
CS 4782 - Midterm Review
Snehal, Adhitya, Sean, Žiga, Lucas

Word Embeddings

Motivated by semantic similarity

good nice

bad

Word2Vec

Skipgram - Predict context from target

A cup of coffee is on the table

Center word context words in
window of size 2

context words in
window of size 2

A cup of coffee is on the table

Center word context words in
window of size 2

context words in
window of size 2

Continuous Bag of Words (CBOW) -
predict target from context

Training Data

One-hot encoded vectors of all the words in your vocabulary

SkipGram

cup
cup

coffee cup

cupcoffee
Vector of Word t Vector of

W
ord c

randomly initialized

Cross-Entropy
Loss

Vector of Word t Vector of
W

ord c

Calculate Loss and BackPropagate till Minima

coffee
cup

CBOW
(cup, of, is, on) coffee

Vector of Word c

Vector of Word c’

Vector of
W

ord t

Cross-Entropy
Loss

Calculate Loss
and
BackPropagate
till Minima

Transitioning to RNNs

Let’s simplify!

What if we have a single word and a single output?

0 = not animal
1 = animal

Size of
weight
matrix??

 Recurrent neural network (RNN)

FFN + Hidden States

Word
embeddings

Output

Hidden
States

Sequence Timesteps

How to parametrize this network?

Maybe we add a weight matrix between every state??

FFN + Hidden States

Word
embeddings

Output

Hidden
States

Sequence Timesteps

PARAMETERS GALORE!

Solution: Reuse same weight matrices - wherever possible

FFN + Hidden States

Word
embeddings

Output

Hidden
States

Sequence Timesteps

 Recurrent neural network (RNN)

Hidden State

Output

Sequence Timesteps

Use the same parameters across
different timesteps.

Problems

● Loooooooong Context Issues
● Sequential - slow

Long-short Term
Memory (LSTM)

RNN

Long-short Term Memory (LSTM)

● Main idea: add a “cell” state that allows information to flow easily
○ Similar to residual connections
○ No repeated matrix multiplications!

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

c_1

c_2
Control flow by adding
knobs and switches

LSTMs- Forget Gate

● Forget gate- function of current input and previous hidden state
● Controls what should be remembered in the cell state

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

W_f

Think of
it like
blocking
certain
dimensio
ns and
letting
others
flow

multiply

LSTMs- Input Gate

● Input gate- function of current input and previous hidden state
● Decides what information to write to the cell state

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

W_i W_c

add
Think of it like “what
info from my current
input x_t am I adding
to old state c_(t-1)”

LSTM- Cell Update

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Add new information
from the current token Forget irrelevant

information

LSTM- Output Gate

● Output gate- function of current input and previous hidden state
● Controls flow of information from the cell state to the hidden state
● Given some weight matrix W_o, how do we write to o_t and h_t?

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

W_o

multiply

Think of it like
“wanting to maintain
a latent hidden
space”

LSTMs

● Performs better with long sequences
● But still sequential!!

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

A bat flew out of the dugout, startling the baseball player and
making him drop his bat.

Context influences word meaning.

Bidirectional LSTM

Transformers

What we cover

RNNs and LSTMs were sequential -
Transformers are parallelized!

Sentence: “Queen and King”

Some requirements

● Every position should have a unique
identifier

● Independent of input
● Independent of sequence length
● Numbers shouldn’t be too large

Self-Attention
(N x D) input Matrices

(N x D) output Matrix

1. Get Q,K,V from the N input
token using the weights.

 (N,) -> (N,D)

2. Use attention to transform this
token representation with the
other tokens in the sequence.

(N,D) -> (N,D)

Q,
 K,
 V

x,
Wq,Wk,Wv

A

Self-Attention

1. Get Q,K,V from the N input
token using the weights.

 (N,) -> (N,D)

2. Use attention to transform this
token representation with the
other tokens in the sequence.

(N,D) -> (N,D)

Q,
 K,
 V

x,
Wq,Wk,Wv

A

Multi-Head-Attention(input x):
Split input into query, key, and value vectors
q = split_heads(Wq(x)) # (b, h, n, d)
k = split_heads(Wk(x)) # (b, h, n, d)
v = split_heads(Wv(x)) # (b, h, n, d)

Compute attention scores and apply them to values
attn_output = compute_attention(q, k, v)

Combine attention heads and apply output transformation
output = W0(combine_heads(attn_output))

return output

Self-Attention

Implementation:

Representation Learning

VGG-16

VGG-19

DenseNet-121

Dataset-“Agnostic” Dataset-Specific CUB-200

CIFAR

Task

Representation Learning

VGG-16

VGG-19

DenseNet-121

Dataset-“Agnostic” Dataset-Specific CUB-200

CIFAR

Task

Representation Learning
Unlabeled Image Data Image Representation

B.ring
Y.our
O.wn
C.lassifier

How to get this useful
image embedder?

