Maximum Likelihood Estimation & Maximum A Posteriori Probability Estimation

Announcements

1. P1 and HW1 are due today

2. HW2 will be out today

3. No office hour (wen) this Thursday

Binary classifier: $sign(w^Tx)$

The Perceptron Alg:

Initialize
$$w_0 = 0$$

For
$$t = 0 \rightarrow \infty$$

Binary classifier: $sign(w^Tx)$

The Perceptron Alg:

Initialize $w_0 = 0$

For
$$t = 0 \rightarrow \infty$$

User comes with feature x_t

Binary classifier: $sign(w^Tx)$

The Perceptron Alg:

Initialize $w_0 = 0$

For
$$t = 0 \rightarrow \infty$$

User comes with feature x_t

We make a prediction $\hat{y}_t = \text{sign}(w_t^{\mathsf{T}} x_t)$

Binary classifier: $sign(w^Tx)$

The Perceptron Alg:

Initialize $w_0 = 0$

For
$$t = 0 \rightarrow \infty$$

User comes with feature x_t

We make a prediction $\hat{y}_t = \text{sign}(w_t^{\mathsf{T}} x_t)$

User reveals the real label y_t

Binary classifier: $sign(w^Tx)$

The Perceptron Alg:

Initialize $w_0 = 0$

For
$$t = 0 \rightarrow \infty$$

User comes with feature x_t

We make a prediction $\hat{y}_t = \text{sign}(w_t^{\mathsf{T}} x_t)$

User reveals the real label y_t

We update $w_{t+1} = w_t + \mathbf{1}(\hat{y}_t \neq y_t)y_t x_t$

Binary classifier: $sign(w^Tx)$

The Perceptron Alg:

Initialize
$$w_0 = 0$$

For
$$t = 0 \rightarrow \infty$$

User comes with feature x_t

We make a prediction $\hat{y}_t = \text{sign}(w_t^\top x_t)$

User reveals the real label y_t

We update $w_{t+1} = w_t + \mathbf{1}(\hat{y}_t \neq y_t)y_t x_t$

Theorem:

if there exists w^* with $\|w^*\|_2 = 1$, such that $y_t(x_t^\top w^*) \ge \gamma > 0, \forall t$, then:

$$\sum_{t=0}^{\infty} \mathbf{1}(\hat{\mathbf{y}}_t \neq \mathbf{y}_t) \leq 1/\gamma^2$$

Binary classifier: $sign(w^Tx)$

The Perceptron Alg:

Initialize
$$w_0 = 0$$

For
$$t = 0 \rightarrow \infty$$

User comes with feature x_t

We make a prediction $\hat{y}_t = \text{sign}(w_t^\top x_t)$

User reveals the real label y_t

We update $w_{t+1} = w_t + \mathbf{1}(\hat{y}_t \neq y_t)y_t x_t$

Theorem:

if there exists w^* with $||w^*||_2 = 1$, such that $y_t(x_t^\top w^*) \ge \gamma > 0, \forall t$, then:

$$\sum_{t=0}^{\infty} \mathbf{1}(\hat{y}_t \neq y_t) \leq 1/\gamma^2$$

Q: does the data need to be i.i.d?

Binary classifier: $sign(w^Tx)$

The Perceptron Alg:

Initialize
$$w_0 = 0$$

For
$$t = 0 \rightarrow \infty$$

User comes with feature x_t

We make a prediction $\hat{y}_t = \text{sign}(w_t^\top x_t)$

User reveals the real label y_t

We update $w_{t+1} = w_t + \mathbf{1}(\hat{y}_t \neq y_t)y_t x_t$

Theorem:

if there exists w^* with $\|w^*\|_2 = 1$, such that $y_t(x_t^\top w^*) \ge \gamma > 0, \forall t$, then:

$$\sum_{t=0}^{\infty} \mathbf{1}(\hat{\mathbf{y}}_t \neq \mathbf{y}_t) \leq 1/\gamma^2$$

Binary classifier: $sign(w^Tx)$

The Perceptron Alg:

Initialize
$$w_0 = 0$$

For
$$t = 0 \rightarrow \infty$$

User comes with feature x_t

We make a prediction $\hat{y}_t = \text{sign}(w_t^{\mathsf{T}} x_t)$

User reveals the real label y_t

We update $w_{t+1} = w_t + \mathbf{1}(\hat{y}_t \neq y_t)y_t x_t$

Theorem:

if there exists w^* with $||w^*||_2 = 1$, such that $y_t(x_t^\top w^*) \ge \gamma > 0, \forall t$, then:

$$\sum_{t=0}^{\infty} \mathbf{1}(\hat{y}_t \neq y_t) \leq 1/\gamma^2$$

No i.i.d assumption, and indeed data $\{x_1, y_1, \dots, x_T, y_T\}$ can be selected by an Adversary (as long as it is separable)!!!

Binary classifier: $sign(w^Tx)$

The Perceptron Alg:

Initialize
$$w_0 = 0$$

For
$$t = 0 \rightarrow \infty$$

User comes with feature x_t

We make a prediction $\hat{y}_t = \text{sign}(w_t^\top x_t)$

User reveals the real label y_t

We update $w_{t+1} = w_t + \mathbf{1}(\hat{y}_t \neq y_t)y_t x_t$

Theorem:

if there exists w^* with $\|w^*\|_2 = 1$, such that $y_t(x_t^\top w^*) \ge \gamma > 0, \forall t$, then:

$$\sum_{t=0}^{\infty} \mathbf{1}(\hat{\mathbf{y}}_t \neq \mathbf{y}_t) \leq 1/\gamma^2$$

Binary classifier: $sign(w^Tx)$

The Perceptron Alg:

Initialize
$$w_0 = 0$$

For
$$t = 0 \rightarrow \infty$$

User comes with feature x_t

We make a prediction $\hat{y}_t = \text{sign}(w_t^\top x_t)$

User reveals the real label y_t

We update $w_{t+1} = w_t + \mathbf{1}(\hat{y}_t \neq y_t)y_t x_t$

Theorem:

if there exists w^* with $||w^*||_2 = 1$, such that $y_t(x_t^\top w^*) \ge \gamma > 0, \forall t$, then:

$$\sum_{t=0}^{\infty} \mathbf{1}(\hat{y}_t \neq y_t) \le 1/\gamma^2$$

Q: Can this be applied to infinite dimension space $(d \rightarrow \infty)$

Binary classifier: $sign(w^Tx)$

The Perceptron Alg:

Initialize
$$w_0 = 0$$

For
$$t = 0 \rightarrow \infty$$

User comes with feature x_t

We make a prediction $\hat{y}_t = \text{sign}(w_t^\top x_t)$

User reveals the real label y_t

We update $w_{t+1} = w_t + \mathbf{1}(\hat{y}_t \neq y_t)y_t x_t$

Theorem:

