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Word Embeddings

Motivated by semantic similarity

good nice

bad



Word2Vec

Skipgram - Predict context from target

A cup of coffee is on the table

Center word context words in 
window of size 2

context words in 
window of size 2

A cup of coffee is on the table

Center word context words in 
window of size 2

context words in 
window of size 2

Continuous Bag of Words (CBOW) - 
predict target from context



Training Data

One-hot encoded vectors of all the words in your vocabulary



SkipGram
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CBOW
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Transitioning to RNNs



Let’s simplify!

What if we have a single word and a single output?

0 = not animal
1 = animal

Size of 
weight 
matrix??



 Recurrent neural network (RNN)

FFN + Hidden States

Word 
embeddings

Output

Hidden
States

Sequence Timesteps

How to parametrize this network?



Maybe we add a  weight matrix between every state?? 

FFN + Hidden States

Word 
embeddings

Output

Hidden
States

Sequence Timesteps

PARAMETERS GALORE!



Solution: Reuse same weight matrices - wherever possible 

FFN + Hidden States

Word 
embeddings

Output

Hidden
States

Sequence Timesteps



 Recurrent neural network (RNN)

Hidden State 

Output

Sequence Timesteps

Use the same parameters across 
different timesteps.



Problems

● Loooooooong Context Issues
● Sequential - slow



Long-short Term 
Memory (LSTM)

RNN



Long-short Term Memory (LSTM)

● Main idea: add a “cell” state that allows information to flow easily
○ Similar to residual connections
○ No repeated matrix multiplications!

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

c_1

c_2
Control flow by adding 
knobs and switches



LSTMs- Forget Gate

● Forget gate- function of current input and previous hidden state
● Controls what should be remembered in the cell state

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

W_f

Think of 
it like 
blocking 
certain 
dimensio
ns and 
letting 
others 
flow

multiply



LSTMs- Input Gate

● Input gate- function of current input and previous hidden state
● Decides what information to write to the cell state

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

W_i W_c

add
Think of it like “what 
info from my current 
input x_t am I adding 
to old state c_(t-1)”



LSTM- Cell Update

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Add new information 
from the current token Forget irrelevant 

information 



LSTM- Output Gate

● Output gate- function of current input and previous hidden state
● Controls flow of information from the cell state to the hidden state
● Given some weight matrix W_o, how do we write to o_t and h_t?

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

W_o

multiply

Think of it like 
“wanting to maintain 
a latent hidden 
space”



LSTMs

● Performs better with long sequences
● But still sequential!!

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



A bat flew out of the dugout, startling the baseball player and 
making him drop his bat.

Context influences word meaning. 



Bidirectional LSTM



Transformers



What we cover



RNNs and LSTMs were sequential - 
Transformers are parallelized!



Sentence: “Queen and King”



Some requirements

● Every position should have a unique 
identifier

● Independent of input
● Independent of sequence length
● Numbers shouldn’t be too large



Self-Attention
(N x D) input Matrices

(N x D) output Matrix

1. Get Q,K,V from the N input 
token using the weights.

                      (N,) -> (N,D)

2. Use attention to transform this 
token representation with the 
other tokens in the sequence.

(N,D) -> (N,D) 

Q,
  K,
    V 

x,
Wq,Wk,Wv

A



Self-Attention

1. Get Q,K,V from the N input 
token using the weights.

                      (N,) -> (N,D)

2. Use attention to transform this 
token representation with the 
other tokens in the sequence.

(N,D) -> (N,D) 

Q,
  K,
    V 

x,
Wq,Wk,Wv

A



Multi-Head-Attention(input x):
# Split input into query, key, and value vectors
q = split_heads(Wq(x))  # (b, h, n, d)
k = split_heads(Wk(x))  # (b, h, n, d)
v = split_heads(Wv(x))  # (b, h, n, d)

    
# Compute attention scores and apply them to values
attn_output = compute_attention(q, k, v)

    
# Combine attention heads and apply output transformation
output = W0(combine_heads(attn_output))

    
return output

Self-Attention

Implementation:



Representation Learning

VGG-16

VGG-19

DenseNet-121

Dataset-“Agnostic” Dataset-Specific CUB-200

CIFAR

Task



Representation Learning

VGG-16

VGG-19

DenseNet-121

Dataset-“Agnostic” Dataset-Specific CUB-200

CIFAR

Task



Representation Learning
Unlabeled Image Data Image Representation

B.ring
Y.our
O.wn
C.lassifier

How to get this useful 
image embedder?



