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Logistics

● HW1 is due on Today

● Submit on gradescope
○ If you worked in a group, create a group and then submit

● Clarifications are on Ed

● Come to office hours if you have questions



Recap

- MLPs
- Loss functions
- Optimizers
- Regularization
- Architecture types (CNNs for images)

- Today: Words



Summary of Image Models

“Plain” CNN Google Net ResNet DenseNet

Simple connection 
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Add output of previous 
layer to next layer
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Concatenate output of 
previous layer to next 

layer
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From ResNets 

ResNet

DenseNet

[Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision and pattern 
recognition. 2017.]

to DenseNets



DenseNets - feature concatenation



MLPs:

● Fully connected layers
● Require more parameters and 

computational resources
● Flexible and can handle various input 

types

CNNs:

● Convolutional layers with filters
● Designed specifically for structured 

input like images
● Inherently translation invariant due to 

shared weights
● Requires fewer parameters

https://www.researchgate.net/figure/The-architecture-of-MLP-and-CNN-MLP-is-consisted-of-fullyconnected-FC-layers-and-CNN_fig2_334489445



How to handle text data?







Language Modeling: predict the next word

P(I like cats because they look cute) = P(I) P(like | I) P(cats | I like) P(as | I like cats)  P(they | I like cats because)  

                                                                  P(look | I like cats because they)  P(cute | I like cats because they look) 

Predict the next word given current text!

Assign probabilities to text.

[C. E. Shannon. Prediction and entropy of printed English. Bell Sys. Tech. Jour., Vol. 30, pp. 51-64, 1951.]



n-Gram Language Model
n-Gram: chunk of n consecutive words

P(I like cats as they look cute) = P(I) P(like | I) P(cats | like) P(as | cats)  P(they | because)  P(look | they)  P(cute | look) 

In bi-gram LM

Uni-gram: “I” “like” “cats” “as” “they” “look” “cute”

Bi-gram: “I like” “like cats” “cats as” “as they” …

Tri-gram: “I like cats” “like cats as” “cats as they” …
Count the frequency of each n-grams and 
predict next word!

Assume each word only depends 
on previous n - 1 words.



Discuss: 
Do you want to have a large n or a small n in a n-gram 

model?

What is special about this sentence by Noam Chomsky:
“Colorless green ideas sleep furiously.”



n-Gram Language Model: issue
n-Gram: chunk of n consecutive words Uni-gram: “I” “like” “cats” “as” “they” “look” “cute”

Bi-gram: “I like” “like cats” “cats as” “as they” …

Tri-gram: “I like cats” “like cats as” “cats as they” …

Increasing n provides contextual information, but exponentially 
increases the size of the counting table!

Count the frequency of each n-grams and 
predict next word!

Assume each word only depends on 
previous n - 1 words.



Bag of Words (to represent documents)

https://koushik1102.medium.com/nlp-bag-of-words-and-tf-idf-explained-fd1f49dce7c4

Drawbacks:
● High dimensionality
● No semantic information



Document similarity?

Documents have no words in common. 
How can we quantify that they convey 

similar meanings?
(Assume B. Obama is president.)



Semantic similarity

● Motivation
○ Put words into vectors so we can measure the similarity between words 
○ Use cosine similarity

good nice

bad



Why Do We Need Word Embeddings?

● Why Do We Need Word Embeddings?
○ Numerical Input
○ Shows Similarity and Distance

embedding using features of words
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What are word embeddings

● What are Word Embeddings?
○ vector representations of words that capture semantic relationships
○ Latent Semantic Analysis / Indexing [S. Deerwester et al 1988]

[Blitzer et al. Neurips, 2004]



Demo

Visualize: https://projector.tensorflow.org/

Explore: http://epsilon-it.utu.fi/wv_demo/

https://projector.tensorflow.org/
http://epsilon-it.utu.fi/wv_demo/


What is Underberg?

Suppose you see these sentences:

● I love drinking Underberg after a meal.
● I find Underberg is quite strong. 
● A few bottles of Underberg make me very drunk. 

● We want vectors for words so that the context of a word can suggest the 
vector of this word, and vice versa

● Idea: Similar words appear in similar contexts

Word2Vec:





Word2Vec - Training
SkipGram - Predict context from target

A cup of coffee is on the table

Center word context words in 
window of size 2

context words in 
window of size 2



Word2Vec - Training
SkipGram - Predict context from target

A cup of coffee is on the table

Center word context words in 
window of size 2

context words in 
window of size 2



Word2Vec - Training
Continuous Bag of Words (CBOW) - predict target from context

A cup of coffee is on the table

Center word context words in 
window of size 2

context words in 
window of size 2



SkipGram - Training samples

(coffee, cup)

(coffee, of)

(coffee, is)

(coffee, on)

A cup of coffee is on the table



Word2Vec Architecture - SkipGram

Predict context word from target word!

