

So far...

- MLPs learn complex decision boundaries
- Optimization algorithms use the gradient of the loss to find network parameters ⁽ⁿ⁾/_{x⁰}
 ⁽ⁿ⁾
 ⁽ⁿ⁾
- Different training strategies like regularization, early stopping and normalization can improve training and generalization

Image Classification

input image

classification

"dog"

"cat"

3

Applications in Medicine

2

input image

Applications in Autonomous Driving

Convolutional Filters

Convolutional Filters

5

- Aggregates information from local window around pixel
- Translational invariance
- Reduce number of parameters needed to be learned

Discuss with your Neighbor!

Match the following convolutional filters with the output they produce.

-1 -1

1 1 1

-1 0 1 -1 0 1

-1 0 1

1/9 1/9 1/9 1/9 1/9 1/9

1/9 1/9 1/9

19

21

1D and 3D Convolutions

https://wandb.ai/ayush-thakur/dl-question-bank/reports/Intuitive-understanding-of-1D-2D-and-3D-convolutions-in-convolutional-neural-networks---Vmlldzoz

CNNs - Stride

- Stride controls how many units the filter / the receptive field shift at a time
- * The size of the output image shrinks more as the stride becomes larger
- The receptive fields overlap less as the stride becomes larger

Dilated Convolutions

CNNs - Padding

- Padding adds layers of zeros (or other number) around image border
- Prevents image shrinking and loss of information from image boundary

Stacking Convolutions

23

25

- Size of **receptive field** increases with each layer
- Capture more complex features

Convolution Over Volumes

What if our input image has more than one channel?

Convolution Operation with Multiple Filters

This is different from 3D convolution, in what way?

Convolution Operation with Multiple Filters

27

29

Discuss: 1x1 Convolutions

Convolution Layer

CNN/MLP Equivalence

Differences in a convolution layer:

- neurons are connected to a local region
- Weights are shared across multiple parameters

CONV layers can be converted to Fully connected layers and vice versa!

Discuss: Trade-offs between CNNs and MLPs

How would this image change if you used an MLP instead of a 1x1 convolution filter to produce a (64x64x1) feature map? Hint: think about parameter counts and feature interactions.

CNN Layer Output Visualization

33

Convolutional Neural Networks (CNNs)

Convolutions

Maintain spatial relation between pixels Reduce number of parameters through weight sharing

input image

→ "dog"

Ensuring translational invariance

Max Pooling

35

37

CNNs - Pooling

- Down sample feature maps that highlight the most present feature in the patch
- Improve efficiency by reducing computations with downsampling
- ✤ Increase receptive field size

Convolutional Neural Networks (CNNs)

- Convolutions Maintain spatial relation between pixels Reduce number of parameters through weight sharing
- V Pooling Captures key information from across different areas of the feature maps Together with convolutions allows for translational invariance

input image

Convolutional Neural Networks (CNNs)

Batch Normalization

1. Efficient BackProp 17

[Efficient Backprop, LeCun et al., 1998]

Transforming the Inputs

- 1. The average of each input variable over the training set should be close to zero.
- 2. Scale input variables so that their covariances are about the same.
- 3. Input variables should be uncorrelated if possible.

BatchNorm: Transform features throughout layers [loffe and Szegedy, 2015] However this would be very slow, why?

Batch Normalization

- [loffe and Szegedy, 2015]
- Normalize channels to mean 0 and variance 1 * across each training batch
- Increases speed of training by enabling the use * of larger learning rates
- * Improves stability of training

 $\begin{array}{ll} \textbf{Input: Values of } x \text{ over a mini-batch: } \mathcal{B} = \{x_{1...m}\}; \\ \text{Parameters to be learned: } \gamma, \beta \\ \textbf{Output: } \{y_i = \text{BN}_{\gamma,\beta}(x_i)\} \\ \\ \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i & // \text{ mini-batch mean} \\ \\ \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 & // \text{ mini-batch variance} \\ \\ \\ \widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} & // \text{ normalize} \\ \\ \\ y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i) & // \text{ scale and shift} \\ \end{array}$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

Discuss!

The Batch

Algorithm

Normalization

What is the dimension of the mean when you compute the batch norm of a volume of dimension (b x c x h x w)?

Normalization Layers

- Normalization layers improve training stability
- Can train with larger learning rates
 - Faster training
- A large learning rate acts as an implicit regularizer
 - Better generalization

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs)

49

Convolutional Neural Networks (CNNs)

Image Classification

Best Practices

- Input image dimensions is divisible by 2
- Small conv filters (3x3 or 5x5)
- Zero padding is used to maintain spatial resolution
- Max pooling for downsampling
- Pooling layers have a receptive field of 2 and stride of 2

52

Summary

- CNNs are primarily designed to process and analyze visual data, such as images and videos.
- Key components: convolution layers, pooling layers, activation functions, normalization layers
- Advantages:
 - Translational Invariance
 - o Parameter sharing
 - Feature learning
- Can be trained with backprop
- Used for tasks such as segmentation, classification, object detection, etc.