Representation Learning

Q: How to get an image embedder?
➔ Supervised Model Features

Train on ImageNet and throw away the classifier.



Representation Learning

Q: How to get an image embedder?
➔ Supervised Model Features

➔ Self-Supervised Learning

◆ Pre-training Task

Pick a Task Correlated with Image Understanding
(Make it easy to label!)

00

900

1800

2700

✅



Representation Learning

Q: How to get an image embedder?
➔ Supervised Model Features

➔ Self-Supervised Learning

◆ Pre-training Task
◆ Contrastive Learning

: Negative examples (different images)

: Positive examples (augmentations)

(+negative augmentations)

: Sample



Representation Learning

Q: How to get an image embedder?
➔ Supervised Model Features

➔ Self-Supervised Learning

◆ Pre-training Task
◆ Contrastive Learning SimCLR Loss

: Sample

Triplet Loss

: Negative examples
: Positive examples

: Sample



Q: How to get an image embedder?
➔ Supervised Model Features

➔ Self-Supervised Learning

◆ Pre-training Task
◆ Contrastive Learning

Representation Learning (Multimodal)
a multimodal

Cosine similarity between text 
embedding and image embedding.

(Goal: make this Identity)



Representation Learning (Multimodal)

Q: How to get an image embedder?
➔ Supervised Model Features

➔ Self-Supervised Learning

◆ Pre-training Task
◆ Contrastive Learning

a multimodal



Representation Learning

Q: How to get an image embedder?
➔ Supervised Model Features

➔ Self-Supervised Learning

◆ Pre-training Task
◆ Contrastive Learning
◆ Teacher-Student

What is this an image of?



Q: How to get an image embedder?
➔ Supervised Model Features

➔ Self-Supervised Learning

◆ Pre-training Task
◆ Contrastive Learning
◆ Teacher-Student

DiNO
“Distillation No Labels”

Representation Learning



Vision Transformers (ViT) Frequently pretrained with DiNO, you’ll 
probably see “DiNO-ViTs” a lot.



Vision Transformers (ViT)

SWIN “Scaled WINdow”

● Popular for large images and 
segmentation because of hierarchical 
features.

● Attention is per-window.
○ Shifted windows allow long-range 

connections at higher layers.



Vision Transformers (ViT) DiNO v2



Vision Transformers (ViT)

DiNO v2

Q: Why don’t we get these visualizations from deep CNNs?

(NOTE: You can train ResNet-50 with a DiNO, and it works great!)

of the image patches.



Vision Transformers (ViT) (vs deep CNNs)

ViTs start with a global receptive fields.

● Interpretable long-range dependencies 
from attention are visible early on.

● DiNO’s objective encourages memorizing 
“parts-of-whole”.

CNNs take a while to combine global features.

● Creates high level features, but it is hard to 
determine which pixels they correspond to.

● Must use methods like Class Activation Mapping 
up the network to get to pixel-level effects.



CNN review HW1 Q4



SP24 Prelim Q7
How many parameters?



SP24 Prelim Q7
How many parameters?

Layer 1: (5x5) x 3 x 4 = 300
Layer 2: (1x1) x 4 x 2 = 8
Layer 3: (3x3) x 2 x 2 = 36
Layer 4: (1x1) x 2 x 4 = 8

Layer 5: (1x1) x 4 x 2 = 8
Layer 6: (3x3) x 2 x 2 = 36
Layer 7: (1x1) x 2 x 4 = 8

Total: 404



CNN review

https://setosa.io/ev/image-kernels/

Input image:

Which output comes 
from which filter?

SP24 Prelim Q5

https://setosa.io/ev/image-kernels/


CNN review

https://setosa.io/ev/image-kernels/

Input image:

Which output comes 
from which filter?

Sharpen Edge 

Left sobel Bottom sobel 

Sharpen Edge Left sobel 

SP24 Prelim Q5

https://setosa.io/ev/image-kernels/


GANs



GANs
● Motivation: Conditional image generation without 

labelled pairs (Why? Data scarcity)
○ Eg. translate horses into zebras



GANs
Adversarial Networks
● Generator (G): performs the image translation

○ tries to fool the discriminator
● Discriminator (D): predicts whether the image 

was generated by the generator
○ measures how good the generator did

To train, iteratively:
1. Update discriminator on real/fake images
2. Update generator using feedback from new 

discriminator
Why can’t we train them simultaneously?