One hot 
encoding of the 

target word
(“coffee”)

coffee     cup

(dim=|V|)

cup



Word2Vec Architecture - SkipGram

Predict every target word from each context word!

coffee     cup

cup



Word2Vec Architecture - SkipGram

What is the output of multiplying 
the one-hot vector [0,1,0,0,0,0,0] 
with W?

For every target word t we have one 
vector Wt



Word2Vec Architecture - SkipGram

Predict every target word from each context word!

cup     coffee

softmax of |V| 
dimensional 
output to get 
probabilities 

Vector of Word t Vector of 
W

ord c



Looking closer…

● We observe that every row of the W matrix corresponds to a target word and 
every column of the W’ matrix corresponds to a context word.

● We compute the probability of a target-context pair with the soft-max as:

Here,         indicates the t-th row of matrix W. 



Word2Vec Architecture - SkipGram

Predict context word from target word!

cup     coffee

One hot 
encoding of the 

context word
(dim=|V|)

Vector of Word t Vector of 
W

ord c



Word2Vec Architecture - SkipGram

Predict context word from target word!

cup     coffee

Cross-Entropy 
Loss

Vector of Word t Vector of 
W

ord c



Cross Entropy

● Cross Entropy: lower cross entropy indicates high similarity between two 
distributions

● So the loss function is: In the end, we only keep W
and discard W’. 



Word2Vec Architecture - SkipGram

Predict context word from target word!

cup     coffee

Cross-Entropy 
Loss

Vector of Word t Vector of 
W

ord c



Word2Vec Architecture - CBOW (continuous bag of words)

(cup, of, is, on)     coffee

Vector of Word c Vector of 
W

ord t
Vector of Word c’



Word Mover’s Distance [Kusner et al., 2015]

Measure similarity between documents as the minimum travel distance to 
match all words from one document to those of the other in word2vec space. 



X 2 vec

● Generate vector representations (embeddings) for various data 
types

● Examples:
○ Word2Vec 
○ Doc2Vec
○ Node2Vec 
○ Item2Vec
○ Sent2Vec



Demo

Visualize: https://projector.tensorflow.org/

Explore: http://epsilon-it.utu.fi/wv_demo/

https://projector.tensorflow.org/
http://epsilon-it.utu.fi/wv_demo/


Doc2Vec
● A vector to represent a paragraph, regardless of length

○ embeddings for paragraph and words
○ Applications: Document classification, sentiment analysis, 

recommendation systems, and information retrieval



In vector space…

woman

man

queen

king



Word embeddings capture societal biases

[Bolukbasi et al. Neurips 2016]



Word embeddings are time-dependent (why?)

● Semantic similarity of words depends on time.



Problems with word2vec

● Words with multiple meanings only have 
one representation
○ eg. bank of river or bank of money
○ Need contextual information

● Limited Context
○ only trained on words within the 

context window 



How to use word vectors with neural networks?

● Inputs and outputs don’t have fixed lengths
● Features are not shared



Let’s simplify!

What if we have a single word and a single output?



 Recurrent neural network (RNN)

FFN + Hidden States

Word 
embeddings

Output

Hidden
States

Sequence Timesteps
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 Recurrent neural network (RNN)

FFN + Hidden States

Word 
embeddings

Output

Hidden
States

Sequence Timesteps

How to parametrize this network?



Parameterize RNN

● Too many parameters if we 

have a long sequence!

● Longer sequence parameters 

will not receive many updates

● What if sequence lengths vary?



RNN w/ parameter-sharing
Simple fix: use the same parameters across different timesteps.



Recap

● N-gram models
● Bag-of-words representations
● Word2Vec

○ CBOW: use context to predict target word
○ SkipGram: use target word to predict context

● RNN
○ Has an internal state (memory) 
○ Can handle arbitrary sequences of inputs
○ Trained with back propagation through time



Image credits:

https://web.stanford.edu/~jurafsky/slp3/6.pdf

https://lilianweng.github.io/posts/2017-10-15-word-embedding/

https://web.stanford.edu/~jurafsky/slp3/6.pdf
https://lilianweng.github.io/posts/2017-10-15-word-embedding/

