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Word Embeddings

Motivated by semantic similarity

A 9ood nice

bad




Word2Vec

Skipgram - Predict context from target
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Continuous Bag of Words (CBOW) -
predict target from context
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Training Data

One-hot encoded vectors of all the words in your vocabulary



SkipGram

coffee — cup
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Calculate Loss and BackPropagate till Minima
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input hidden softmax
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CBOW

(cup, of, is, on) — coffee

hidden
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d-dimensional vector
(average of vectors of all input words)
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Transitioning to RNNs



Let’s simplify!

What if we have a single word and a single output?

: d
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V) 0 = not animal
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Recurrent neural network (RNN)

Output FFN + Hidden States

® o00. @

How to parametrize this network?

emb%ngs @ @ @

Sequence Timesteps




Maybe we add a weight matrix between every state??

Output FFN + Hidden States

Hidden
States

)

Word
embeddings

©

PARAMETERS GALORE!

Sequence Timesteps




Solution: Reuse same weight matrices - wherever possible

Output FFN + Hidden States

O,

Hidden
States

Sequence Timesteps




Use the same parameters across
different timesteps.
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Sequence Timesteps

Recurrent neural network (RNN)

e



Problems

e Loooooooong Context Issues
e Sequential - slow



RNN

Long-short Term
Memory (LSTM)
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Long-short Term Memory (LSTM)

e Main idea: add a “cell” state that allows information to flow easily

o  Similar to residual connections
o No repeated matrix multiplications!

Control flow by adding
knobs and switches

Ct— il N\ N\ Ct
&, O, >

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTMs- Forget Gate

e Forget gate- function of current input and previous hidden state
e Controls what should be remembered in the cell state

multiply

Think of
it like
blocking
certain
dimensio
ns and
letting
others
flow

ft=0Wg-lhi—1,2:] + by)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTMs- Input Gate

e Input gate- function of current input and previous hidden state
e Decides what information to write to the cell state

Think of it like “what

info from my current
add input x_t am | adding

to old state c_(t-1)”

it =0 (Wi lhe—1, 2] + bi)
o | [tann] ét :tanh(WC'[ht_l,xt] -+ bC)

Tt https://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM- Cell Update

Add new information
Forget irrelevant from the current token

information /
Ct—l :; Ct
f¢ it‘ I(j% Cy = fi * Cy_1 + iy * Cy

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM- Output Gate

e QOutput gate- function of current input and previous hidden state

e Controls flow of information from the cell state to the hidden state

e Given some weight matr}gx 0, how do we write too_tand h_t?
't

0)
hi—1 | Iy
W_

multiply

O(Wo [ht—laxt] + bo)
hy = o; * tanh (C})

Think of it like
“‘wanting to maintain
a latent hidden
space”

S
S
|

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTMs

fe =0 Wy lhi—1,2¢] + by)
it =0 (Wi-lhi—1,x¢] + b;)

e Performs better with long sequences Cy = tanh(We-[hi—1, 2] + bo)
e But still sequentiall!

Cy = fy % Cy1 + iy x C,
Ot :U(Wo [ht—laxt] =+ bo)

ht = Ot * tanh (Ct>

®

>
@ https://colah.github.io/posts/2015-08-Understanding-LSTMs/



Context influences word meaning.

A bat flew out of the dugout, startling the baseball player and
making him drop his bat.




Bidirectional LSTM
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Transformers



What we cover

Ich mag schwarzen Kaffee

| Feed Forward

N
Bl

|
Cross-Attention |
| Masked Self-Attention |

Positional *
?

Embedding [ Embedding ]
£ X

| like black coffee <START> Ich mag schwarzen




RNNs and LSTMs were sequential -

Token Position

N

Integer 1 3 4
Binary 0 0 1
0 1 0

1 1 0

Transformers are parallelized!

For a position pos and embedding dimension 2:

o pos
* P hiposzi) = sin (10000%)
mode.

0S
Positional Embeddings ® PE(pos,2i—+—1) — COS L 2i
10000 %model

Token Position

A
Position| 0 1 2|3 4 5 6 7
Sinusoid ~0.5_| 0.3 | 03 | 05671 09 | 0.9 [ U7
05 | 05407 | W\Q 05407 | 00N & Positional Embeddings
\(_)//1\\0//1\\0//1\\9//1\




Sentence: “Queen and King”




Some requirements

e Every position should have a unique | 55 565 §6a5 N6 o R 16166y §6i6N) 161503 161563 1601 I 161603 N6i63 N6i6% 6608 [6on)
identifier & = i
.
e Independent of input
e Independent of sequence length
Numbers shouldn’t be too large




Self-Attention (N x D) output Matrix
(N x D) input Matrices a

k

e S piemeinn B " : 1. GetQ, K,V from the N input
Queries (@) E@B@ , HHHH ; 1 BHHBE ; Values (V) token using the weights.
X, K
A " /W, W, W, W, (N,) = (N,D) S\"/
T T 2. Use attention to transform this
PR—— L. . token representation with the
: : other tokens in the sequence.
Input (X) B B a E: q
S (N,D) = (N,D) {A

Sequence



Self-Attention

., @K f

-~ Ja i a; = softmax(sz)
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L1

..........

.......

Input
Sequence

Attention(Q, K, V') = softmax(

.............

