

Thanks to:

Varsha Kishore
Justin Lovelace
Anissa Dallmann
Stephanie Ginting

Logistics

- **HW1+P1** is due Thursday (February 13) 11:59 PM
- Late submissions accepted until Saturday (February 15) 11:59 PM

- **HW2** to be released this Thursday (February 13) due Thursday (February 27)
- P2 release timelines to be confirmed soon due Thursday (February 27)

- Office hours are listed on the course website
- Homework clarifications are listed as pinned posts under HW1 on Ed
- Post questions on Ed

Clarification: Dropout

In each forward pass, randomly set some neurons to zero.

The probability of keeping a neuron is a hyperparameter; p=0.5 is common. zeroing

Deep Net with Dropout Layer

Clarification: Dropout During Test Time

Need to re-scale activations so they are the same (in expectation) during training and testing

Consider a single neuron.

At test time we have: $E[a] = w_1x + w_2y$

During training we have: $E[a] = \frac{1}{4}(w_1x + w_2y) + \frac{1}{4}(w_1x + 0y)$

At test time, multiply by (1 - p)

$$+ \frac{1}{4}(0x + 0y) + \frac{1}{4}(0x + w_2y)$$
$$= \frac{1}{2}(w_1x + w_2y)$$

Image Classification

- Important: Everything is differentiable!
- Can calculate gradient of the loss with backpropagation
 - Train with SGD/Adam/etc.
 - Learn convolutional filters and classification head end-to-end!

Deeper CNN Architectures

Deeper CNN Architectures

Performed better!

Deeper == better

Discuss: How can a larger network achieve a higher training error?

56 layer CNN has higher training and test error than 20 layer CNN on CIFAR-10 dataset for image classification

ImageNet Classification Challenge: Deeper == better

[Nguyen, Kien & Fookes, Clinton & Ross, Arun & Sridharan, Sridha. (2017). Iris Recognition with Off-the-Shelf CNN Features: A Deep Learning Perspective. IEEE Access. PP. 1-1. 10.1109/ACCESS.2017.2784352.]

GoogLeNet/Inception Net

Goal: given a fixed computational budget, optimize the depth and width of the network

=> Deeper networks with computational efficiency

Inception Module

Inception module = main building blocks

Inception Module

Still expensive!

- 3x3 and 5x5 convolutions have large number of operations
- Output of pooling layer increases the output channel dimension when concatenated

Remember: 1x1 convolutions

Discuss: Impact of Dimension Reduction

Assume you have an input feature map with 256 channels/features.

Compare the parameter counts from:

1. 3x3 conv with 256 filters

2. $1x1 \text{ conv with } 64 \text{ filters} \rightarrow 3x3 \text{ conv with } 64 \text{ filters} \rightarrow 1x1 \text{ conv with } 256 \text{ filters}$

Inception Module

Solution: Inception module with dimension reduction

 "Bottleneck" with 1x1 convolutions to reduce dimensions

GoogLeNet Architecture

Key idea: stack inception modules together

The Entire GoogLeNet Architecture

CNN Architectures

"Plain" CNN GoogLeNet Simple connection from previous to next layer 1x1, 3x3, 5x5 convolutions and pooling between each layer

The Entire GoogleNet Architecture

Very complicated - how exactly did this architecture solve the problem?

Residual connections

Aside: Conv Layer Abstraction

Backpropagation

Cornell Bowers C·IS

$$egin{aligned} rac{\partial \mathcal{L}}{\partial \mathbf{W}^{[3]}} &= rac{\partial \mathcal{L}}{\partial \mathbf{a}^{[3]}} rac{\partial \mathbf{a}^{[3]}}{\partial \mathbf{W}^{[3]}} \ &= \delta^{[3]} (\mathbf{z}^{[2]})^T \end{aligned}$$

 $\mathbf{a}^{[1]} = \mathbf{W}^{[1]}\mathbf{z}^{[0]}$

 $\delta^{[2]} = rac{\partial \mathcal{L}}{\partial \mathbf{a}^{[2]}} = rac{\partial \mathcal{L}}{\partial \mathbf{z}^{[2]}} rac{\partial \mathbf{z}^{[2]}}{\partial \mathbf{a}^{[2]}}$