Representation Learning

Q: How to get an image embedder?
➔ Supervised Model Features

Train on ImageNet and throw away the classifier.

Representation Learning

Q: How to get an image embedder?
➔ Supervised Model Features

➔ Self-Supervised Learning

◆ Pre-training Task

Pick a Task Correlated with Image Understanding
(Make it easy to label!)

00

900

1800

2700

✅

Representation Learning

Q: How to get an image embedder?
➔ Supervised Model Features

➔ Self-Supervised Learning

◆ Pre-training Task
◆ Contrastive Learning

: Negative examples (different images)

: Positive examples (augmentations)

(+negative augmentations)

: Sample

Representation Learning

Q: How to get an image embedder?
➔ Supervised Model Features

➔ Self-Supervised Learning

◆ Pre-training Task
◆ Contrastive Learning SimCLR Loss

: Sample

Triplet Loss

: Negative examples
: Positive examples

: Sample

Q: How to get an image embedder?
➔ Supervised Model Features

➔ Self-Supervised Learning

◆ Pre-training Task
◆ Contrastive Learning

Representation Learning (Multimodal)
a multimodal

Cosine similarity between text
embedding and image embedding.

(Goal: make this Identity)

Representation Learning (Multimodal)

Q: How to get an image embedder?
➔ Supervised Model Features

➔ Self-Supervised Learning

◆ Pre-training Task
◆ Contrastive Learning

a multimodal

Representation Learning

Q: How to get an image embedder?
➔ Supervised Model Features

➔ Self-Supervised Learning

◆ Pre-training Task
◆ Contrastive Learning
◆ Teacher-Student

What is this an image of?

Q: How to get an image embedder?
➔ Supervised Model Features

➔ Self-Supervised Learning

◆ Pre-training Task
◆ Contrastive Learning
◆ Teacher-Student

DiNO
“Distillation No Labels”

Representation Learning

Vision Transformers (ViT) Frequently pretrained with DiNO, you’ll
probably see “DiNO-ViTs” a lot.

Vision Transformers (ViT)

SWIN “Scaled WINdow”

● Popular for large images and
segmentation because of hierarchical
features.

● Attention is per-window.
○ Shifted windows allow long-range

connections at higher layers.

Vision Transformers (ViT) DiNO v2

Vision Transformers (ViT)

DiNO v2

Q: Why don’t we get these visualizations from deep CNNs?

(NOTE: You can train ResNet-50 with a DiNO, and it works great!)

of the image patches.

Vision Transformers (ViT) (vs deep CNNs)

ViTs start with a global receptive fields.

● Interpretable long-range dependencies
from attention are visible early on.

● DiNO’s objective encourages memorizing
“parts-of-whole”.

CNNs take a while to combine global features.

● Creates high level features, but it is hard to
determine which pixels they correspond to.

● Must use methods like Class Activation Mapping
up the network to get to pixel-level effects.

CNN review HW1 Q4

SP24 Prelim Q7
How many parameters?

SP24 Prelim Q7
How many parameters?

Layer 1: (5x5) x 3 x 4 = 300
Layer 2: (1x1) x 4 x 2 = 8
Layer 3: (3x3) x 2 x 2 = 36
Layer 4: (1x1) x 2 x 4 = 8

Layer 5: (1x1) x 4 x 2 = 8
Layer 6: (3x3) x 2 x 2 = 36
Layer 7: (1x1) x 2 x 4 = 8

Total: 404

CNN review

https://setosa.io/ev/image-kernels/

Input image:

Which output comes
from which filter?

SP24 Prelim Q5

https://setosa.io/ev/image-kernels/

CNN review

https://setosa.io/ev/image-kernels/

Input image:

Which output comes
from which filter?

Sharpen Edge

Left sobel Bottom sobel

Sharpen Edge Left sobel

SP24 Prelim Q5

https://setosa.io/ev/image-kernels/

GANs

GANs
● Motivation: Conditional image generation without

labelled pairs (Why? Data scarcity)
○ Eg. translate horses into zebras

GANs
Adversarial Networks
● Generator (G): performs the image translation

○ tries to fool the discriminator
● Discriminator (D): predicts whether the image

was generated by the generator
○ measures how good the generator did

To train, iteratively:
1. Update discriminator on real/fake images
2. Update generator using feedback from new

discriminator
Why can’t we train them simultaneously?