Output
Sequence

1.

2.

QK'

v

Get Q, K, V from the N input
token using the weights.

Q,

’ K
ww,w, (N,J = (N,D) S\V
Use attention to transform this

token representation with the
other tokens in the sequence.

(N,D) - (N,D) {A



QK"

Self-Attention Attention(Q, K, V) = softmax( R 1%

Implementation:

MultiHead(X) = W Concat(head;, . .., heady)
where head; = Attention(W5X, Wi X, W}, X)

Multi-Head-Attention(input x):

#

< X Qo

#

Split input into query, key, and value vectors

= split_heads(W (x)) # (b, h, n, d) o _
= split_heads(W,(x)) # (b, h, n, d) a; = Wyx;
= split_heads(W,(x)) # (b, h, n, d) k, = Wrx;

V; = WUXz'

Compute attention scores and apply them to values

attn_output = compute_attention(q, k, v)

#

Combine attention heads and apply output transformation

output = W (combine_heads(attn_output))

return output



Representation Learning

Dataset-“Agnostic”  Dataset-Specific
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Representation Learning

Dataset-“Agnostic”  Dataset-Specific

DenseNet-121




Representation Learning

Unlabeled Image Data Image Representation
R224X224 D R768
[ ]
[ ]
[ ]
7774 - _v
P O
NIRRT A I:I
: B.ring
y D Y.our
How to get this useful O.wn
image embedder? C Iassifier




Representation Learning

e B
Sty

Q: How to get an image embedder? Train on ImageNet and throw away the classifier.

-> Supervised Model Features Neural Net Features: Nearest Neighbors




Representation Learning Pick a Task Correlated with Image Understanding

(Make it easy to label!)
Q: How to get an image embedder? 00 N
=>» Supervised Model Features 90°
-> Self-Supervised Learning : 180°
€ Pre-training Task 270°

90° rotation 270° rotation 180° rotation 0° rotation 270° rotation

Figure 1: Images rotated by random multiples of 90 degrees (e.g., 0, 90, 180, or 270 degrees). The
core intuition of our self-supervised feature learning approach is that if someone is not aware of the

concepts of the objects depicted in the images, he cannot recognize the rotation that was applied to
them.




Representation Learning

Q: How to get an image embedder?

=>» Supervised Model Features
=>» Self-Supervised Learning

€ Pre-training Task
€ Contrastive Learning

X : Sample

(+negative augmentations)

X : Negative examples (different images)

x+: Pos)i\tive examples (augmentations)

A\

(g) Cutout

(h) Gaussian noise

(i) Gaussian blur

p) | (e) Color distort. (jitter)

(j) Sobel filtering




Representation Learning

Q: How to get an image embedder?

=>» Supervised Model Features
=>» Self-Supervised Learning

€ Pre-training Task
€ Contrastive Learning

X : Sample
X : Negative examples
X+: Positive examples

o exp(sim(x, x™ )/
b exp(sim(x, x1) /7)) + exp(sim(x,x~) /7]

SimCLR Loss
]2

max(0, || f(x;) — F(x1)||?

—|IIf (i) — FxD)I% +

Triplet Loss



Representation Learning (Multimodal)

a multimodal

: How to get an-image-embedder? Cosine similarity between text
Q 9 embedding and image embedding.

=>» Supervised Model Features 1. Contrastive pre-training
\ (Goal: make this Identity)

=>» Self-Supervised Learning

Text

—

€ Pre-training Task Eie T
€ Contrastive Learning S sy ey
— I I, I;T, I,T; = I,.T,
— T, ol o [ AR o o

.‘3 " s — 1" Iy I3T, IzT; - IzTy

, Encoder
£

Iy Ty



Representation Learning (Multimodal) I

a multimodal
Q: How to get an-image-embedder?

=>» Supervised Model Features

=>» Self-Supervised Learning

€ Pre-training Task OB “photo of a dog”)

€ Contrastive Learning

COS(@( S“photo of a dog”)) > COS(@( ,

“photo of a dog”)) L

/

/,""“photo of a dog”

‘ @( ,“photo of a dog”)




. . What is this an image of?
Representation Learning o

Q: How to get an image embedder?
=>» Supervised Model Features
=>» Self-Supervised Learning

€ Pre-training Task
€ Contrastive Learning
€ Teacher-Student




Representation Learning () s

Q: How to get an image embedder?

softmax softmax
[
centering

=>» Self-Supervised Learning (‘) _— ' |
student ggq | "+ | teacher gg

=>» Supervised Model Features

€ Pre-training Task
€ Contrastive Learning
€ Teacher-Student

Local View

7 o Student ViT 6, D I N 0
k) g Ds . .
E “Distillation No Labels”

—pt log ps

Global View

Ri - oe

Teacher ViT 6;



= = . Frequently pretrained with DINO, you'll
Vision Transformers (VIT) probably see “DiNO-ViTs” a lot.

Cornell Bowers CIS Vision Transformer
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Transformer Encoder
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Llnear embeddlng_'(ﬂatten) Noem
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I
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for
image recognition at scale. arXiv preprint arXiv:2010.11929.




Vision Transformers (ViT)

SWI N “Scaled WINdow”

e Popular for large images and
segmentation because of hierarchical
features.

e Attention is per-window.
o Shifted windows allow long-range
connections at higher layers.

