
Neural Network

Announcements

Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

For t = 1 …

Initialize H1 = h1 ∈ ℋ

Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

For t = 1 …

Initialize H1 = h1 ∈ ℋ

Denote ŷ = [Ht(x1), Ht(x2), …, Ht(xn)]⊤ ∈ ℝn

Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

For t = 1 …

Initialize H1 = h1 ∈ ℋ
−∇L(ŷ)

[
h(x1)…
h(xn)]

Denote ŷ = [Ht(x1), Ht(x2), …, Ht(xn)]⊤ ∈ ℝn

Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

For t = 1 …

Initialize H1 = h1 ∈ ℋ

Solve the optimization problem: ht+1 = arg max
h∈ℋ ⟨[

h(x1)…
h(xn)], − ∇L(ŷ)⟩

−∇L(ŷ)

[
h(x1)…
h(xn)]

Denote ŷ = [Ht(x1), Ht(x2), …, Ht(xn)]⊤ ∈ ℝn

Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

For t = 1 …

Initialize H1 = h1 ∈ ℋ

Solve the optimization problem: ht+1 = arg max
h∈ℋ ⟨[

h(x1)…
h(xn)], − ∇L(ŷ)⟩

−∇L(ŷ)

[
h(x1)…
h(xn)]

Ht+1 = Ht + αht+1

Denote ŷ = [Ht(x1), Ht(x2), …, Ht(xn)]⊤ ∈ ℝn

Recap on AdaBoost

Adaboost follows this framework with ℓ(̂y, y) = exp(− ̂y ⋅ y)

1. Create a new weighted dataset:

Recap on AdaBoost

Adaboost follows this framework with ℓ(̂y, y) = exp(− ̂y ⋅ y)

1. Create a new weighted dataset:

For each , compute xi pi ∝ exp(− ̂yi ⋅ yi)

Recap on AdaBoost

Adaboost follows this framework with ℓ(̂y, y) = exp(− ̂y ⋅ y)

1. Create a new weighted dataset:

For each , compute xi pi ∝ exp(− ̂yi ⋅ yi)

Binary classification: ht+1 = arg min
h∈ℋ ∑

i

pi ⋅ 1{h(xi) ≠ yi}

Recap on AdaBoost

Adaboost follows this framework with ℓ(̂y, y) = exp(− ̂y ⋅ y)

1. Create a new weighted dataset:

For each , compute xi pi ∝ exp(− ̂yi ⋅ yi)

Binary classification: ht+1 = arg min
h∈ℋ ∑

i

pi ⋅ 1{h(xi) ≠ yi}

2. Add new learner to the ensemble:

Recap on AdaBoost

Adaboost follows this framework with ℓ(̂y, y) = exp(− ̂y ⋅ y)

1. Create a new weighted dataset:

For each , compute xi pi ∝ exp(− ̂yi ⋅ yi)

Binary classification: ht+1 = arg min
h∈ℋ ∑

i

pi ⋅ 1{h(xi) ≠ yi}

2. Add new learner to the ensemble:

Ht+1 = Ht +
1
2

ln
1 − ϵ

ϵ
⋅ ht+1

Outline of Today

1. Analysis of Boosting

2. Multilayer feedforward Neural Network

3. Training a neural network

The definition of Weak learning

𝒟̃ = {pi, xi, yi}, where ∑
i

pi = 1, pi ≥ 0,∀i

ht+1 = arg min
h∈ℋ

n

∑
i=1

pi ⋅ 1(h(xi) ≠ yi)

Each weaker learning optimizes its own data:

The definition of Weak learning

𝒟̃ = {pi, xi, yi}, where ∑
i

pi = 1, pi ≥ 0,∀i

ht+1 = arg min
h∈ℋ

n

∑
i=1

pi ⋅ 1(h(xi) ≠ yi)

Assume that weaker learner’s loss ϵ :=
n

∑
i=1

pi1{ht+1(xi) ≠ yi} ≤
1
2

− γ, γ > 0

Each weaker learning optimizes its own data:

The definition of Weak learning

𝒟̃ = {pi, xi, yi}, where ∑
i

pi = 1, pi ≥ 0,∀i

ht+1 = arg min
h∈ℋ

n

∑
i=1

pi ⋅ 1(h(xi) ≠ yi)

Assume that weaker learner’s loss ϵ :=
n

∑
i=1

pi1{ht+1(xi) ≠ yi} ≤
1
2

− γ, γ > 0

Each weaker learning optimizes its own data:

Q: assume is symmetric, i.e., iff , why does the above always hold? ℋ h ∈ ℋ −h ∈ ℋ

Weaker learnability implies approximating gradient well

ŷ

−∇L(ŷ)

[ht+1(x1), …, ht+1(xn)]⊤

Assume that weaker learner’s loss ϵ :=
n

∑
i=1

pi1{ht+1(xi) ≠ yi} ≤
1
2

− γ, γ > 0

Weaker learnability implies approximating gradient well

ŷ

−∇L(ŷ)

(− ∇L(ŷ))⊤[
ht+1(x1)…
hh+1(xn)]

[ht+1(x1), …, ht+1(xn)]⊤

Assume that weaker learner’s loss ϵ :=
n

∑
i=1

pi1{ht+1(xi) ≠ yi} ≤
1
2

− γ, γ > 0

Weaker learnability implies approximating gradient well

ŷ

−∇L(ŷ)

(− ∇L(ŷ))⊤[
ht+1(x1)…
hh+1(xn)]

≥ (
n

∑
j=1

|wj |)2γ > 0

[ht+1(x1), …, ht+1(xn)]⊤

Assume that weaker learner’s loss ϵ :=
n

∑
i=1

pi1{ht+1(xi) ≠ yi} ≤
1
2

− γ, γ > 0

Weaker learnability implies approximating gradient well

ŷ

−∇L(ŷ)

(− ∇L(ŷ))⊤[
ht+1(x1)…
hh+1(xn)]

≥ (
n

∑
j=1

|wj |)2γ > 0

Within 90 degree, so
improve the objective!

[ht+1(x1), …, ht+1(xn)]⊤

Assume that weaker learner’s loss ϵ :=
n

∑
i=1

pi1{ht+1(xi) ≠ yi} ≤
1
2

− γ, γ > 0

Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

1
n

n

∑
i=1

exp(−HT(xi) ⋅ yi) ≤ n(1 − 4γ2)T/2

(Proof in lecture note, optional)

Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

1
n

n

∑
i=1

exp(−HT(xi) ⋅ yi) ≤ n(1 − 4γ2)T/2

Note zero-one loss is upper bounded by exponential loss

(Proof in lecture note, optional)

Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

1
n

n

∑
i=1

exp(−HT(xi) ⋅ yi) ≤ n(1 − 4γ2)T/2

Note zero-one loss is upper bounded by exponential loss

1
n

n

∑
i=1

1{sign(HT(xi)) ≠ yi} ≤
1
n

n

∑
i=1

exp(−HT(xi) ⋅ yi) ≤ n(1 − 4γ2)T/2

(Proof in lecture note, optional)

Thinking about Boosting via two player zero sum game

h

(x, y)

1{h(x) ≠ y}

|ℋ | = m

|𝒟 | = n

Thinking about Boosting via two player zero sum game

h

(x, y)

1{h(x) ≠ y}

|ℋ | = m

Row player plays hypothesis h ∈ ℋ

Column player plays example (x, y)

|𝒟 | = n

Thinking about Boosting via two player zero sum game

h

(x, y)

1{h(x) ≠ y}

|ℋ | = m

Row player plays hypothesis h ∈ ℋ

Column player plays example (x, y)

Row player gets loss 1{h(x) ≠ y}

|𝒟 | = n

Thinking about Boosting via two player zero sum game

h

(x, y)

