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Cornell Bowers C1IS
Logistics

e HW1+P1 is due Thursday (February 13) 11:59 PM
e Late submissions accepted until Saturday (February 15) 11:59 PM

e HW2 to be released this Thursday (February 13) - due Thursday (February 27)

e P2 release timelines to be confirmed soon - due Thursday (February 27)

e Office hours are listed on the course website
e Homework clarifications are listed as pinned posts under HW1 on Ed

e Post questions on Ed
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Clarification: Dropout

In each forward pass, randomly set some neurons to zero.

The probability of keepifig a neuron is a hyperparameter; p=0.5 is common.

zeroing

Input Layer

[Srivastava et al. 2014]

Dropout Layer
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Clarification: Dropout During Test Time

Need to re-scale activations so they are the same (in expectation) during training
and testing

Consider a single neuron.

At test time we have: E[a] = W1ZT + w2y

During training we have: g[4] :%(wlx + way) + i(wlx + 0y)

+ 2 (02 +0y) + (02 + way)
At test time, multiply X 4 4

by (1 = p) =§(w1x+w2y)

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf
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Image Classification

e Important: Everything is differentiable!
e Can calculate gradient of the loss with backpropagation
o Train with SGD/Adam/etc.

o Learn convolutional filters and classification head end-to-end!
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Deeper CNN Architectures

Y
feature extraction

flatten

classification

0.9 “dog”

0.2 “cat”
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Deeper CNN Architectures

!

3 x 3 convolution

f

3 x 3 convolution

T

T

5 x 5 convolution VS

T

Performed better!
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Deeper == better

Y
CNN
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Discuss: How can a larger network achieve a higher
training error?
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56 layer CNN has higher training and test error than 20 layer CNN
on CIFAR-10 dataset for image classification
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ImageNet Classification Challenge: Deeper == better
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ILSVRC'1S  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

[Nguyen, Kien & Fookes, Clinton & Ross, Arun & Sridharan, Sridha. (2017). Iris Recognition with Off-the-Shelf CNN Features: A
Deep Learning Perspective. IEEE Access. PP. 1-1. 10.1109/ACCESS.2017.2784352. |
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GooglLeNet/Inception Net

Goal: given a fixed computational budget, optimize the depth and width of the
network

=> Deeper networks with computational efficiency

[Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015.]
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Inception Module

Filter
concatenation
1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling

Previous layer

Inception module = main
building blocks

[Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015.]
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Inception Module

Still expensive!

Filter .
——— - 3x3 and 5x5 convolutions have
\ .
T large number of operations
1x1 convolutions 3x3 convelutions 5x5 convolutions 3x3 max pooling . .
- Output of pooling layer increases

the output channel dimension
e when concatenated

[Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015.]
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Remember: 1x1 convolutions

input filters

X

1x1x64
* 32 filters

56x56x64

output

56x56x32
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Discuss: Impact of Dimension Reduction

Assume you have an input feature map with 256 channels/features.

Compare the parameter counts from:

1. 3x3 conv with 256 filters

2. 1x1 conv with 64 filters — 3x3 conv with 64 filters — 1x1 conv with 256 filters
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Inception Module

Solution: Inception module with dimension reduction

Fitter

3x3 convolutions 55 convolutions 1x1 convolutions

1x1 convolutions I L} [}

\\ 1x1 convolutions 1x1 convolutions 3x3 max pooling

[Szegedy, Christian, et al. "Going deeper with convolutions
and pattern recognition. 2015.]

- “Bottleneck” with 1x1 convolutions
to reduce dimensions

." Proceedings of the IEEE conference on computer vision
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GooglLeNet Architecture

Key idea: stack inception modules together
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[Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015.]
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The Entire GooglLeNet Architecture

Filter
concatenation
3x3 convalutions: 5x5 convolutions 1x1 convolutions
1x1 convolutions v 4 $
1x1 convolutions 1x1 convolutions 3x3 max pooling

Inception Module

[Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015.]
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CNN Architectures

“Plain” CNN GoogLeNet

1x1, 3x3, 5x5
convolutions and
pooling between each
layer
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The Entire GoogleNet Architecture

Very complicated - how exactly did this
architecture solve the problem?