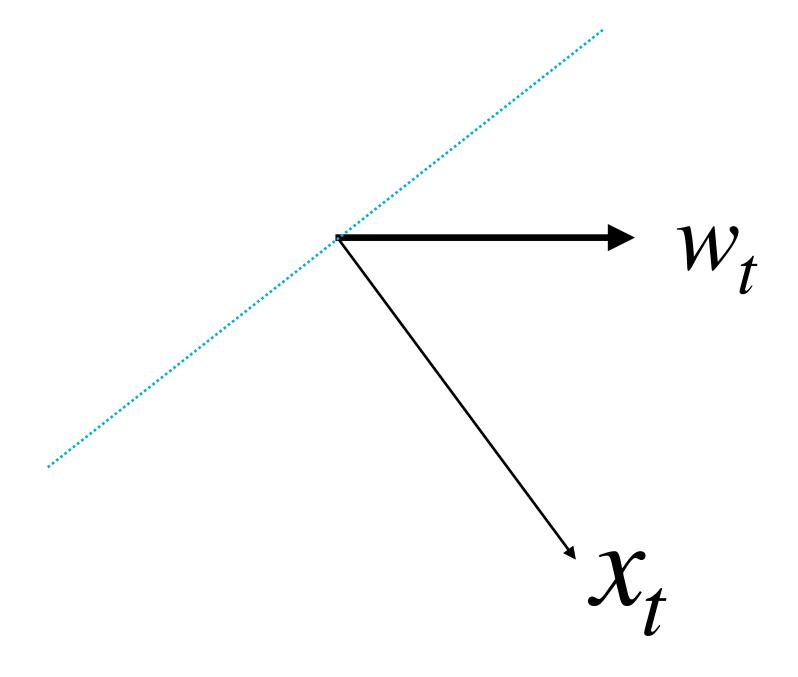
if there exists w^* with $||w^*||_2 = 1$, such that $y_t(x_t^\top w^*) \ge \gamma > 0, \forall t$, then:

$$\sum_{t=0}^{\infty} \mathbf{1}(\hat{y}_t \neq y_t) \le 1/\gamma^2$$

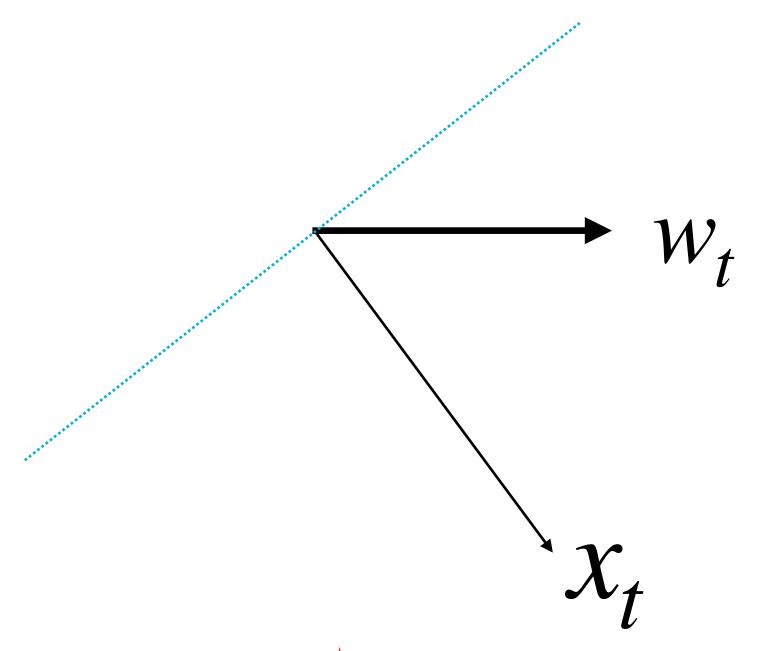
Q: Can this be applied to infinite dimension space $(d \rightarrow \infty)$

Yes! As long as margin exists!

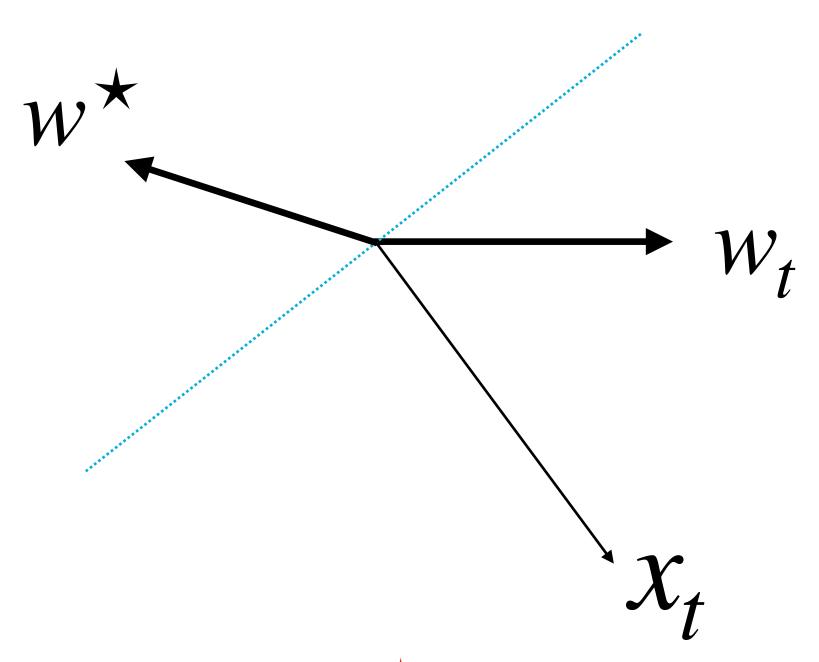
When we make a mistake, i.e., $y_t(w_t^{\mathsf{T}}x_t) < 0$ (e.g., $y_t = -1$, $w_t^{\mathsf{T}}x_t > 0$)