Cornell Bowers CIS

segmentation

classification detection ...

h

o=

L
LT

Swin Transformer

classification

P ===

Cornell Bowers C1IS
Shifted Window attention

Linear computational complexity with respect to image size

Layer | Layer 1+1
- s
////% /74/ | 1 £ A local window to
e | s A A L0 w| o] perform self-attention
> al ]
a Z iia 16x | E A patch
i i !
! | NG ';
1 | N ] ]




Vision Transformers (ViT) DiNO v2

(c)

Figure 1: Visualization of the first PCA components. We compute a PCA between the patches of the
images from the same column (a, b, ¢ and d) and show their first 3 components. Each component is matched
to a different color channel. Same parts are matched between related images despite changes of pose, style
or even objects. Background is removed by thresholding the first PCA component.



Vision Transformers (ViT)

Figure 1: Visualization of the first PCA components of the image patches.

’

DINO v2

Q: Why don’t we get these visualizations from deep CNNs?

(NOTE: You can train ResNet-50 with a DINO, and it works great!)



Vision Transformers (ViT) (vs deep CNNSs)

class: zebra

class: convertible

ViTs start with a global receptive fields. CNNs take a while to combine global features.
e [nterpretable long-range dependencies e Creates high level features, but it is hard to
from attention are visible early on. determine which pixels they correspond to.

e DiNO'’s objective encourages memorizing e Must use methods like Class Activation Mapping
“parts-of-whole”. up the network to get to pixel-level effects.



CNN review HW1 Q4

Output dimension:

n—k+2p n—k-+2p

S

(L I+1) x(| |4+1)x1

Input Filter Result

l
N
=
o
w

*

-t | -

o | o

L[

I

5 7 7‘\ 3 9 2 1 Size: f= 3 m = 2\'1 + 5'0 + 3'(_1) +
S ... Stride: s=2 21 +4%0 + 3*(-1) +
L (R Padding: p=o0 5*1 + 4°0 + 2*(-1)

Dimension: 6 x 6 https://indoml.com

Filter with stride (s) = 2



SP24 Prelim Q7

How many parameters?

128x128x3

Zach's Design

5x5 Conv
(4 channels)

1x1 Conv
(2 channels)

3x3 Conv
(2 channels)

1x1 Conv
(4 channels)

1x1 Conv
(2 channels)

3x3 Conv
(2 channels)

1x1 Conv
(4 channels)



SP24 Prelim Q7

How many parameters? Zach's Design

_)
-
128x128x3

5x5 Conv

(4 channels)
Layer 1: (5x5) x 3 x4 =
Layer 2: (1x1) x4 x2 =
Layer 3: (3x3)x2x2 =
Layer4: (1x1)x2 x4 =

> > > l > >

i

N » A
1x1 Conv 3x3 Conv 1x1 Conv 1x1 Conv 3x3 Conv 1x1 Conv
(2 channels) (2 channels) (4 channels) (2 channels) (2 channels) (4 channels)
300 Layer 5: (1x1) x4 x2 =38
8 Layer 6: (3x3) x2 x 2 =36
36 Layer 7: (1x1)x2x4 =8
8

Total: 404



The set of filters is:

CNN review

Which output comes
from which filter?

Input image:

SP24 Prelim Q5

https://setosa.io/ev/image-kernels/



https://setosa.io/ev/image-kernels/

The set of filters is: Sharpen Edge Left sobel

{[0 -1 0] !—1 — —1]

. -1 5 -1|,|-1 8 -1,

CNN review 0 -1 o) |11 -1 -1
Sharpen

1 0 -1
2 0 -2
1 0 -1

}

Which output comes
from which filter?

Input image:

SP24 Prelim Q5

https://setosa.io/ev/image-kernels/



https://setosa.io/ev/image-kernels/

GANs

GAN: Adversarial ’
training

Discriminator

D(x)

Generator
G(z)
VAE: maximize X { Encoder I = l

variational lower bound q¢(z|x)

| Decoder
Po(x|2)
Diffusion models:

Gradually add Gaussian Xo |, X1, - .
noise and then reverse




GANs

e Motivation: Conditional image generation without
labelled pairs (Why? Data scarcity)
o Eg. translate horses into zebras

Zebra Facts | Live Science

Real

Classification
Loss




GANs

Adversarial Networks
e Generator (G): performs the image translation
o tries to fool the discriminator
e Discriminator (D): predicts whether the image
was generated by the generator
o measures how good the generator did

To train, iteratively:

1. Update discriminator on real/fake images

2. Update generator using feedback from new
discriminator

Why can’t we train them simultaneously?

Real

Fake

Classification Y= 0
Loss
D()




GANs

Positive example: real Negative example: fake
image from labelled dataset  image from generator

Discriminator Loss: @ @

L= ml%n —log(D(x)) —log(1 — D(G(z)))]

Generator Loss:
max ml%n —log(D(x)) —log(1 — D(G(z)))]
Ls=- Lo



GANs

GANSs can also be used for unconditional image
generation

e Sample generator using Gaussian noise

e Results in very high quality images, quickly!

