
Neural Network 



Announcements



Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

For t = 1 …

Initialize H1 = h1 ∈ ℋ



Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

For t = 1 …

Initialize H1 = h1 ∈ ℋ

Denote ŷ = [Ht(x1), Ht(x2), …, Ht(xn)]⊤ ∈ ℝn



Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

For t = 1 …

Initialize H1 = h1 ∈ ℋ
−∇L(ŷ)
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Recap on AdaBoost

Adaboost follows this framework with ℓ( ̂y, y) = exp(− ̂y ⋅ y)

1. Create a new weighted dataset:

For each , compute  xi pi ∝ exp(− ̂yi ⋅ yi)

Binary classification: ht+1 = arg min
h∈ℋ ∑

i

pi ⋅ 1{h(xi) ≠ yi}

2. Add new learner to the ensemble:

Ht+1 = Ht +
1
2

ln
1 − ϵ

ϵ
⋅ ht+1



Outline of Today

1. Analysis of Boosting

2. Multilayer feedforward Neural Network

3. Training a neural network
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𝒟̃ = {pi, xi, yi},  where ∑
i

pi = 1, pi ≥ 0,∀i

ht+1 = arg min
h∈ℋ

n

∑
i=1

pi ⋅ 1(h(xi) ≠ yi)

Assume that weaker learner’s loss ϵ :=
n

∑
i=1

pi1{ht+1(xi) ≠ yi} ≤
1
2

− γ, γ > 0

Each weaker learning optimizes its own data:

Q: assume  is symmetric, i.e.,  iff , why does the above always hold? ℋ h ∈ ℋ −h ∈ ℋ
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ht+1(x1)…
hh+1(xn)]

[ht+1(x1), …, ht+1(xn)]⊤

Assume that weaker learner’s loss ϵ :=
n

∑
i=1

pi1{ht+1(xi) ≠ yi} ≤
1
2

− γ, γ > 0



Weaker learnability implies approximating gradient well

ŷ
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Weaker learnability implies approximating gradient well

ŷ

−∇L(ŷ)

( − ∇L(ŷ))⊤[
ht+1(x1)…
hh+1(xn)]

≥ (
n

∑
j=1

|wj | )2γ > 0

Within 90 degree, so 
improve the objective!
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Assume that weaker learner’s loss ϵ :=
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∑
i=1

pi1{ht+1(xi) ≠ yi} ≤
1
2

− γ, γ > 0
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Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

1
n

n

∑
i=1

exp(−HT(xi) ⋅ yi) ≤ n(1 − 4γ2)T/2

Note zero-one loss is upper bounded by exponential loss

1
n

n

∑
i=1

1{sign(HT(xi)) ≠ yi} ≤
1
n

n

∑
i=1

exp(−HT(xi) ⋅ yi) ≤ n(1 − 4γ2)T/2

(Proof in lecture note, optional)
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Thinking about Boosting via two player zero sum game

h

(x, y)

1{h(x) ≠ y}

|ℋ | = m

Row player plays hypothesis h ∈ ℋ

Column player plays example (x, y)

Row player gets loss 1{h(x) ≠ y}
Column player gets loss −1{h(x) ≠ y}

Boosting can be understood as running some 
specific algorithm to find the Nash equilibrium of 

the game

|𝒟 | = n
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Linear Regression Revisit

Negative part does not 
make too much sense

Size of the house

Price y = w1x + w0
We can fix this with a simple 

nonlinear function

y = max{w1x + w0, 0}

y = max{w1x + w0,0}

rectified linear unit (ReLU)
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…

x[d + 1] = 1

y
w1
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wd+1

a, b
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y = aReLU(w⊤x) + b
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Let us stack multiple neurons together

x[1]

x[2]

…

x[d + 1] = 1

y

ReLU(x⊤w1)

ReLU(x⊤w2)

ReLU(x⊤wK)

…

Vectorized form:

Define W =
(w1)⊤

…
(wK)⊤

∈ ℝK×d

α = [a1, …, aK]⊤

y = α⊤ (ReLU(Wx)) + b

Learnable feature ϕ(x)
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A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y… … For t = 1 to T-1: 

z[1] = x

z[t+1] = ReLU (W[t]zt)
y = α⊤z[T] + b

…

Define it by a forward pass:
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The benefits of going deep

Allows us to represent complicated functions without making NN too wide

x[1]

x[2]

…

x[d] = 1

y… …
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Training neural network via SGD

h(x) := α⊤ReLU (W[2]ReLU (W[1]x)) + b

x[1]

x[2]

…

x[d] = 1

̂y

W[1] W[2] α

Let  be any differentiable 
loss function

ℓ(h(x), y)

∂ℓ(h(x), y)
∂W[1]

∂ℓ(h(x), y)
∂W[2]

∂ℓ(h(x), y)
α

∂ℓ(h(x), y)
b

Compute gradients:

(Next lecture: backpropagation for computing gradients)
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Training neural network via SGD
Mini-batch Stochastic gradient descent

For epoc :t = 1 to T

Randomly shuffle the data

Split the data into  many batches , each w/ size Bn/B 𝒟i

For  j = 1 to n/B

θ = [W[1], W[2], α, b]

Mini-batch gradient g = ∑
x,y∈𝒟i

∇θℓ(hθ(x), y)/B

θ = θ − ηg

// go through dataset multiple times

// important (unbiased estimate of 
the true gradient)



Training neural network via SGD

SGD helps avoiding local minima and saddle point

A local minima

A saddle point
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Training neural network via SGD

SGD tends to converge to a flat region

A flat local minima solution can help generalizes better to test data

Training loss

True/test loss
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Connecting neural network with kernels
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Summary for today

1. Neural network is universal function approximation

2. SGD is important for training neural networks

Next lecture: backpropagation