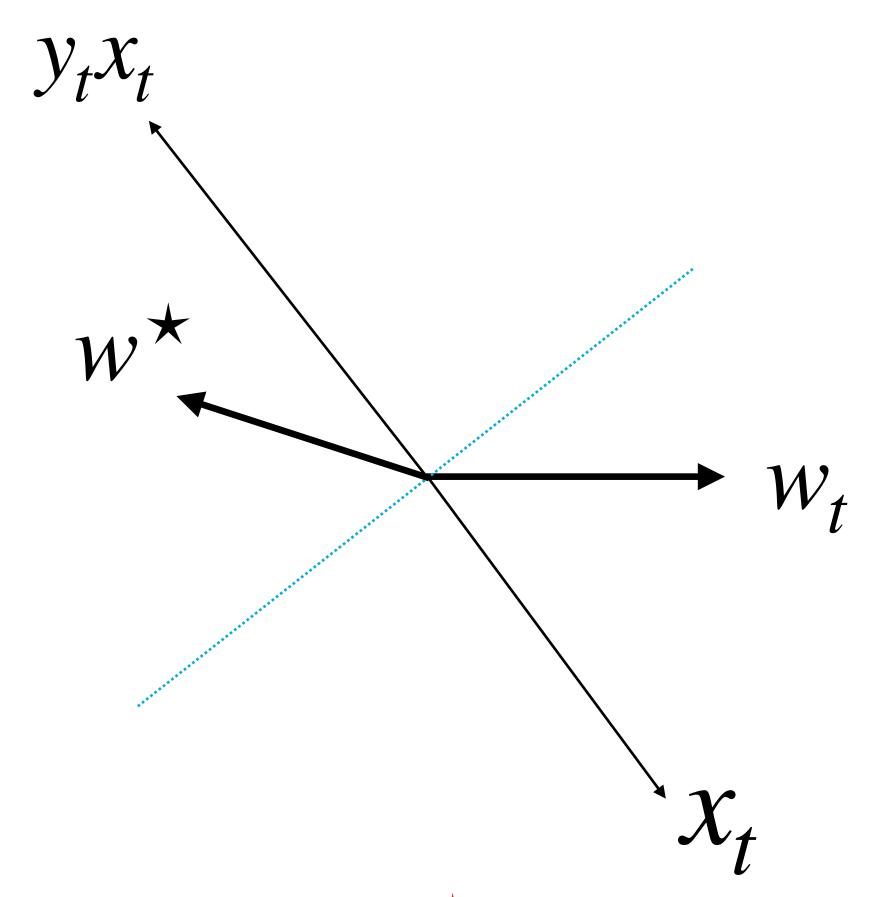
When we make a mistake, i.e., $y_t(w_t^T x_t) < 0$ (e.g., $y_t = -1$, $w_t^T x_t > 0$)



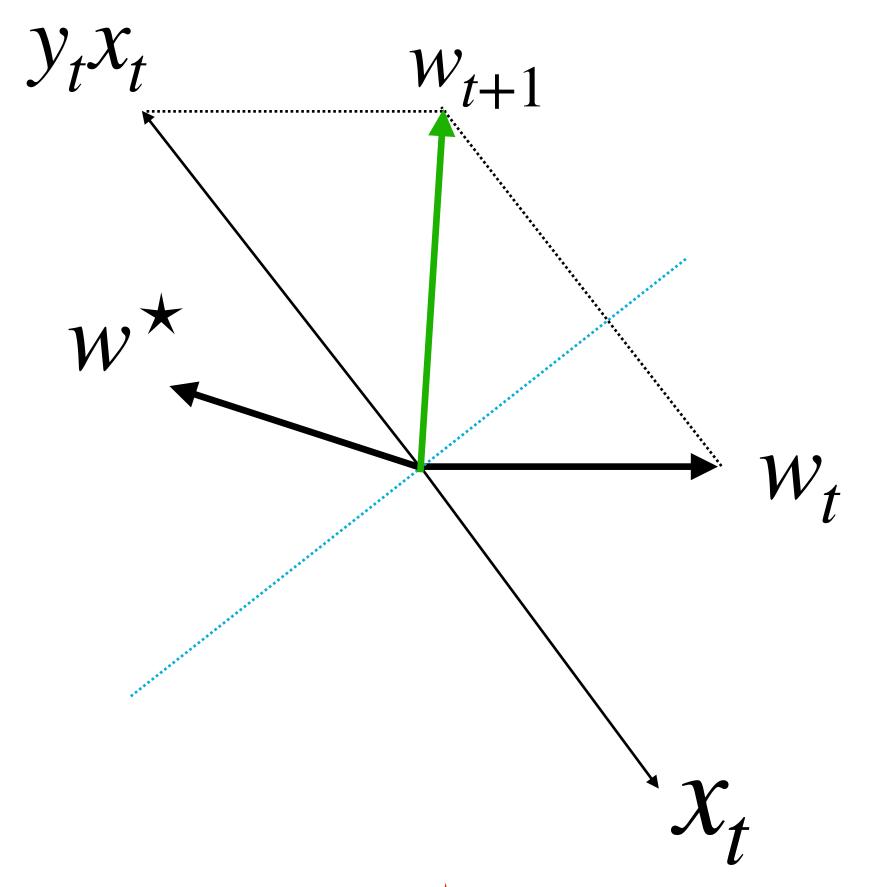
When we make a mistake, i.e., $y_t(w_t^\mathsf{T} x_t) < 0$ (e.g., $y_t = -1$, $w_t^\mathsf{T} x_t > 0$)



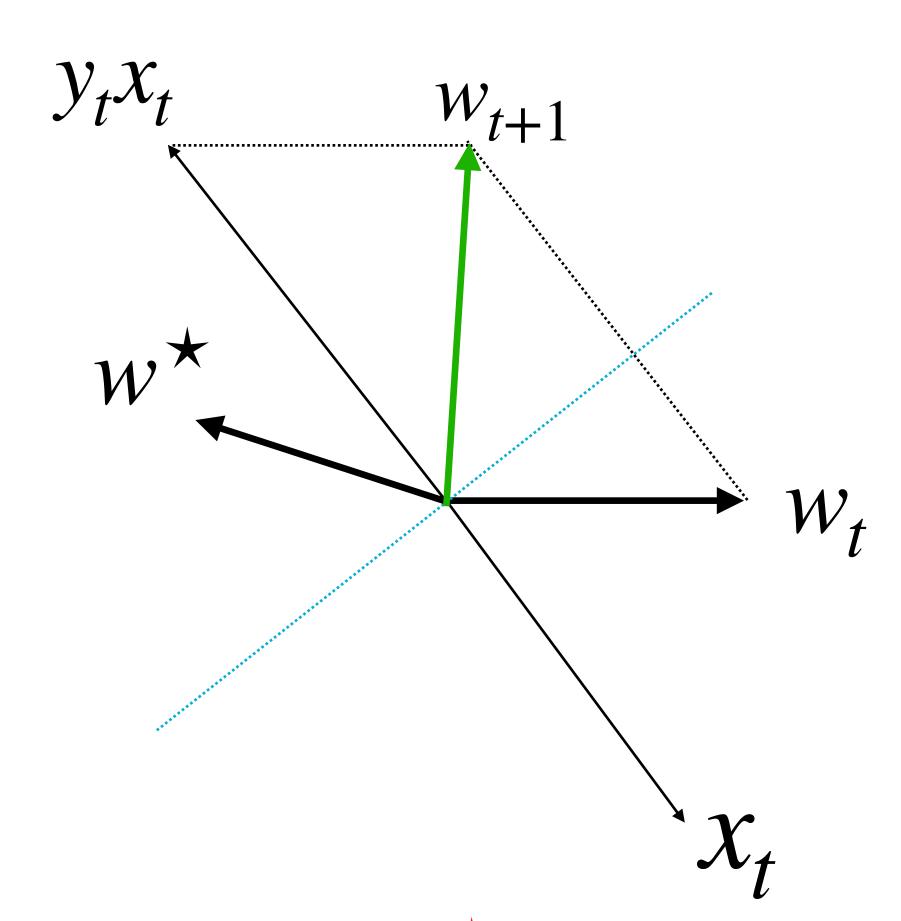
When we make a mistake, i.e., $y_t(w_t^\mathsf{T} x_t) < 0$ (e.g., $y_t = -1$, $w_t^\mathsf{T} x_t > 0$)