However, GANs experience Mode Collapse
e Learn only what best fools the discriminator
e Generated images do not represent full distribution
of image class

Mode collapse

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

Jb

X zebra

Target




Prelim Q2 (Only focus on GANSs)

For each of the following statements, indicate whether the statement describes VAEs, GANs, or Diffusion
models. You should list all that apply.

1. Trained with a likelihood-based objective.

2. Has a learnable encoder that maps the data to a Gaussian distribution.
3. Has latent variables that must be the same size as the input data.

4. Learns to generate images by fooling a discriminator.

5. Generates high-quality, realistic images.

6. Generates images with a single forward pass of the network.

7. Often suffers from poor diversity among generations.

8. Transforms samples from a unit normal distribution to samples from the data distribution.



Prelim Q2 (Only focus on GANSs)

For each of the following statements, indicate whether the statement describes VAEs, GANs, or Diffusion
models. You should list all that apply.

1. Trained with a likelihood-based objective.

N

2. Has a learnable encoder that maps the data to a Gaussian distribution.

N

3. Has latent variables that must be the same size as the input data.

N

4. Learns to generate images by fooling a discriminator.

Y

5. Generates high-quality, realistic images.

6. Generates images with a single forward pass of the network.

Y

7. Often suffers from poor diversity among generations.

Y

8. Transforms samples from a unit normal distribution to samples from the data distribution.

Y



Brief U-Net Review

Convolutions Allow parallelization to extract latent vector for each pixel
Hourglass Improve efficiency by reducing computations with downsampling

Increase receptive field size by convolving on downsampled feature maps

Skip Connections Improve prediction quality by combining low-level image features

Input Image Hourglass CNN with Skip Connections Prediction



VAEs

GAN: Adversarial " . Discriminator = Generator
training D(x) G(z)
VAE: maximize Encoder _ Decoder
* X = | )
variational lower bound q4(2[x) po(x|z
Diffusion models: § 3 R
Gradually add Gaussian Xo| _[X1| ___|X2| . ‘_"'

noise and then reverse




Data Manifold

- Data distribution P(x) defines a low-dimensional manifold
- Naive random sampling in this space will almost certainly not be on the
manifold

We want to sample from the elusive We can sample from a
Image Manifold Gaussian Distribution

OR
a/




Autoencoders

Information

Bottleneck
4 5 gj’
[ ] [ ]
] é ]
SeC d |-
] -] ]
L] L]

el a

latent variable

We typically use MSE or MAE to compute reconstruction loss



Autoencoders -> VAEs

Q: We want to generate images - how can we sample from the latent
space?

Information
Bottleneck

&g\

Z

[]
L]
L]

encode’ T O'eCOO'er

!

OO0 &

CIOEIEOc]

latent variable



Autoencoders -> VAEs

Q: We want to generate images - how can we sample from the latent
space?
A: Add regularization to encourage the latent space to approximate a

Gaussian. Information

Foreshadowing ELBO... FMIETEL
Eyy (eioy logpo(@]2)] — Dt (a5(I) | p(2) .

[]

-
reconstruction term prior matching term

[]

encode’ T O'eCOO'er

&g\

!

OO0 8

CIOEIEOc]

latent variable



Probabilistic Encoder (Gaussian)

OO0 &

z ~ N (u, diag(c?))

™
(1| O
] ]

mean
5
% sample
[]
[ ]
[ ] [ ]
[ ] []
[]
log(0?)
variance
max K

¢,0

z~qy (2]x) [lOg (p9 (X|Z))]

&%\

OO



Probabilistic Encoder (Gaussian)

OO0 &

Use the reparameterization trick

mean
% to sample N (u,diag(c?)) =p+0o ©N(0,1)
% sample <
L z ~ N(p, diag(c?)) E, d
L] O (O O
BRI
[ ] [ ] [ ] [] eCoder
L 9 ’OG(X’/Z)
log(c~)
variance
max Equ¢ (z|x) [log (pg (X|Z))]

¢,0

&%\

OO



Probabilistic decoder (Gaussian)

o

[ ]

=

n e

[ ]

D ncode"
VA AN

max K
¢,0

“’DDD IO =

z—u-}-eexp

deCO e,-

R, (X’/Z)

2~qy (z]x) 10 (Do (XIZ))]— min E

¢,0

E%\

BN ENEN
><\
2
=
-
L

\

(x' — dp(2))*

Py(x|2) ~ exp (—

T2

z~qy (2]%) [(X - d9 (Z))Z]

Upshot: Reconstruction formulation results in squared loss

)



Sampling

How can we sample, if each sample has its own latent distribution?

feed decoder
Gau38|an) noise?
T w O Py

(OO

OOoO0Os,



Sampling

Solution: Regularize all distributions to be close to the standard normal N(0;l).

maximize

(2)

Eqy (=l log po(x|2)] — Dxr(gq(2|2) || p(2))
reconstru‘crtion term prior ma’;(:?ling term

Sample from p(z) L] d

— 1

S




ELBO

log p(x) = log p(x) / qp(z|T)dz

~ [ as(alo)108p(@))dz
= [Eq¢(z|m) [10gp($ ]

’1Og p(w,Z)]

=IE
p(z|x

90 (2[2)

=E

ap(<1) |108°

p(,2) ]

g (z|x) |108

> Egy(z]a) |log

[Calvin Luo https://arxiv.ora/abs/2208.11970]