 $\mathbf{z}^{[1]} = \sigma(\mathbf{a}^{[1]})$

1: Input: $\{\mathbf{z}^{[1]}, \dots, \mathbf{z}^{[L]}\}, \{\mathbf{a}^{[1]}, \dots, \mathbf{a}^{[L]}\}, \text{ loss gradient } \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[L]}}$ 2: $\delta^{[L]} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[L]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[L]}} \frac{\partial \mathbf{z}^{[L]}}{\partial \mathbf{a}^{[L]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[L]}} \odot \sigma^{[L]'}(\mathbf{a}^{[L]})$ ▶ Error term 3: for l = L to 1 do $rac{\partial \mathcal{L}}{\partial \mathbf{W}^{[l]}} = rac{\partial \mathcal{L}}{\partial \mathbf{a}^{[l]}} rac{\partial \mathbf{a}^{[l]}}{\partial \mathbf{W}^{[l]}} = \delta^{[l]} (\mathbf{z}^{[l-1]})^T$ ▶ Gradient of weights 5: $\frac{\partial \mathcal{L}}{\partial \mathbf{b}^{[l]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[l]}} \frac{\partial \mathbf{a}^{[l]}}{\partial \mathbf{b}^{[l]}} = \delta^{[l]}$ ▶ Gradient of biases 6: $\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[l-1]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[l]}} \frac{\partial \mathbf{a}^{[l]}}{\partial \mathbf{z}^{[l-1]}} = (\mathbf{W}^{[l]})^T \delta^{[l]}$

Algorithm Backward Pass through MLP (Detailed)

 $\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[2]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[3]}} \frac{\partial \mathbf{a}^{[3]}}{\partial \mathbf{z}^{[2]}} = (W^{[3]})^T \delta^{[3]}$

 $\mathcal{L}(\mathbf{z}^{[3]},\mathbf{y})$ We can directly compute $\frac{\partial \mathcal{L}}{\partial \sigma^{[3]}}$!

Discussion: Backpropagation through Residual blocks

$$\frac{\partial L}{\partial a} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial a} = \frac{\partial L}{\partial z} (F'(a))$$

ResNet

Stack residual blocks together!

ResNet

Stack residual blocks together!

ResNet

Stack residual blocks together!

Full ResNet Architecture

"Plain" Network

ResNet

Recall: How can a larger network achieve a higher training error?

56 layer CNN has higher training and test error than 20 layer CNN on CIFAR-10 dataset for image classification

Deeper == better

Can train deeper models!

Figure 4. Training on **ImageNet**. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.

Visualizing the Effect of Skip Connections

Makes optimization easier!

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.

[Li, Hao, et al. "Visualizing the loss landscape of neural nets." Advances in neural information processing systems 31 (2018).]

Stochastic Depth

Still have long training times! Solution: stochastic depth

Stochastic Depth

During training, randomly drop Residual Blocks using skip connections

Like dropout but with residual blocks instead of individual neurons

[Huang, Gao, et al. "Deep networks with stochastic depth." *Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14.* Springer International Publishing, 2016.]

Stochastic Depth

Another benefit: robustness/mitigating overfitting

[Huang, Gao, et al. "Deep networks with stochastic depth." *Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14.* Springer International Publishing, 2016.]

Stochastic Depth

Increases training loss, but... decreases test error!

Fig. 3. Test error on CIFAR-10 (*left*) and CIFAR-100 (*right*) during training, with data augmentation, corresponding to results in the first two columns of Table 1.

[Huang, Gao, et al. "Deep networks with stochastic depth." Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14. Springer International Publishing, 2016.]

CNN Architectures

From ResNets to DenseNets

ResNet : Element-wise addition **DenseNet**

• : Channel-wise concatenation

Dense Blocks

To create dense connections, dense blocks use the same structure as residual blocks, but <u>concatenate</u> (denoted by [,]) inputs instead of simply adding them

Dense Connections

Each layer has access to every other layer before it, which:

- maximizes information flow
- allows for feature-map reuse
- less parameters to learn
- alleviates vanishing gradient

DenseNets

Figure 3: Comparison of the DenseNets and ResNets top-1 error rates (single-crop testing) on the ImageNet validation dataset as a function of learned parameters (*left*) and FLOPs during test-time (*right*).

Summary of Models

Summary

- Deep CNNs outperform shallow CNNs
- But...
 - Harder optimization problem!
- Residual (and dense) connections make training easier!
 - Can train networks with 100s of layers!
- Stochastic depth let's you train deeper networks faster
 - 1000+ layers!
- In general...
 - Build large networks as stacks of (many!) simple building blocks