When we make a mistake, i.e., $y_t(w_t^T x_t) < 0$ (e.g., $y_t = -1$, $w_t^T x_t > 0$)



When we make a mistake, i.e., $y_t(w_t^\mathsf{T} x_t) < 0$ (e.g., $y_t = -1$, $w_t^\mathsf{T} x_t > 0$)



We should track how the $\cos(\theta_t)$ is changing:

$$\cos(\theta_t) = \frac{w_t^\mathsf{T} w^*}{\|w_t\|_2}$$

Outline for today:

1. Maximum Likelihood estimation (MLE)

2. Maximum a posteriori probability (MAP)

3. Example: MLE and MAP for classification

We toss a coin n times (independently), we observe the following outcomes:

$$\mathcal{D} = \{y_i\}_{i=1}^n, y_i \in \{-1,1\}$$
 $(y_i = 1 \text{ means head in } i\text{'s trial, -1 means tail})$

We toss a coin n times (independently), we observe the following outcomes:

$$\mathcal{D} = \{y_i\}_{i=1}^n, y_i \in \{-1,1\} \quad (y_i = 1 \text{ means head in } i\text{'s trial, -1 means tail})$$

Q: assume $y_i \sim \text{Bernoulli}(\theta^*)$, how to estimate θ^* given \mathcal{D} ?

We toss a coin n times (independently), we observe the following outcomes:

$$\mathcal{D} = \{y_i\}_{i=1}^n, y_i \in \{-1,1\} \quad (y_i = 1 \text{ means head in } i\text{'s trial, -1 means tail})$$

Q: assume $y_i \sim \text{Bernoulli}(\theta^*)$, how to estimate θ^* given \mathcal{D} ?

$$\hat{\theta} \approx \frac{\sum_{i=1}^{n} \mathbf{1}(y_i = 1)}{n}$$

We toss a coin n times (independently), we observe the following outcomes:

$$\mathcal{D}=\{y_i\}_{i=1}^n, y_i\in\{-1,1\} \qquad (y_i=1 \text{ means head in } i\text{'s trial, -1 means tail})$$

Q: assume $y_i \sim \text{Bernoulli}(\theta^*)$, how to estimate θ^* given \mathcal{D} ?

$$\hat{\theta} \approx \frac{\sum_{i=1}^{n} \mathbf{1}(y_i = 1)}{n}$$

Let's make this rigorous!

We toss a coin n times (independently), we observe the following outcomes:

$$\mathcal{D} = \{y_i\}_{i=1}^n, y_i \in \{-1,1\}$$
 $(y_i = 1 \text{ means head in } i\text{'s trial, -1 means tail})$

We toss a coin n times (independently), we observe the following outcomes:

$$\mathcal{D} = \{y_i\}_{i=1}^n, y_i \in \{-1,1\} \quad (y_i = 1 \text{ means head in } i\text{'s trial, -1 means tail})$$

If the probability of getting head is $\theta \in [0,1]$, what is the probability of observing the data \mathscr{D} (likelihood)?

We toss a coin n times (independently), we observe the following outcomes:

$$\mathcal{D} = \{y_i\}_{i=1}^n, y_i \in \{-1,1\} \quad (y_i = 1 \text{ means head in } i\text{'s trial, -1 means tail})$$

If the probability of getting head is $\theta \in [0,1]$, what is the probability of observing the data \mathscr{D} (likelihood)?

$$P(\mathcal{D} \mid \theta) = \theta^{n_1} (1 - \theta)^{n - n_1}$$

We toss a coin n times (independently), we observe the following outcomes:

$$\mathcal{D} = \{y_i\}_{i=1}^n, y_i \in \{-1,1\} \quad (y_i = 1 \text{ means head in } i\text{'s trial, -1 means tail})$$

If the probability of getting head is $\theta \in [0,1]$, what is the probability of observing the data \mathscr{D} (likelihood)?

$$P(\mathcal{D} \mid \theta) = \theta^{n_1} (1 - \theta)^{n - n_1}$$

We toss a coin n times (independently), we observe the following outcomes:

$$\mathcal{D} = \{y_i\}_{i=1}^n, y_i \in \{-1,1\} \quad (y_i = 1 \text{ means head in } i\text{'s trial, -1 means tail})$$

If the probability of getting head is $\theta \in [0,1]$, what is the probability of observing the data \mathscr{D} (likelihood)?

$$P(\mathcal{D} \mid \theta) = \theta^{n_1} (1 - \theta)^{n - n_1}$$

$$\hat{\theta}_{mle} = \underset{\theta \in [0,1]}{\arg \max} P(\mathcal{D} \mid \theta)$$

We toss a coin n times (independently), we observe the following outcomes:

$$\mathcal{D} = \{y_i\}_{i=1}^n, y_i \in \{-1,1\} \quad (y_i = 1 \text{ means head in } i\text{'s trial, -1 means tail})$$

$$\hat{\theta}_{mle} = \underset{\theta \in [0,1]}{\arg \max} P(\mathcal{D} \mid \theta)$$

We toss a coin n times (independently), we observe the following outcomes:

$$\mathcal{D} = \{y_i\}_{i=1}^n, y_i \in \{-1,1\} \quad (y_i = 1 \text{ means head in } i\text{'s trial, -1 means tail})$$

$$\hat{\theta}_{mle} = \arg\max_{\theta \in [0,1]} P(\mathcal{D} \mid \theta) = \arg\max_{\theta \in [0,1]} \theta^{n_1} (1 - \theta)^{n-n_1}$$