(z]z)
p(x, 2)q4e (2| )]
(z]z)

e (2|T)

q¢(zlw)}

+ Btz [lo
q¢(z|x) (108 p(z|z)

+ Dxr(gq(2]2) || p(2[2))

(Multiply by 1 = /q¢(z|a:)dz)

(Bring evidence into integral)

(Definition of Expectation)
(Apply Equation 2)
(Multiply by 1 = —qd,(z]w))
99 (2| )
(Split the Expectation)

(Definition of KL Divergence)

(KL Divergence always > 0)



ELBO

p(x, )
e (2|T)

po(x|2)p(2) : s

Eqs(z|x) [log ] = Egy(2|=) [log il (Chain Rule of Probability)
p(z)

99 (2|2)

= Eg,(z|z) [log pe(x|2)] —PKL(qd,(zI.’L') | p(z)z (Definition of KL Divergence)
reconstru‘crtion term prior mat?:?xing term

= Eqy(z|z) [log po(x|2)] + Eqy (2|a) [log ] (Split the Expectation)

(We are maximizing this lower bound.)

If we maximize py(x|z) and minimize the D, we get close to P(x).

P(X)

[Calvin Luo httos://arxiv.ora/abs/2208.11



Drawbacks

e Out of the box, generated images can be blurry.

Question: Why? How do
GANs fix this problem?

https://borisburkov.net/2022-12-31-1/



Summary

Generative Image models learn a mapping from the Standard Normal

Gaussian to the Image Manifold
- GANSs learn this through a discriminator.
- VAEs learn it through variational autoencoders

AutoEncoders learn to compress and reconstruct data

VAEs make these AutoEncoders probabilistic

Minimize the reconstruction loss

Latent space is sampled from Gaussian distributions

Sampling is made differentiable with the Reparameterization Trick

Deviations from the Prior (Standard Normal Gaussian) is penalized by KL divergence

The ELBO is a lower bound of P(X)

- Maximizing the ELBO, and minimizing the KL divergence makes P(x|z) close to P(x)



Prelim Problem (Only focus on VAES)

For each of the following statements, indicate whether the statement describes VAEs, GANs, or Diffusion
models. You should list all that apply.

1. Trained with a likelihood-based objective.

2. Has a learnable encoder that maps the data to a Gaussian distribution.
3. Has latent variables that must be the same size as the input data.

4. Learns to generate images by fooling a discriminator.

5. Generates high-quality, realistic images.

6. Generates images with a single forward pass of the network.

7. Often suffers from poor diversity among generations.

8. Transforms samples from a unit normal distribution to samples from the data distribution.
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N

4. Learns to generate images by fooling a discriminator.

N

5. Generates high-quality, realistic images.

[\

6. Generates images with a single forward pass of the network.
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Prelim Problem: ELBO

In class, we saw that the ELBO is given as:

p(z, z)
9 (2|)

Eqgs(zl) [log ] = log p(z) — DxL(g¢(z|z) || p(z|Z)),

where the left-hand-side is the ELBO, x represents the observed data, and z represents the latent variables.
a) Show that the ELBO is a lower bound of the log-likelihood of the data.

p(x, z

)
Eqy (z]2) [10‘9; ] = logp(z) — Dxu(g¢(2(|z) || p(2|x))

qe(z|x)
< logp(x) (Non-negativity of KL)



Prelim Problem: ELBO

b) Rearrange the ELBO to show that that

p(z,z)
99 (2|7)

EQ¢(3|$)[lOg ] = Eq¢,(z|r) [logpg(a:|z)] = DKL(Q¢(2|:I;)||I)(Z))'

Recall that the KL-Divergence is defined as:

Dir(P||Q) = Eznp [105-’; P(m)}

Qa)

e p(z, z)
logp(xz) > E_ (.. ]/log :
og I)(') e q,,\(,.\.r][ 0g (](p(_:l-l')J
po(x|z)p(2)
= Eq,(z|2)|l0g .
74 ( | )[ (Iu‘)(:l"') J

p(z)
(z]z)

]

e HZq,‘,(:;[.r) [1()g /)H('r‘:)] T Eq,{,(:\,r] [l()g q

= E(],-»,(;' .l‘)[l()g I)U('I.|:)] . DI\’L((IO(:"I')"I)(:),)



Prelim Problem: ELBO

c) Interpret the two terms in the final ELBO expression in the context of VAEs. What effect does each
term have? Write 2-3 sentences.

d) Consider a situation where your variational distribution perfectly matches the true posterior. In other
words, g4(z|x) = p(z|x). Given this, can you simplify the the ELBO further? Recall that the ELBO is
given as

(%, 2)

P\,
Busce [0 25

If your variational distribution matches the true posterior, what does maximizing the ELBO accomplish?

] — log p(z) — Dx(ga(2l2) || p(2lx)).



Prelim Problem: ELBO

c) Interpret the two terms in the final ELBO expression in the context of VAEs. What effect does each
term have? Write 2-3 sentences.

The KL divergence term helps regularize the distribution to be close to the prior distribution. The first term
is the expected reconstruction error.

d) Consider a situation where your variational distribution perfectly matches the true posterior. In other

words, g4(2|x) = p(z|z). Given this, can you simplify the the ELBO further? Recall that the ELBO is
given as
p(z, 2)

9o (2|)

If your variational distribution matches the true posterior, what does maximizing the ELBO accomplish?