Filter
concatenation

3x3 convolutions 5x5 luti 1x1 convoluti
x1 luti ) L] L)
1x1 convolutions 1x1 convolutions 3x3 max pooling
\ — L | .
Pravious layer

Residual connections

[Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015.]
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Aside: Conv Layer Abstraction

! RelLU

Batch Normalization

3x3 convolution Conv Layer
| ReLU !
Batch Normalization Conv Layer

3x3 convolution
X

|

X




Algorithm Backward Pass through MLP (Detailed)
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Discussion:

“Plain” layers

Residual Blocks

(identity)

a

Backpropagation through Residual blocks
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ResNet

Stack residual blocks together!
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[He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016.]
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ResNet

Stack residual blocks together!

block 1 block 2 block 3

[He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016.]
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ResNet

Stack residual blocks together!
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[He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016.]
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Full ResNet Architecture

“Plain” Network
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[He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016.]

avg pool

avg pool

fc 1000

fc 1000
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Recall: How can a larger network achieve a higher training
error?
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56 layer CNN has higher training and test error than 20 layer CNN
on CIFAR-10 dataset for image classification
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Deeper == better

Can train deeper models!
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Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to

their plain counterparts.
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Visualizing the Effect of Skip Connections

Makes optimization easier!

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.

[Li, Hao, et al. "Visualizing the loss landscape of neural nets." Advances in neural information processing systems 31 (2018).]
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Stochastic Depth

Still have long training times! Solution: stochastic depth

[Huang, Gao, et al. "Deep networks with stochastic depth." Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part IV 14. Springer International Publishing, 2016.]
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Stochastic Depth

During training, randomly drop Residual Blocks using skip connections

Like dropout but with residual blocks instead of individual neurons

Sy

block 1 block 4 |—
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[Huang, Gao, et al. "Deep networks with stochastic depth." Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part IV 14. Springer International Publishing, 2016.]
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Stochastic Depth

Another benefit: robustness/mitigating overfitting

block 1 block 3 block 4 |—

A 4
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[Huang, Gao, et al. "Deep networks with stochastic depth." Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part IV 14. Springer International Publishing, 2016.]
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Stochastic Depth

Increases training loss, but... decreases test error!

110-layer ResNet on CIFAR-10 110-layer ResNet on CIFAR-100 )
T : T : T r r : 10
Test Error with Constant Depth o Test Error with Constant Depth
Test Error with Stochastic Depth |} 10 45 Tes} !Error with $tochastic Depth
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151 Training Loss with Stochastic Depth |1 Training Loss with Stochastic Depth
40 410°
<) 107" =
= = S 351 =
£ 1o} e £ =2
() ‘© () e
- - - 10 .=
7] 2 ® 7] ©
2 110 = 2 30t =
5r 25+ g
- 1107
10
i i i i 20 i i i i
0 100 200 300 400 500 0 100 200 300 400 500
epoch epoch

Fig. 3. Test error on CIFAR-10 (left) and CIFAR-100 (right) during training, with
data augmentation, corresponding to results in the first two columns of Table 1.

[Huang, Gao, et al. "Deep networks with stochastic depth." Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part IV 14. Springer International Publishing, 2016.]
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CNN Architectures

ResNet

Skip connections

Add output of previous
layer to next layer
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From ResNets to DenseNets

ResNet

@ : Element-wise addition

DenseNet

® : Channel-wise concatenation

[Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017.]
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Dense Blocks

To create dense connections, dense blocks use the same structure as residual
blocks, but concatenate (denoted by [, ]) inputs instead of simply adding them

D

[ RelLU
weight layer
4

X

Residual Blocks

— .1

[ ReLU

weight layer

|
X

Dense Blocks

[Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision and pattern

recognition. 2017.]
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Dense Connections

Each layer has access to every other layer
before it, which:

- maximizes information flow
- allows for feature-map reuse
- less parameters to learn

- alleviates vanishing gradient

® : Channel-wise concatenation

[Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017.]
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DenseNets

Dense Block 1 Dense Block 2 Dense Block 3

Output

Pooling

Convolution

Feature map sizes match
within each block

Pooling reduces
feature map sizes

[Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision and pattern

recognition. 2017.]
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Figure 3: Comparison of the DenseNets and ResNets top-1 error rates (single-crop

testing) on the ImageNet validation dataset as a function of learned parameters (left)
and FLOPs during test-time (right).
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Summary of Models

“Plain” CNN Google Net
Simple connection 1x1, 3x3, 5x5
from previous to next convolutions and
layer pooling between each
layer
F(x)
= = =
T = D=
T ]
X

ResNet

Skip connections

Add output of previous
layer to next layer

DenseNet

Dense connections

Concatenate output of
previous layer to next
layer

| [.]

f
B—

X
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Summary

Deep CNNs outperform shallow CNNs

But...
o Harder optimization problem!

Residual (and dense) connections make training easier!
o Can train networks with 100s of layers!

Stochastic depth let’s you train deeper networks faster
o 1000+ layers!

In general...

o Build large networks as stacks of (many!) simple building blocks