We toss a coin n times (independently), we observe the following outcomes:

$$\mathcal{D} = \{y_i\}_{i=1}^n, y_i \in \{-1,1\} \quad (y_i = 1 \text{ means head in } i\text{'s trial, -1 means tail})$$

$$\hat{\theta}_{mle} = \arg \max_{\theta \in [0,1]} P(\mathcal{D} \mid \theta) = \arg \max_{\theta \in [0,1]} \theta^{n_1} (1 - \theta)^{n-n_1}$$

$$= \arg \max_{\theta \in [0,1]} \ln(\theta^{n_1} (1 - \theta)^{n-n_1})$$

We toss a coin n times (independently), we observe the following outcomes:

$$\mathcal{D} = \{y_i\}_{i=1}^n, y_i \in \{-1,1\} \quad (y_i = 1 \text{ means head in } i\text{'s trial, -1 means tail})$$

$$\hat{\theta}_{mle} = \arg \max_{\theta \in [0,1]} P(\mathcal{D} \mid \theta) = \arg \max_{\theta \in [0,1]} \theta^{n_1} (1-\theta)^{n-n_1}$$

$$= \arg \max_{\theta \in [0,1]} \ln(\theta^{n_1} (1-\theta)^{n-n_1})$$

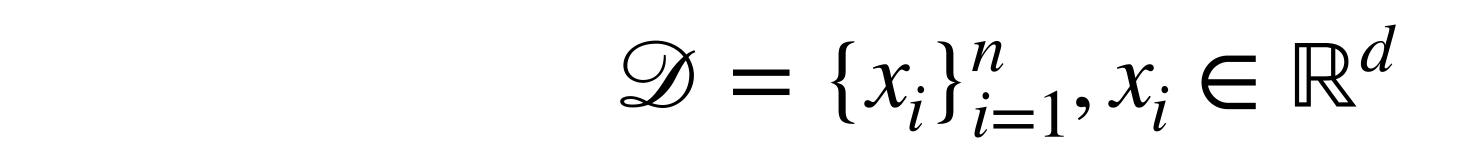
$$= \arg \max_{\theta \in [0,1]} n_1 \ln(\theta) + (n-n_1) \ln(1-\theta)$$

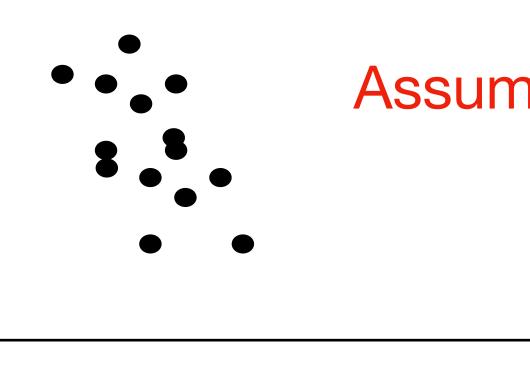
We toss a coin n times (independently), we observe the following outcomes:

$$\mathcal{D} = \{y_i\}_{i=1}^n, y_i \in \{-1,1\} \quad (y_i = 1 \text{ means head in } i\text{'s trial, -1 means tail})$$

$$\begin{split} \hat{\theta}_{mle} &= \arg\max_{\theta \in [0,1]} P(\mathcal{D} \mid \theta) = \arg\max_{\theta \in [0,1]} \theta^{n_1} (1-\theta)^{n-n_1} \\ &= \arg\max_{\theta \in [0,1]} \ln(\theta^{n_1} (1-\theta)^{n-n_1}) \\ &= \arg\max_{\theta \in [0,1]} n_1 \ln(\theta) + (n-n_1) \ln(1-\theta) = \frac{n_1}{n} \end{split}$$

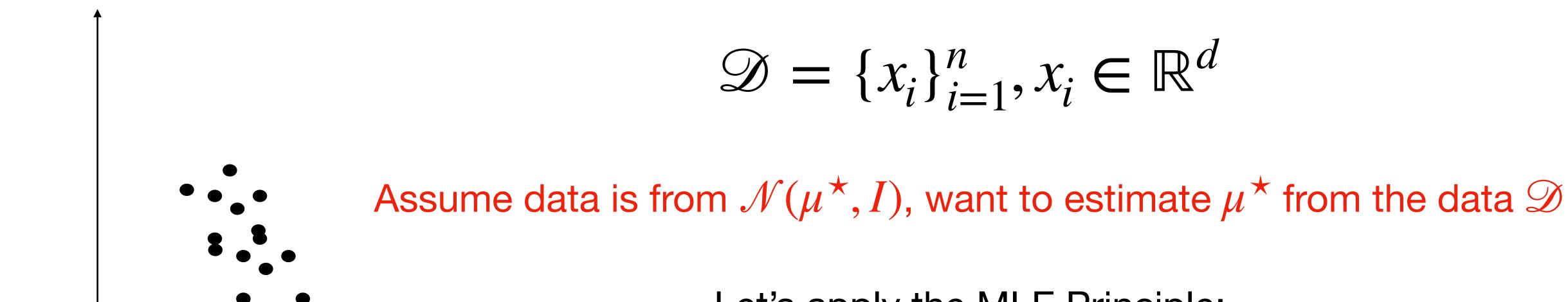
Ex 2: Estimate the mean





Assume data is from $\mathcal{N}(\mu^*, I)$, want to estimate μ^* from the data \mathscr{D}

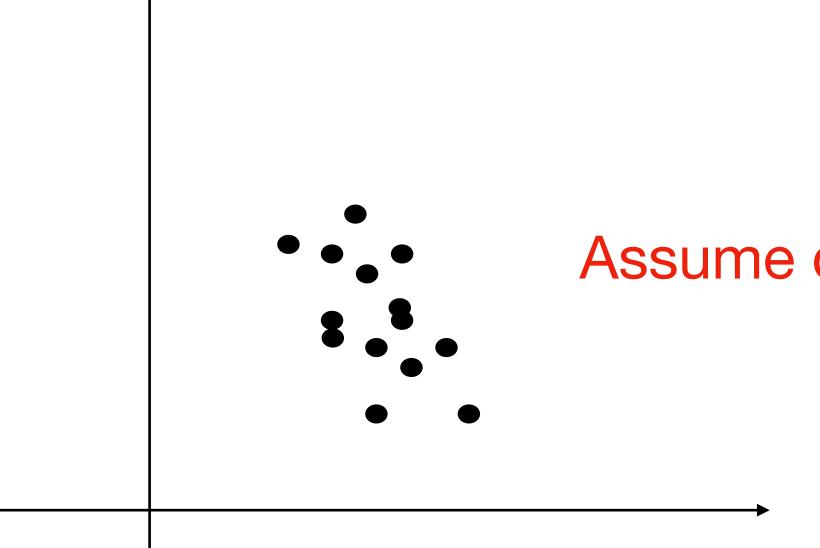
Ex 2: Estimate the mean



Let's apply the MLE Principle:

Step 1:
$$P(\mathcal{D} | \mu) = \prod_{i=1}^{n} \frac{1}{\sqrt{(2\pi)^d}} \exp\left(-\frac{1}{2}(x_i - \mu)^{\top}(x_i - \mu)\right)$$

Ex 2: Estimate the mean



$$\mathcal{D} = \{x_i\}_{i=1}^n, x_i \in \mathbb{R}^d$$

Assume data is from $\mathcal{N}(\mu^*, I)$, want to estimate μ^* from the data \mathscr{D}

Let's apply the MLE Principle:

Step 1:
$$P(\mathcal{D} | \mu) = \prod_{i=1}^{n} \frac{1}{\sqrt{(2\pi)^d}} \exp\left(-\frac{1}{2}(x_i - \mu)^{\mathsf{T}}(x_i - \mu)\right)$$

Step 2: apply log and maximize the log-likelihood:

$$\arg \max_{\mu} \sum_{i=1}^{n} -(x_{i} - \mu)^{T}(x_{i} - \mu)$$

Ex 2: Estimate the mean



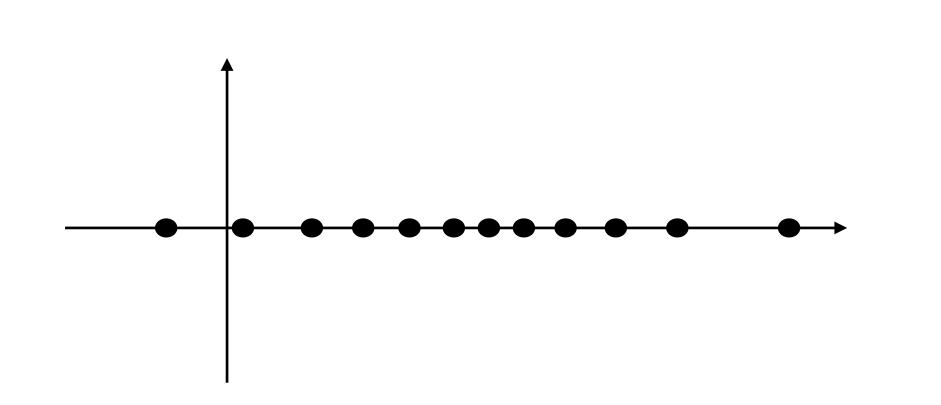
Assume data is from $\mathcal{N}(\mu^*, I)$, want to estimate μ^* from the data \mathscr{D}

Let's apply the MLE Principle:

Step 1:
$$P(\mathcal{D} | \mu) = \prod_{i=1}^{n} \frac{1}{\sqrt{(2\pi)^d}} \exp\left(-\frac{1}{2}(x_i - \mu)^{\top}(x_i - \mu)\right)$$

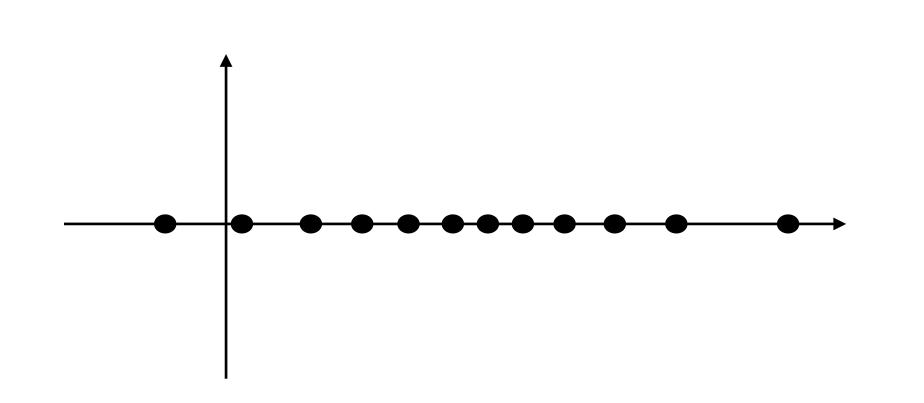
Step 2: apply log and maximize the log-likelihood:

$$\arg \max_{\mu} \sum_{i=1}^{n} -(x_{i} - \mu)^{\mathsf{T}}(x_{i} - \mu) \Rightarrow \hat{\mu}_{mle} = \sum_{i=1}^{n} x_{i}/n$$



$$\mathcal{D} = \{x_i\}_{i=1}^n, x_i \in \mathbb{R}$$

Assume data is from $\mathcal{N}(\mu^{\star}, \sigma^2)$, want to estimate μ^{\star}, σ from the data \mathcal{D}

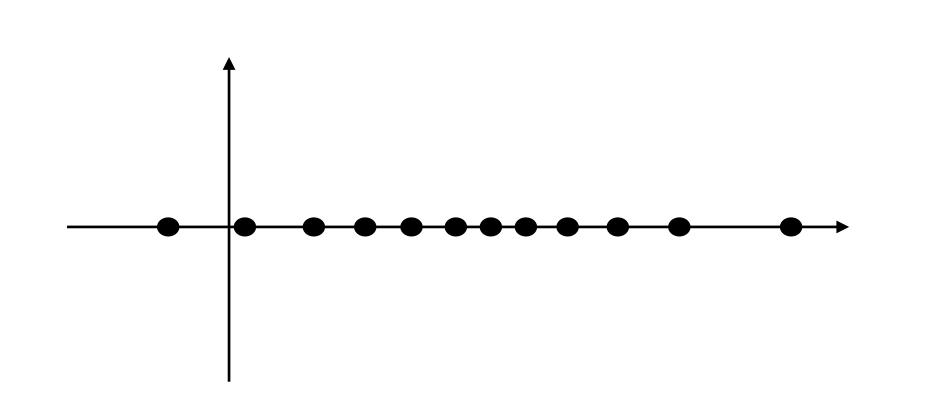


$$\mathcal{D} = \{x_i\}_{i=1}^n, x_i \in \mathbb{R}$$

Assume data is from $\mathcal{N}(\mu^*, \sigma^2)$, want to estimate μ^*, σ from the data \mathscr{D}

Let's apply the MLE Principle:

Step 1:
$$P(\mathcal{D} \mid \mu, \sigma) = \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{1}{2}(x_i - \mu)^2 / \sigma^2\right)$$



$$\mathcal{D} = \{x_i\}_{i=1}^n, x_i \in \mathbb{R}$$

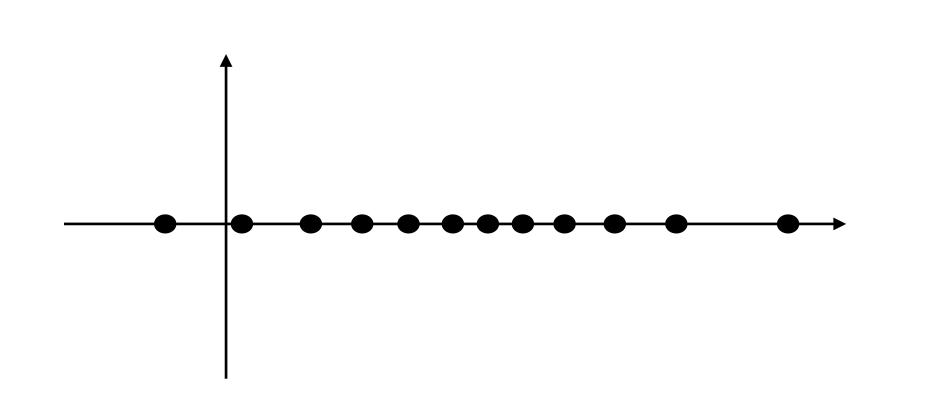
Assume data is from $\mathcal{N}(\mu^*, \sigma^2)$, want to estimate μ^*, σ from the data \mathscr{D}