Eoy (el {log ] — 1o (&) — Dice.(Ga#l0) || 9l

When the variational distribution perfectly matches the true posterior, the KL divergence term in the ELBO
becomes zero since Dy, (p(z|z) || p(z|x)) = 0. Therefore, the ELBO simplifies to the log-likelihood of the
data, log p(x). Maximizing the ELBO is then equivalent to maximizing the log-likelihood of the data.



Diffusion Models

GAN: Adversarial " - Discriminator @ Generator
training D(x) G(z)
\
VAE: maximize X -( Encoder 1z .| Decoder b |
. q4(z|x) k po(x|z)
variational lower bound L ¢ s )
Diffusion models: ] ) R
Gradually add Gaussian X0 ; X1 . X9 ) 222 A= .
noise and then reverse




Forward diffusion




Diffusion Models - Main point

We DEFINE a mapping between a source distribution and Gaussian Distribution
(Gaussian Noise)

We LEARN a reverse mapping from the Gaussian Distribution to the source
distribution.



Forward Process

e “Destroying Data”
e Adding noise forms a Markov Chain — Markov Property

Q(thxt—laxO) = Q(XtIXt—l)

e Recall:

XT

Training Gaussian Noise
Sample (distribution)



Forward Process

e Given a sampling schedule, predict the noisy image at timestep t from
timestep 0:

q(x¢|x0) = N (x; \/C_Ttxoa (1 — ay)I)

e Usually, we can afford a larger update step when the sample gets noisier so:
a1 > -+ > Qar.

e \Want;

q(x7) ~ N(0,1)



Backward Process

Goal: given an image that was “noised” for t steps, predict the original image

e Markov chains are not always invertible.
e \We learn the inverse (Markov) process

XT
Training - Gaussian Noise
Sample Reverse Process (think decoder) (distribution)

Learn to recover original image
(i.e. learn to reverse the Markov Chain)



How do we sample from reverse?

e Sure, try Bayes? C](Xt—l\Xt) _ Q(Xt‘Xt—l)Q(Xt—l)
e There's a problem... Q(Xt)
e Intractable: q(x;_1|x¢)

N

q(x¢) = /q(xo)q(X1\xo)...q(xt|xt_1)dxodxl...dxt_1




Learn the reverse

‘ We have X, during training; train a generative model

q(x¢_1|x¢,Xg) is tractable

[Eq(a:t|:130) [DKL(Q(wt—1|wtam0) || pe(ivt—1|fl3t))]




How do we actually train for the reverse process?

Find the model that maximizes the likelihood
of the training data

max logp(x)

N

log p(z) > Eq(1|wo) [l0g po(@o|®1)] — Dkrlg(zr|z0) || p(®T)) Z a@leo) [DKL(4(®e—1|2¢, Z0) || po(@i—1]2:))]
rrrrrr truction temn prior matc thi ing term t=2" denoising statihi ing term




Find the model that maximizes the likelihood

of the training data
- Eq(a,|ao) [PxL(g(®i-1 | ®¢,®0) || Po(®i—1 | ®¢))] is a denoising matching term. We
learn desired denoising transition step pg(a:—1 | €+) as an approximation to tractable,
ground-truth denoising transition step g(@;—1 | &+, o). The g(@;—1 | T+, () transition
step can act as a ground-truth signal, since it defines how to denoise a noisy image @;
with access to what the final, completely denoised image @y should be. This term is
therefore minimized when the two denoising steps match as closely as possible, as
measured by their KL Divergence.

10gp(Z) 2 Eq(x:|xo) [108POTO|EL)] — UKL\G\LT|T0) || P\LT)) = P Eq(a:i|z0) [IKLIG\LE-1[L¢t, L0) || PO(Lt—1]Lt))]

D' 5 WS t=2
reconstruction term prior matching term

v
denoising matching term

With large T, the prior matching goes to O



€o(x¢,1)

Reparametrization of the noise prediction

Recall that we need to learn a neural network to approximate

po(x¢—1|%xt) = N (x¢-1; Me.(-x_t, f)a_zé(xt, t))

\

Want to train to get: . 1 1—
Kt J i = NG (xt o 1_aofét Et)

Since we have x_t during training, we can reparametrize to predict €;

HG(Xt7 t) —

1 1 —
Thus x;_1 = N (%x¢_1; (xt — at €g(x¢, t)) , (x4, t))



Reparametrization of the Loss

“9(xta t) —

1 1 — oy
Th 1 = N(x_1; ( — , 1 ),2 "
us X4 1 (Xt 1 \/Oé_t Xt \/1_—6%60()(75 ) H(Xt ))

ZEE (2:]20) [PKL(q(Ti—1]|Ts, X0) || PO (24— 1|f'3t))] _>L(9) = Et,xo,ﬁ[

denoising matchlng term

€ — ea(xt,t)||°]

Loss is MSE of actual predicted loss!

po(Ti—1|xt) = q(@i_1|Tt, X0 (X2, 1)) = q(21—1]|28, X0)




Training Algo

Repeat until convergence

1.x¢ ~ q(xo) ¢« Sample original image from image distribution
2.t ~ U{l, . T ,T} ¢ Sample random time step uniformly
3. e~ N(O, 1) « Sample Gaussian noise