1{h(x) ≠ y}

|ℋ | = m

Row player plays hypothesis h ∈ ℋ

Column player plays example (x, y)

Row player gets loss 1{h(x) ≠ y}
Column player gets loss −1{h(x) ≠ y}

|𝒟 | = n

Thinking about Boosting via two player zero sum game

h

(x, y)

1{h(x) ≠ y}

|ℋ | = m

Row player plays hypothesis h ∈ ℋ

Column player plays example (x, y)

Row player gets loss 1{h(x) ≠ y}
Column player gets loss −1{h(x) ≠ y}

Boosting can be understood as running some
specific algorithm to find the Nash equilibrium of

the game

|𝒟 | = n

Outline of Today

1. Analysis of Boosting

2. Multilayer feedforward Neural Network

3. Training a neural network

Linear Regression Revisit

Size of the house

Price y = w1x + w0

Linear Regression Revisit

Negative part does not
make too much sense

Size of the house

Price y = w1x + w0

Linear Regression Revisit

Negative part does not
make too much sense

Size of the house

Price y = w1x + w0
We can fix this with a simple

nonlinear function

y = max{w1x + w0, 0}

Linear Regression Revisit

Negative part does not
make too much sense

Size of the house

Price y = w1x + w0
We can fix this with a simple

nonlinear function

y = max{w1x + w0, 0}

y = max{w1x + w0,0}

Linear Regression Revisit

Negative part does not
make too much sense

Size of the house

Price y = w1x + w0
We can fix this with a simple

nonlinear function

y = max{w1x + w0, 0}

y = max{w1x + w0,0}

rectified linear unit (ReLU)

A single neuron network

y = max{w1x + w0,0}

A single neuron network

y = max{w1x + w0,0}

y = − max{w1x + w0,0}

A single neuron network

y = max{w1x + w0,0}

y = − max{w1x + w0,0}

y = a max{w1x + w0,0} + b

A single neuron network

x[1]

x[2]

…

x[d + 1] = 1

y
w1

w2

wd+1

a, b

A single neuron network

x[1]

x[2]

…

x[d + 1] = 1

y
w1

w2

wd+1

a, b

max{w1x[1] + … + wd+1x[d + 1],0}

A single neuron network

x[1]

x[2]

…

x[d + 1] = 1

y
w1

w2

wd+1

a, b

max{w1x[1] + … + wd+1x[d + 1],0}

y = aReLU(w⊤x) + b

Let us stack multiple neurons together

x[1]

x[2]

…

x[d + 1] = 1

y

ReLU(x⊤w1)

ReLU(x⊤w2)

ReLU(x⊤w3)

y =
3

∑
i=1

aiReLU(x⊤wi) + b

Let us stack multiple neurons together

x[1]

x[2]

…

x[d + 1] = 1

y

ReLU(x⊤w1)

ReLU(x⊤w2)

ReLU(x⊤wK)

…

Let us stack multiple neurons together

x[1]

x[2]

…

x[d + 1] = 1

y

ReLU(x⊤w1)

ReLU(x⊤w2)

ReLU(x⊤wK)

…

Vectorized form:

Define W =
(w1)⊤

…
(wK)⊤

∈ ℝK×d

Let us stack multiple neurons together

x[1]

x[2]

…

x[d + 1] = 1

y

ReLU(x⊤w1)

ReLU(x⊤w2)

ReLU(x⊤wK)

…

Vectorized form:

Define W =
(w1)⊤

…
(wK)⊤

∈ ℝK×d

α = [a1, …, aK]⊤

Let us stack multiple neurons together

x[1]

x[2]

…

x[d + 1] = 1

y

ReLU(x⊤w1)

ReLU(x⊤w2)

ReLU(x⊤wK)

…

Vectorized form:

Define W =
(w1)⊤

…
(wK)⊤

∈ ℝK×d

α = [a1, …, aK]⊤

y = α⊤ (ReLU(Wx)) + b

Let us stack multiple neurons together

x[1]

x[2]