GANs 

Discriminator Loss:

Generator Loss:

LD=

LG= - LD

Negative example: fake 
image from generator

Positive example: real 
image from labelled dataset



GANs 
GANs can also be used for unconditional image 
generation
● Sample generator using Gaussian noise
● Results in very high quality images, quickly!

However, GANs experience Mode Collapse
● Learn only what best fools the discriminator
● Generated images do not represent full distribution 

of image class

Mode collapse



Prelim Q2 (Only focus on GANs)



Prelim Q2 (Only focus on GANs)
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Brief U-Net Review



VAEs



Data Manifold

- Data distribution P(x) defines a low-dimensional manifold
- Naive random sampling in this space will almost certainly not be on the 

manifold



Autoencoders

encoder decoder

latent variable

Information 
Bottleneck

We typically use MSE or MAE to compute reconstruction loss

e d



Autoencoders -> VAEs

Q: We want to generate images - how can we sample from the latent 
space?



Autoencoders -> VAEs

Q: We want to generate images - how can we sample from the latent 
space?
A: Add regularization to encourage the latent space to approximate a 
Gaussian.

Foreshadowing ELBO…





Use the reparameterization trick 
to sample



Upshot: Reconstruction formulation results in squared loss



Sampling



Sampling



ELBO

[Calvin Luo https://arxiv.org/abs/2208.11970] 



ELBO



Drawbacks



Summary



Prelim Problem (Only focus on VAEs)



Prelim Problem (Only focus on VAEs)
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Prelim Problem: ELBO



Prelim Problem: ELBO



Prelim Problem: ELBO



Prelim Problem: ELBO



Diffusion Models



(Denoising) Diffusion Models



Diffusion Models - Main point

We DEFINE a mapping between a source distribution and Gaussian Distribution 
(Gaussian Noise)

We LEARN a reverse mapping from the Gaussian Distribution to the source 
distribution.



Forward Process

● “Destroying Data”
● Adding noise forms a Markov Chain → Markov Property
● Recall:



Forward Process

● Given a sampling schedule, predict the noisy image at timestep t from 
timestep 0:

● Usually, we can afford a larger update step when the sample gets noisier so:

● Want: 



Backward Process

Goal: given an image that was “noised” for t steps, predict the original image

● Markov chains are not always invertible.
● We learn the inverse (Markov) process



How do we sample from reverse?
● Sure, try Bayes?
● There’s a problem…
● Intractable:



Learn the reverse

                               is tractable 

We have      during training; train a generative model



How do we actually train for the reverse process?

Find the model that maximizes the likelihood 
of the training data

max



Find the model that maximizes the likelihood 
of the training data

With large T, the prior matching goes to 0



Reparametrization of the noise prediction
Recall that we need to learn a neural network to approximate

Want to train         to get:

Since we have x_t during training, we can reparametrize to predict 



Reparametrization of the Loss

Loss is MSE of actual predicted loss!



Training Algo



Sampling Algo



Diffusion Sampling



Alternative Perspective

So far:

Alternative:



Score-based Models

Would like to model the probability density function: 

Still want to maximize the log-likelihood

Problem: Normalization constant intractable Approximate the score function:

Langevin dynamics allow you to sample from 
distribution - even if it is not normalized. 



What is the score anyway?

●  What direction in data space to move in order to further increase its likelihood



Loss?



Add noise for more accurate scores
unknown!

Predicted 
score!

The gradient of x in dataspace, for arbitrary noise level t

Fisher Divergence



Training



Okay, saw we learned this cool and fancy score 
function, what now?

● Just sample through Langevin dynamics!
● starting at any arbitrary point in the same space, iteratively follow the score 

until a mode is reached :)



Conditioning? Guidance?

● Just condition at each step!



Conditional Diffusion — Classifier Guidance

● Use Bayes’ rule to decompose the conditional score into the unconditional score and 
a likelihood term

● Only need to train a classifier on noised data
● Use classifier  to guide noise!

de-noise

add noise

guide noise

Can add \gamma



Brown horse
 class

ifie
r d

ecision boundary



Classifier-Free Guidance

● Train a joint conditional and unconditional diffusion model

● Conditioning information is added by concatenating to input or cross attending
● Modified conditional distribution
● \omega >1, reduces the probability of generating samples that do not use 

conditioning information

● Conditional sampling

Significantly improves quality of conditional models, but decreases 
diversity

Randomly drops the condition during training and linearly combines the 
condition and unconditional output during sampling 



Equivalence of the two views



Problem 2



Problem 2
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