4. Optimizer step on L(0) = E;x, [||€ — €g(x, t)||2]

¢ Model predicts noise applied at time step t and
calculate loss



Sampling Algo

X7 v N(O, I) ¢ Sample pure Gaussian noise

Fort=T,T—-1...,1
' x Sample Gaussian noise t
2~ N(0,T)ift > 1elsez =0 & Smeoasinnoies

1 i—
A—~1 = e (Xt - \/%EG(Xtat)) T OtZ ¢ Predict noise applied to

image and remove that noise
Return x| By -

Pe(mt—1|$t) — q(wt—1|wt>x9(xt7t))




Diffusion Sampling

Denoising Denoising Denoising Denoising
Network Network Network Network

x"" —_— 0.’,"6'7' Yoni a3 == ﬁn"‘ﬂ"r 4 1 X’r ~ xT_Q



Alternative Perspective

So far: Denoising Diffusion Probabilistic Models

Alternative:
Generative Modeling by Estimating Gradients of the

Data Distribution




Langevin dynamics allow you to sample from
Score-based Models distribution - even if it is not normalized.

Would like to model the probability density function:

—fo(x)
e
po(x) = 7 where Zy > 0 is a normalizing constant s.t. /pg(x)dx =1
0
. = = L] = N
Still want to maximize the log-likelihood mealeogpa(xi).
i—1

Problem: Normalization constant intractable —= Approximate the score function:

S¢ (X) = Vx logpg (X) = —fog(x) — Vx log Zg = —fog (X)
=0




What is the score anyway?

e \What direction in data space to move in order to further increase its likelihood



Loss?

argorninDKL(CI(wt—l | @1, @0) || Po(®i—1 | 1))

= argmin Dt (W (e bgr Bq (1)) || N (@15 10, 4 (1)) (83)
, 1 (1 —ay)? 5
= argmin g lso(@:,t) — Vlog p(as)] 3] (84)



Estimated scores

/ unknown!

I

+|Vx logp(fv)‘lig

scaore!
Ex [|[so(x)

Perturbed scores

Predicted

The gradient of x in dataspace, for arbitrary noise level t

Fisher Divergence

Add noise for more accurate scores
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Training

Training Objective for noise level t:

S M) Ex[|se(x¢,t) — Vi, log pr(x4)|12]

Using results from denoising score matching [1]:

> o1 A)Exy[[ls0(%,t) — Vi, log g: (x:[x) 3]

Using the definition of the pdf of a Gaussian,

S 1 M) Exlllso(x¢,t) —

Looks familiar?




Okay, saw we learned this cool and fancy score
function, what now?

e Just sample through Langevin dynamics!
e starting at any arbitrary point in the same space, iteratively follow the score
until a mode is reached :)



Conditioning? Guidance?

e Just condition at each step!

T

p(zor | y) = p(xT) Hpe(wt—l | ®¢,y)

sg(xzs,t,y) = Viogp(x: | y)



Conditional Diffusion — Classifier Guidance

e Use Bayes' rule to decompose the conditional score into the unconditional score a
a likelihood term

Vlogp(x; | y) = Vlog (p(wt)pp((;/)| wt))

= Vlogp(z:) + Vlegp(y | ) — Vlogp(y)
= Vlegp(z:) + Vlogp(y| =:)

N————
unconditional score a.dversari\a%dlmt\

e Only need to train a classifier on noised data
.. : . Can add \gamma
e Use classifier to guide noise!

add noise
X;_1 = Xg(X) + 0,_16,_1 + @V, log (P(y | Xt))
de-noise guide noise






Classifier-Free Guidance

e Train a joint conditional and unconditional diffusion model

e Conditioning information is added by concatenating to input or cross attending
e Modified conditional distribution
| Randomly drops the condition during training and linearly combines the
condition and unconditional output during sampling
logpy(Xt]y) X pe(Xt|y) Pt (¥[X¢t)”

e Conditional sampling

Vi logp,(x:|y) = Vi, log pi(x¢) + w(Vy, logpi(x¢|y) — Vy, logpi(x¢))

Significantly improves quality of conditional models, but decreases
diversity



Equivalence of the two views

We have therefore derived three equivalent objectives to optimize a VDM: learning a neural
network to predict the original image @, the source noise €, or the score of the image at an
arbitrary noise level V log p(wt) [2,10]. The VDM can be scalably trained by stochastically

sampling timesteps £ and minimizing the norm of the prediction with the ground truth target.



Problem 2

For each of the following statements, indicate whether the statement describes VAEs, GANs, or Diffusion
models. You should list all that apply.

1. Trained with a likelihood-based objective.

2. Has a learnable encoder that maps the data to a Gaussian distribution.
3. Has latent variables that must be the same size as the input data.

4. Learns to generate images by fooling a discriminator.

. Generates high-quality, realistic images.

Ut

6. Generates images with a single forward pass of the network.

7. Often suffers from poor diversity among generations.

8. Transforms samples from a unit normal distribution to samples from the data distribution.



Problem 2

For each of the following statements, indicate whether the statement describes VAEs, GANs, or Diffusion
models. You should list all that apply.