…

x[d + 1] = 1

y

ReLU(x⊤w1)

ReLU(x⊤w2)

ReLU(x⊤wK)

…

Vectorized form:

Define W =
(w1)⊤

…
(wK)⊤

∈ ℝK×d

α = [a1, …, aK]⊤

y = α⊤ (ReLU(Wx)) + b

Learnable feature ϕ(x)

What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}

What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}

What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}

K = 2 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}

What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}

K = 2 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}

What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}

K = 2 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}

What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}

K = 2 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}

K = 3 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}
+a3 max{w3x + c3, 0}

What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}

K = 2 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}

K = 3 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}
+a3 max{w3x + c3, 0}

What does a neural network approximate

y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}

K = 2 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}

K = 3 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}
+a3 max{w3x + c3, 0}

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y

W[1] W[2] α

A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y

W[1] W[2] α

y = α⊤ReLU (W[2]ReLU (W[1]x)) + b

A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y… ……

A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y… ……

Define it by a forward pass:

A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y… …

z[1] = x
…

Define it by a forward pass:

A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y… … For t = 1 to T-1:

z[1] = x
…

Define it by a forward pass:

A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y… … For t = 1 to T-1:

z[1] = x

z[t+1] = ReLU (W[t]zt)

…

Define it by a forward pass:

A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y… … For t = 1 to T-1:

z[1] = x

z[t+1] = ReLU (W[t]zt)
y = α⊤z[T] + b

…

Define it by a forward pass:

The benefits of going deep

x[1]

x[2]

…

x[d] = 1

y… …

The benefits of going deep

Allows us to represent complicated functions without making NN too wide

x[1]

x[2]

…

x[d] = 1

y… …

Outline of Today

1. Analysis of Boosting

2. Multilayer feedforward Neural Network

3. Training a neural network

Training neural network via SGD

h(x) := α⊤ReLU (W[2]ReLU (W[1]x)) + b

x[1]

x[2]

…

x[d] = 1

̂y

W[1] W[2] α

Training neural network via SGD

h(x) := α⊤ReLU (W[2]ReLU (W[1]x)) + b

x[1]

x[2]

…

x[d] = 1

̂y

W[1] W[2] α

Let be any differentiable
loss function

ℓ(h(x), y)

Training neural network via SGD

h(x) := α⊤ReLU (W[2]ReLU (W[1]x)) + b

x[1]

x[2]

…

x[d] = 1

̂y

W[1] W[2] α

Let be any differentiable
loss function

ℓ(h(x), y)

∂ℓ(h(x), y)
∂W[1]

∂ℓ(h(x), y)
∂W[2]

∂ℓ(h(x), y)
α

∂ℓ(h(x), y)
b

Compute gradients:

Training neural network via SGD

h(x) := α⊤ReLU (W[2]ReLU (W[1]x)) + b

x[1]

x[2]

…

x[d] = 1

̂y

W[1] W[2] α

Let be any differentiable
loss function

ℓ(h(x), y)

∂ℓ(h(x), y)
∂W[1]

∂ℓ(h(x), y)
∂W[2]

∂ℓ(h(x), y)
α

∂ℓ(h(x), y)
b

Compute gradients:

(Next lecture: backpropagation for computing gradients)

Training neural network via SGD
Mini-batch Stochastic gradient descent

For epoc :t = 1 to T
θ = [W[1], W[2], α, b]

Training neural network via SGD
Mini-batch Stochastic gradient descent

For epoc :t = 1 to T
θ = [W[1], W[2], α, b] // go through dataset multiple times

Training neural network via SGD
Mini-batch Stochastic gradient descent

For epoc :t = 1 to T

Randomly shuffle the data

θ = [W[1], W[2], α, b] // go through dataset multiple times

Training neural network via SGD
Mini-batch Stochastic gradient descent

For epoc :t = 1 to T

Randomly shuffle the data

θ = [W[1], W[2], α, b] // go through dataset multiple times

// important (unbiased estimate of
the true gradient)

