
Convolutional Neural 
Networks
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So far…

● MLPs learn complex decision boundaries

● Optimization algorithms use the gradient of 

the loss to find network parameters

● Different training strategies like 

regularization, early stopping and 

normalization can improve training and 

generalization 
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Image Classification

input image

input image

classification “dog”

classification “cat”
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Applications in Medicine
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Applications in Autonomous Driving
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Why not use a Multi-Layer Perceptron?

…
 

…
 

💸many pixels = many parameters
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Convolutional Filters
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“image”
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0 1 0
convolutional filter

*
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Convolutional Filters

❖ Aggregates information from local 
window around pixel

❖ Translational invariance

❖ Reduce number of parameters needed 
to be learned
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Discuss with your Neighbor!
Match the following convolutional filters with the output they produce.

-1 -1 -1

0 0 0

1 1 1

-1 0 1

-1 0 1

-1 0 1

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

input image
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1D and 3D Convolutions

https://wandb.ai/ayush-thakur/dl-question-bank/reports/Intuitive-understanding-of-1D-2D-and-3D-convolutions-in-convolutional-neural-networks---VmlldzoxO
Tk2MDA
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CNNs - Stride

❖ Stride controls how many units the filter / the receptive field shift at a time

❖ The size of the output image shrinks more as the stride becomes larger

❖ The receptive fields overlap less as the stride becomes larger
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Dilated Convolutions

https://towardsdatascience.com/review-dilated-convolution-semantic-segmentation-9d5a5bd768f5 22



CNNs - Padding

❖ Padding adds layers of zeros (or other number) around image border

❖ Prevents image shrinking and loss of information from image boundary
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Stacking Convolutions

❖ Size of receptive field 
increases with each layer

❖ Capture more complex features
**
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Convolution Over Volumes 

What if our input image has more than one channel?
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Convolution Operation with Multiple Filters 

This is different from 3D convolution, in what way?
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Convolution Operation with Multiple Filters

3 input channels 2 output channels
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Discuss: 1x1 Convolutions 

What is the result of 
convolving a 64x64x192 
dimensional cube with a 
1x1 filter?
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1x1 Convolutions 
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Convolution Layer

w1

w2

w3

w4

ReLU
output

Σ ℝMLP Layer

Convolution 
Layer

b
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CNN/MLP Equivalence

Differences in a convolution layer:

● neurons are connected to a local region

● Weights are shared across multiple parameters

CONV layers can be converted to Fully connected layers and vice versa!

w1

w2

w3

w4

ReLUΣ

b
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Discuss: Trade-offs between CNNs and MLPs

How would this image change 
if you used an MLP instead of a 
1x1 convolution filter to 
produce a (64x64x1) feature 
map? Hint: think about 
parameter counts and feature 
interactions.
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CNN Layer Output Visualization

height

height

width

width# channels

# channels

=
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Convolutional Neural Networks (CNNs)

input image

? “dog”

✅ Convolutions Maintain spatial relation between pixels
Reduce number of parameters through weight sharing
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Ensuring translational invariance
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Max Pooling

pooling
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CNNs - Pooling

pooling

pooling

pooling

pooling

pooling

pooling
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CNNs - Pooling

❖ Down sample feature maps that highlight 
the most present feature in the patch

❖ Improve efficiency by reducing 
computations with downsampling

❖ Increase receptive field size
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Convolutional Neural Networks (CNNs)

input image

? “dog”

✅ Convolutions Maintain spatial relation between pixels
Reduce number of parameters through weight sharing

✅ Pooling  Captures key information from across different areas of the feature maps
Together with convolutions allows for translational invariance

pooling
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Convolutional Neural Networks (CNNs)

input image

? “dog”

✅ Convolutions Maintain spatial relation between pixels
Reduce number of parameters through weight sharing

✅ Pooling  Captures key information from across different areas of the feature maps
Together with convolutions allows for translational invariance

✅ BatchNorm  Increases speed and stability of training

BatchNorm Layer
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Batch Normalization

H, W

BatchNorm: Transform features throughout layers [Ioffe and Szegedy, 2015]
However this would be very slow, why?
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[Efficient Backprop, LeCun et al., 1998]

Batch Normalization

❖ Normalize channels to mean 0 and variance 1 
across each training batch

❖ Increases speed of training by enabling the use 
of larger learning rates

❖ Improves stability of training H, W

channels
batch dimension

[Ioffe and Szegedy, 2015]
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The Batch 
Normalization 
Algorithm
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Many Kinds of Normalization Layers

Normalization Methods

“Group Normalization” by Wu et al., 2018
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Discuss!

What is the dimension of the mean when you compute the batch norm of a volume 
of dimension (b x c x h x w)?
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Normalization Layers
● Normalization layers improve training stability
● Can train with larger learning rates

○ Faster training 
● A large learning rate acts as an implicit regularizer

○ Better generalization
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Convolutional Neural Networks (CNNs)

input image

? “dog”

✅ Convolutions Maintain spatial relation between pixels
Reduce number of parameters through weight sharing

✅ Pooling  Captures key information from across different areas of the feature maps
Together with convolutions allows for translational invariance

✅ BatchNorm  Increases speed and stability of training

BatchNorm Layer
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Convolutional Neural Networks (CNNs)

48

Convolutional Neural Networks (CNNs)

49

Convolutional Neural Networks (CNNs)
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Image Classification

flatten 0.9 “dog”

0.1 “cat”

feature extraction classification
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Best Practices

● Input image dimensions is divisible by 2

● Small conv filters (3x3 or 5x5)

● Zero padding is used to maintain spatial resolution

● Max pooling for downsampling

● Pooling layers have a receptive field of 2 and stride of 2
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Summary

● CNNs are primarily designed to process and analyze visual data, such as images and videos.

● Key components: convolution layers, pooling layers, activation functions, normalization layers

● Advantages:

○ Translational Invariance

○ Parameter sharing

○ Feature learning

● Can be trained with backprop

● Used for tasks such as segmentation, classification, object detection, etc.
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