1. Trained with a likelihood-based objective.
2. Has a learnable encoder that maps the data to a Gaussian distribution.
3. Has latent variables that must be the same size as the input data.

4. Learns to generate images by fooling a discriminator.

Ut

. Generates high-quality, realistic images.

6. Generates images with a single forward pass of the network.

z < z < zZz <

7. Often suffers from poor diversity among generations.

Z

8. Transforms samples from a unit normal distribution to samples from the data distribution.

<



9. CLIP is a constrastive learning algorithm that learns to map paired text and images close together in
a shared embedding space.

10. Vision transformers typically require less training data than convolutional neural networks (CNNs) to
achieve comparable performance on image classification tasks.




9. CLIP is a constrastive learning algorithm that learns to map paired text and images close together in
a shared embedding space.

Solution: True.

10. Vision transformers typically require less training data than convolutional neural networks (CNNs) to
achieve comparable performance on image classification tasks.

Solution: False. Vision transformers often require larger amounts of training data compared to CNNs
to achieve comparable performance on image classification tasks. CNNs have inductive biases such as
translation invariance and local receptive fields, which allow them to learn effective features with less
training data. However, when trained on sufficiently large datasets, vision transformers have shown
impressive performance and have even outperformed CNNs on various benchmarks.



Problem 9: Image Captioning [9 pts]

Adhitya wants to train a model for image captioning. He plans to train a decoder-only transformer model
that generates a natural language description by attending to visual features extracted from an input image.
He has access to a pretrained ViT model to extract image features. Adhitya has written most of the network
architecute and needs a little help with the cross-attention layer in the decoder (the cross-attention layer is
used to attend to the image features).

a) Adhitya has already written code to divide the input images of shape (h x w x 3) into k patches and

feed the patches to a ViT to produce 128-dimensional features for every patch. The hidden dimension of
the decoder is 128. What are the dimensions of the weight matrices Wy, Wi, Wy in the cross-attention layer?




Problem 9: Image Captioning [9 pts]

Adhitya wants to train a model for image captioning. He plans to train a decoder-only transformer model
that generates a natural language description by attending to visual features extracted from an input image.
He has access to a pretrained ViT model to extract image features. Adhitya has written most of the network
architecute and needs a little help with the cross-attention layer in the decoder (the cross-attention layer is
used to attend to the image features).

a) Adhitya has already written code to divide the input images of shape (h x w x 3) into k patches and
feed the patches to a ViT to produce 128-dimensional features for every patch. The hidden dimension of
the decoder is 128. What are the dimensions of the weight matrices W, Wi, Wy in the cross-attention layer?

The dimensions of the weight matrices Wg, Wi, Wy in the cross-attention layer are:
Weo : (128,128) Wi : (128,128) Wy : (128, 128)



Problem 9: Image Captioning [9 pts]

Adhitya wants to train a model for image captioning. He plans to train a decoder-only transformer model
that generates a natural language description by attending to visual features extracted from an input image.
He has access to a pretrained ViT model to extract image features. Adhitya has written most of the network
architecute and needs a little help with the cross-attention layer in the decoder (the cross-attention layer is
used to attend to the image features).

b) When you are predicting the first word, what are the shapes of the output matrices obtained after
multiplying Wqo, W, Wy, with their appropriate inputs.




Problem 9: Image Captioning [9 pts]

Adhitya wants to train a model for image captioning. He plans to train a decoder-only transformer model
that generates a natural language description by attending to visual features extracted from an input image.
He has access to a pretrained ViT model to extract image features. Adhitya has written most of the network
architecute and needs a little help with the cross-attention layer in the decoder (the cross-attention layer is
used to attend to the image features).

b) When you are predicting the first word, what are the shapes of the output matrices obtained after
multiplying W, Wi, Wy, with their appropriate inputs.

The shapes of the output matrices after multiplying We, Wi, Wy with their appropriate inputs are:

Q : (1,128) - The query matrix is obtained by multiplying the decoder’s input embedding (or the previous
layer’s output) with Wg. K : (k,128) - The key matrix is obtained by multiplying the ViT’s output features
with Wg. V : (k,128) - The value matrix is obtained by multiplying the ViT’s output features with Wy .



Problem 9: Image Captioning [9 pts]

Adhitya wants to train a model for image captioning. He plans to train a decoder-only transformer model
that generates a natural language description by attending to visual features extracted from an input image.
He has access to a pretrained ViT model to extract image features. Adhitya has written most of the network
architecute and needs a little help with the cross-attention layer in the decoder (the cross-attention layer is
used to attend to the image features).

c¢) Suppose the ViT model produced 64-dimensional features for every patch (instead of 128-dimeansional
features), what would you have to modify to attend to these image features?
I




Problem 9: Image Captioning [9 pts]

Adhitya wants to train a model for image captioning. He plans to train a decoder-only transformer model
that generates a natural language description by attending to visual features extracted from an input image.
He has access to a pretrained ViT model to extract image features. Adhitya has written most of the network
architecute and needs a little help with the cross-attention layer in the decoder (the cross-attention layer is
used to attend to the image features).

c¢) Suppose the ViT model produced 64-dimensional features for every patch (instead of 128-dimeansional
features), what would you have to modify to attend to these image features?
I

Add a linear layer to project the embeddings to 128 dimensions.



