. Obama is president.)

Semantic similarity

● Motivation
○ Put words into vectors so we can measure the similarity between words
○ Use cosine similarity

good nice

bad

Why Do We Need Word Embeddings?

● Why Do We Need Word Embeddings?
○ Numerical Input
○ Shows Similarity and Distance

embedding using features of words

liv
ing

 b
ein

g
fe

lin
e

hu
m

an
ge

nd
er

ro
ya

lty
ve

rb

plu
ra

l

What are word embeddings

● What are Word Embeddings?
○ vector representations of words that capture semantic relationships
○ Latent Semantic Analysis / Indexing [S. Deerwester et al 1988]

[Blitzer et al. Neurips, 2004]

Demo

Visualize: https://projector.tensorflow.org/

Explore: http://epsilon-it.utu.fi/wv_demo/

https://projector.tensorflow.org/
http://epsilon-it.utu.fi/wv_demo/

What is Underberg?

Suppose you see these sentences:

● I love drinking Underberg after a meal.
● I find Underberg is quite strong.
● A few bottles of Underberg make me very drunk.

● We want vectors for words so that the context of a word can suggest the
vector of this word, and vice versa

● Idea: Similar words appear in similar contexts

Word2Vec:

Word2Vec - Training
SkipGram - Predict context from target

A cup of coffee is on the table

Center word context words in
window of size 2

context words in
window of size 2

Word2Vec - Training
SkipGram - Predict context from target

A cup of coffee is on the table

Center word context words in
window of size 2

context words in
window of size 2

Word2Vec - Training
Continuous Bag of Words (CBOW) - predict target from context

A cup of coffee is on the table

Center word context words in
window of size 2

context words in
window of size 2

SkipGram - Training samples

(coffee, cup)

(coffee, of)

(coffee, is)

(coffee, on)

A cup of coffee is on the table

Word2Vec Architecture - SkipGram

Predict context word from target word!

One hot
encoding of the

target word
(“coffee”)

coffee cup

(dim=|V|)

cup

Word2Vec Architecture - SkipGram

Predict every target word from each context word!

coffee cup

cup

Word2Vec Architecture - SkipGram

What is the output of multiplying
the one-hot vector [0,1,0,0,0,0,0]
with W?

For every target word t we have one
vector Wt

Word2Vec Architecture - SkipGram

Predict every target word from each context word!

cup coffee

softmax of |V|
dimensional
output to get
probabilities

Vector of Word t Vector of
W

ord c

Looking closer…

● We observe that every row of the W matrix corresponds to a target word and
every column of the W’ matrix corresponds to a context word.

● We compute the probability of a target-context pair with the soft-max as:

Here, indicates the t-th row of matrix W.

Word2Vec Architecture - SkipGram

Predict context word from target word!

cup coffee

One hot
encoding of the

context word
(dim=|V|)

Vector of Word t Vector of
W

ord c

Word2Vec Architecture - SkipGram

Predict context word from target word!

cup coffee

Cross-Entropy
Loss

Vector of Word t Vector of
W

ord c

Cross Entropy

● Cross Entropy: lower cross entropy indicates high similarity between two
distributions

● So the loss function is: In the end, we only keep W
and discard W’.

Word2Vec Architecture - SkipGram

Predict context word from target word!

cup coffee

Cross-Entropy
Loss

Vector of Word t Vector of
W

ord c

Word2Vec Architecture - CBOW (continuous bag of words)

(cup, of, is, on) coffee

Vector of Word c Vector of
W

ord t
Vector of Word c’

Word Mover’s Distance [Kusner et al., 2015]

Measure similarity between documents as the minimum travel distance to
match all words from one document to those of the other in word2vec space.

X 2 vec

● Generate vector representations (embeddings) for various data
types

● Examples:
○ Word2Vec
○ Doc2Vec
○ Node2Vec
○ Item2Vec
○ Sent2Vec

Demo

Visualize: https://projector.tensorflow.org/

Explore: http://epsilon-it.utu.fi/wv_demo/

https://projector.tensorflow.org/
http://epsilon-it.utu.fi/wv_demo/

Doc2Vec
● A vector to represent a paragraph, regardless of length

○ embeddings for paragraph and words
○ Applications: Document classification, sentiment analysis,

recommendation systems, and information retrieval

In vector space…

woman

man

queen

king

Word embeddings capture societal biases

[Bolukbasi et al. Neurips 2016]

Word embeddings are time-dependent (why?)

● Semantic similarity of words depends on time.

Problems with word2vec

● Words with multiple meanings only have
one representation
○ eg. bank of river or bank of money
○ Need contextual information

● Limited Context
○ only trained on words within the

context window

How to use word vectors with neural networks?

● Inputs and outputs don’t have fixed lengths
● Features are not shared

Let’s simplify!

What if we have a single word and a single output?

 Recurrent neural network (RNN)

FFN + Hidden States

Word
embeddings

Output

Hidden
States

Sequence Timesteps

 Recurrent neural network (RNN)

FFN + Hidden States

Word
embeddings

Output

Hidden
States

Sequence Timesteps

 Recurrent neural network (RNN)

FFN + Hidden States

Word
embeddings

Output

Hidden
States

Sequence Timesteps

How to parametrize this network?

Parameterize RNN

● Too many parameters if we

have a long sequence!

● Longer sequence parameters

will not receive many updates

● What if sequence lengths vary?

RNN w/ parameter-sharing
Simple fix: use the same parameters across different timesteps.

Recap

● N-gram models
● Bag-of-words representations
● Word2Vec

○ CBOW: use context to predict target word
○ SkipGram: use target word to predict context

● RNN
○ Has an internal state (memory)
○ Can handle arbitrary sequences of inputs
○ Trained with back propagation through time

Image credits:

https://web.stanford.edu/~jurafsky/slp3/6.pdf

https://lilianweng.github.io/posts/2017-10-15-word-embedding/

https://web.stanford.edu/~jurafsky/slp3/6.pdf
https://lilianweng.github.io/posts/2017-10-15-word-embedding/