GANs

Discriminator Loss:

Generator Loss:

LD=

LG= - LD

Negative example: fake
image from generator

Positive example: real
image from labelled dataset

GANs
GANs can also be used for unconditional image
generation
● Sample generator using Gaussian noise
● Results in very high quality images, quickly!

However, GANs experience Mode Collapse
● Learn only what best fools the discriminator
● Generated images do not represent full distribution

of image class

Mode collapse

Prelim Q2 (Only focus on GANs)

Prelim Q2 (Only focus on GANs)

N

N

N

Y

Y

Y

Y

Y

Brief U-Net Review

VAEs

Data Manifold

- Data distribution P(x) defines a low-dimensional manifold
- Naive random sampling in this space will almost certainly not be on the

manifold

Autoencoders

encoder decoder

latent variable

Information
Bottleneck

We typically use MSE or MAE to compute reconstruction loss

e d

Autoencoders -> VAEs

Q: We want to generate images - how can we sample from the latent
space?

Autoencoders -> VAEs

Q: We want to generate images - how can we sample from the latent
space?
A: Add regularization to encourage the latent space to approximate a
Gaussian.

Foreshadowing ELBO…

Use the reparameterization trick
to sample

Upshot: Reconstruction formulation results in squared loss

Sampling

Sampling

ELBO

[Calvin Luo https://arxiv.org/abs/2208.11970]

ELBO

Drawbacks

Summary

Prelim Problem (Only focus on VAEs)

Prelim Problem (Only focus on VAEs)

Y

Y

N

N

N

Y

N

Y

Prelim Problem: ELBO

Prelim Problem: ELBO

Prelim Problem: ELBO

Prelim Problem: ELBO

Diffusion Models

(Denoising) Diffusion Models

Diffusion Models - Main point

We DEFINE a mapping between a source distribution and Gaussian Distribution
(Gaussian Noise)

We LEARN a reverse mapping from the Gaussian Distribution to the source
distribution.

Forward Process

● “Destroying Data”
● Adding noise forms a Markov Chain → Markov Property
● Recall:

Forward Process

● Given a sampling schedule, predict the noisy image at timestep t from
timestep 0:

● Usually, we can afford a larger update step when the sample gets noisier so:

● Want:

Backward Process

Goal: given an image that was “noised” for t steps, predict the original image

● Markov chains are not always invertible.
● We learn the inverse (Markov) process

How do we sample from reverse?
● Sure, try Bayes?
● There’s a problem…
● Intractable:

Learn the reverse

 is tractable

We have during training; train a generative model

How do we actually train for the reverse process?

Find the model that maximizes the likelihood
of the training data

max

Find the model that maximizes the likelihood
of the training data

With large T, the prior matching goes to 0

Reparametrization of the noise prediction
Recall that we need to learn a neural network to approximate

Want to train to get:

Since we have x_t during training, we can reparametrize to predict

Reparametrization of the Loss

Loss is MSE of actual predicted loss!

Training Algo

Sampling Algo

Diffusion Sampling

Alternative Perspective

So far:

Alternative:

Score-based Models

Would like to model the probability density function:

Still want to maximize the log-likelihood

Problem: Normalization constant intractable Approximate the score function:

Langevin dynamics allow you to sample from
distribution - even if it is not normalized.

What is the score anyway?

● What direction in data space to move in order to further increase its likelihood

Loss?

Add noise for more accurate scores
unknown!

Predicted
score!

The gradient of x in dataspace, for arbitrary noise level t

Fisher Divergence

Training

Okay, saw we learned this cool and fancy score
function, what now?

● Just sample through Langevin dynamics!
● starting at any arbitrary point in the same space, iteratively follow the score

until a mode is reached :)

Conditioning? Guidance?

● Just condition at each step!

Conditional Diffusion — Classifier Guidance

● Use Bayes’ rule to decompose the conditional score into the unconditional score and
a likelihood term

● Only need to train a classifier on noised data
● Use classifier to guide noise!

de-noise

add noise

guide noise

Can add \gamma

Brown horse
 class

ifie
r d

ecision boundary

Classifier-Free Guidance

● Train a joint conditional and unconditional diffusion model

● Conditioning information is added by concatenating to input or cross attending
● Modified conditional distribution
● \omega >1, reduces the probability of generating samples that do not use

conditioning information

● Conditional sampling

Significantly improves quality of conditional models, but decreases
diversity

Randomly drops the condition during training and linearly combines the
condition and unconditional output during sampling

Equivalence of the two views

Problem 2

Problem 2

Y

N

Y

N

Y

N

N
Y