Training neural network via SGD
Mini-batch Stochastic gradient descent

For epoc :t = 1 to T

Randomly shuffle the data

Split the data into many batches , each w/ size Bn/B 𝒟i

θ = [W[1], W[2], α, b] // go through dataset multiple times

// important (unbiased estimate of
the true gradient)

Training neural network via SGD
Mini-batch Stochastic gradient descent

For epoc :t = 1 to T

Randomly shuffle the data

Split the data into many batches , each w/ size Bn/B 𝒟i

For j = 1 to n/B

θ = [W[1], W[2], α, b] // go through dataset multiple times

// important (unbiased estimate of
the true gradient)

Training neural network via SGD
Mini-batch Stochastic gradient descent

For epoc :t = 1 to T

Randomly shuffle the data

Split the data into many batches , each w/ size Bn/B 𝒟i

For j = 1 to n/B

θ = [W[1], W[2], α, b]

Mini-batch gradient g = ∑
x,y∈𝒟i

∇θℓ(hθ(x), y)/B

// go through dataset multiple times

// important (unbiased estimate of
the true gradient)

Training neural network via SGD
Mini-batch Stochastic gradient descent

For epoc :t = 1 to T

Randomly shuffle the data

Split the data into many batches , each w/ size Bn/B 𝒟i

For j = 1 to n/B

θ = [W[1], W[2], α, b]

Mini-batch gradient g = ∑
x,y∈𝒟i

∇θℓ(hθ(x), y)/B

θ = θ − ηg

// go through dataset multiple times

// important (unbiased estimate of
the true gradient)

Training neural network via SGD

SGD helps avoiding local minima and saddle point

A local minima

A saddle point

Training neural network via SGD

SGD tends to converge to a flat region

Training loss

Training neural network via SGD

SGD tends to converge to a flat region

Training loss

Training neural network via SGD

SGD tends to converge to a flat region

A flat local minima solution can help generalizes better to test data

Training loss

Training neural network via SGD

SGD tends to converge to a flat region

A flat local minima solution can help generalizes better to test data

Training loss

True/test loss

Connecting neural network with kernels

Consider a NN f(x; θ)

(the Neural Tangent Kernel theorem)

Connecting neural network with kernels

Consider a NN f(x; θ)

Let’s do a first order Taylor expansion around initialization θ0

f(x; θ) ≈ f(x; θ0) + ∇θ f(x; θ0)⊤(θ − θ0)

(the Neural Tangent Kernel theorem)

Connecting neural network with kernels

Consider a NN f(x; θ)

Let’s do a first order Taylor expansion around initialization θ0

f(x; θ) ≈ f(x; θ0) + ∇θ f(x; θ0)⊤(θ − θ0)

feature ϕ(x)

(the Neural Tangent Kernel theorem)

Connecting neural network with kernels

Consider a NN f(x; θ)

Let’s do a first order Taylor expansion around initialization θ0

f(x; θ) ≈ f(x; θ0) + ∇θ f(x; θ0)⊤(θ − θ0)

feature ϕ(x)
K(x, x′￼) = ϕ(x)⊤ϕ(x′￼)

(the Neural Tangent Kernel theorem)

Connecting neural network with kernels

Consider a NN f(x; θ)

Let’s do a first order Taylor expansion around initialization θ0

f(x; θ) ≈ f(x; θ0) + ∇θ f(x; θ0)⊤(θ − θ0)

feature ϕ(x)
K(x, x′￼) = ϕ(x)⊤ϕ(x′￼)

If NN training does not move to far away from , this is behaving like kernel regressionθ θ0

(the Neural Tangent Kernel theorem)

Summary for today

1. Neural network is universal function approximation

2. SGD is important for training neural networks

Next lecture: backpropagation