Let's apply the MLE Principle:

Step 1:
$$P(\mathcal{D} \mid \mu, \sigma) = \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{1}{2}(x_i - \mu)^2 / \sigma^2\right)$$

Step 2: apply log and maximize the log-likelihood:

$$\arg \max_{\mu,\sigma>0} \sum_{i=1}^{n} (-(x_i - \mu)^2 / \sigma^2 - \ln(\sigma))$$



$$\mathcal{D} = \{x_i\}_{i=1}^n, x_i \in \mathbb{R}$$

Assume data is from $\mathcal{N}(\mu^{\star}, \sigma^2)$, want to estimate μ^{\star}, σ from the data \mathscr{D}

Let's apply the MLE Principle:

Step 1:
$$P(\mathcal{D} \mid \mu, \sigma) = \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{1}{2}(x_i - \mu)^2 / \sigma^2\right)$$

Step 2: apply log and maximize the log-likelihood:

$$\arg \max_{\mu,\sigma>0} \sum_{i=1}^{n} (-(x_i - \mu)^2 / \sigma^2 - \ln(\sigma)) = ??$$

Summary of MLE

1. MLE is consistent: if our model assumption is correct (e.g., coin flip follows some Bernoulli distribution), then $\hat{\theta}_{mle} \to \theta^{\star}$, as $n \to \infty$

Summary of MLE

1. MLE is consistent: if our model assumption is correct (e.g., coin flip follows some Bernoulli distribution), then $\hat{\theta}_{mle} \to \theta^{\star}$, as $n \to \infty$

2. When our model assumption is wrong (e.g., we use Gaussian to model data which is from some more complicated distribution), then MLE loses such guarantee

Outline for today:

1. Maximum Likelihood estimation (MLE)

2. Maximum a Posteriori Probability (MAP)

3. Example: MLE and MAP for classification

We toss a coin n times (independently), we observe the following outcomes:

$$\mathcal{D} = \{y_i\}_{i=1}^n, y_i \in \{-1,1\} \quad (y_i = 1 \text{ means head in } i\text{'s trial, -1 means tail})$$

We toss a coin n times (independently), we observe the following outcomes:

$$\mathcal{D} = \{y_i\}_{i=1}^n, y_i \in \{-1,1\} \quad (y_i = 1 \text{ means head in } i\text{'s trial, -1 means tail})$$

A Bayesian Statistician will treat the optimal parameter θ^{\star} being a random variable:

$$\theta^{\star} \sim P(\theta)$$

We toss a coin n times (independently), we observe the following outcomes:

$$\mathcal{D} = \{y_i\}_{i=1}^n, y_i \in \{-1,1\} \quad (y_i = 1 \text{ means head in } i\text{'s trial, -1 means tail})$$

A Bayesian Statistician will treat the optimal parameter θ^* being a random variable:

$$\theta^{\star} \sim P(\theta)$$

Example: $P(\theta)$ being a Beta distribution:

$$P(\theta) = \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} / Z,$$

where
$$Z = \int_{\theta \in [0,1]} \theta^{\alpha-1} (1-\theta)^{\beta-1} d_{\theta}$$

We toss a coin n times (independently), we observe the following outcomes:

$$\mathcal{D} = \{y_i\}_{i=1}^n, y_i \in \{-1,1\} \quad (y_i = 1 \text{ means head in } i\text{'s trial, -1 means tail})$$

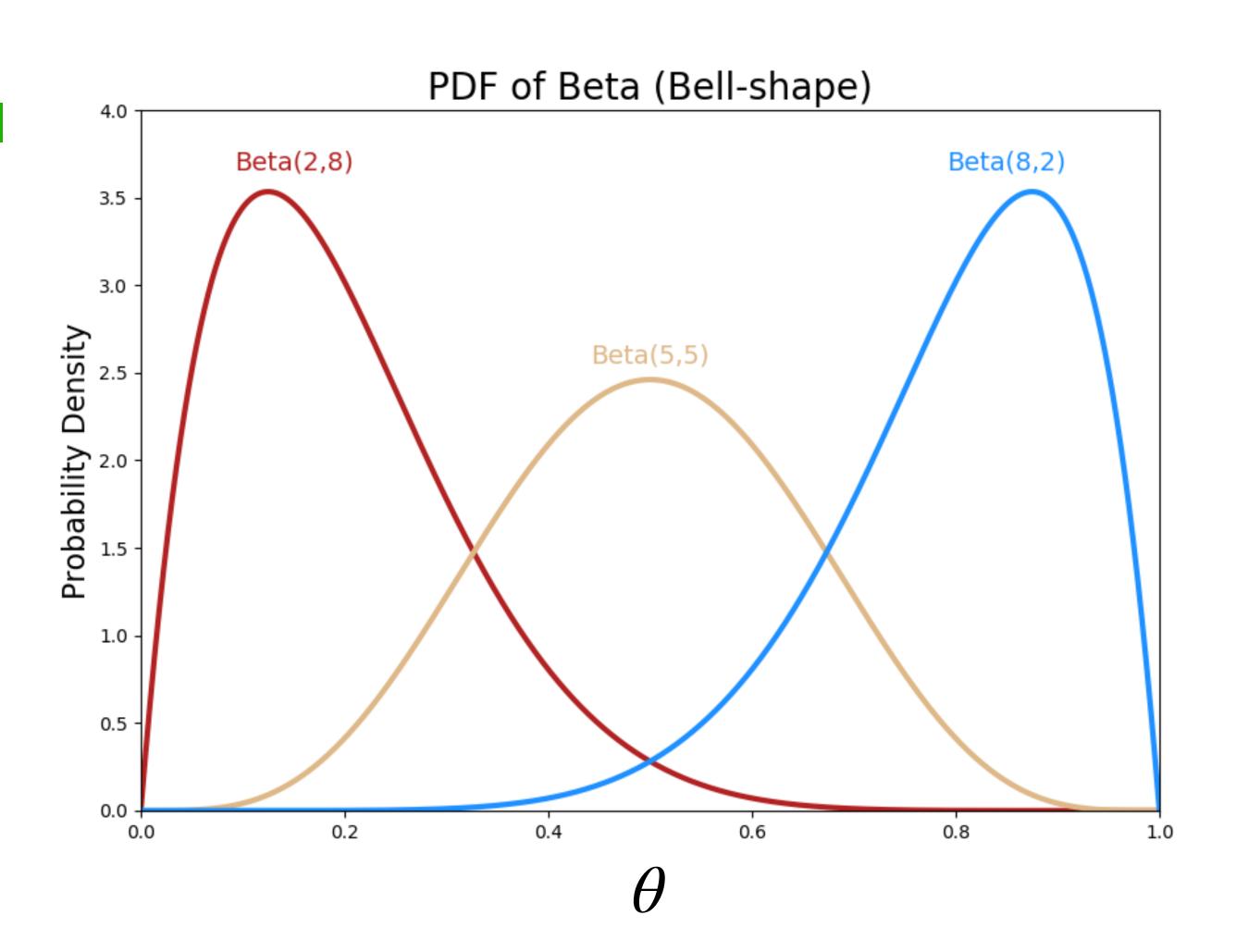
A Bayesian Statistician will treat the optimal parameter θ^{\star} being a random variable:

$$\theta^{\star} \sim P(\theta)$$

Example: $P(\theta)$ being a Beta distribution:

$$P(\theta) = \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} / Z,$$

where
$$Z = \int_{\theta \in [0,1]} \theta^{\alpha-1} (1-\theta)^{\beta-1} d_{\theta}$$



Now, we have a prior $P(\theta)$, and we have a dataset $\mathscr{D} = \{y_i\}_{i=1}^n$, define posterior distribution: $P(\theta \mid \mathscr{D})$

Now, we have a prior $P(\theta)$, and we have a dataset $\mathscr{D} = \{y_i\}_{i=1}^n$, define posterior distribution: $P(\theta \mid \mathscr{D})$

Using Bayes rule, we get:

$$P(\theta \mid \mathcal{D}) = P(\theta)P(\mathcal{D} \mid \theta)/P(\mathcal{D})$$

Now, we have a prior $P(\theta)$, and we have a dataset $\mathscr{D} = \{y_i\}_{i=1}^n$, define posterior distribution: $P(\theta \mid \mathscr{D})$

Using Bayes rule, we get:

$$P(\theta \mid \mathcal{D}) = P(\theta)P(\mathcal{D} \mid \theta)/P(\mathcal{D})$$

$$\propto P(\theta)P(\mathcal{D} \mid \theta)$$

Now, we have a prior $P(\theta)$, and we have a dataset $\mathscr{D} = \{y_i\}_{i=1}^n$, define posterior distribution: $P(\theta \mid \mathscr{D})$

Using Bayes rule, we get:

$$P(\theta \mid \mathcal{D}) = P(\theta)P(\mathcal{D} \mid \theta)/P(\mathcal{D})$$

$$\propto P(\theta)P(\mathcal{D} \mid \theta)$$

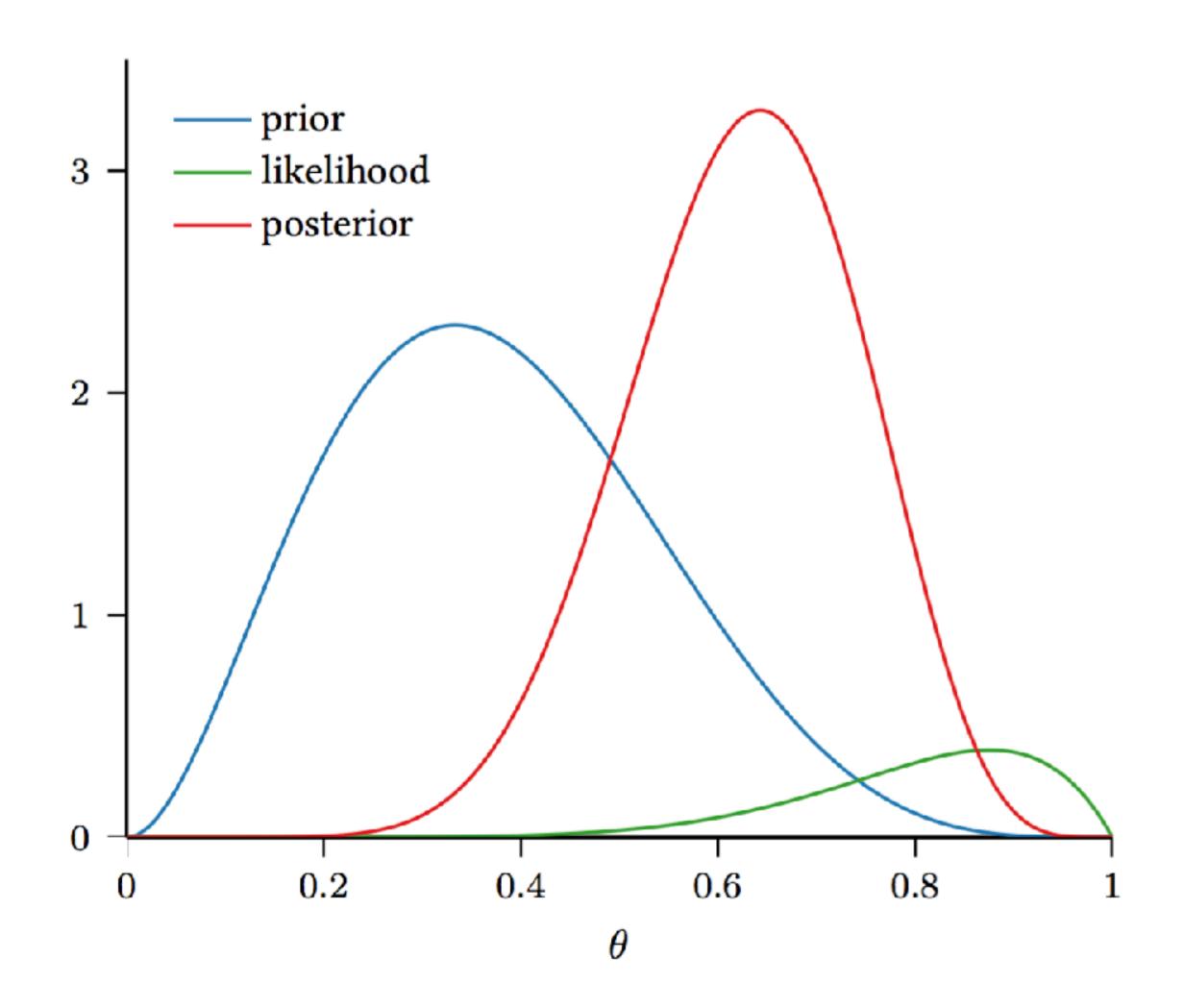
Now, we have a prior $P(\theta)$, and we have a dataset $\mathcal{D} = \{y_i\}_{i=1}^n$, define posterior distribution:

$$P(\theta \mid \mathscr{D})$$

Using Bayes rule, we get:

$$P(\theta \mid \mathcal{D}) = P(\theta)P(\mathcal{D} \mid \theta)/P(\mathcal{D})$$

$$\propto P(\theta)P(\mathcal{D} \mid \theta)$$



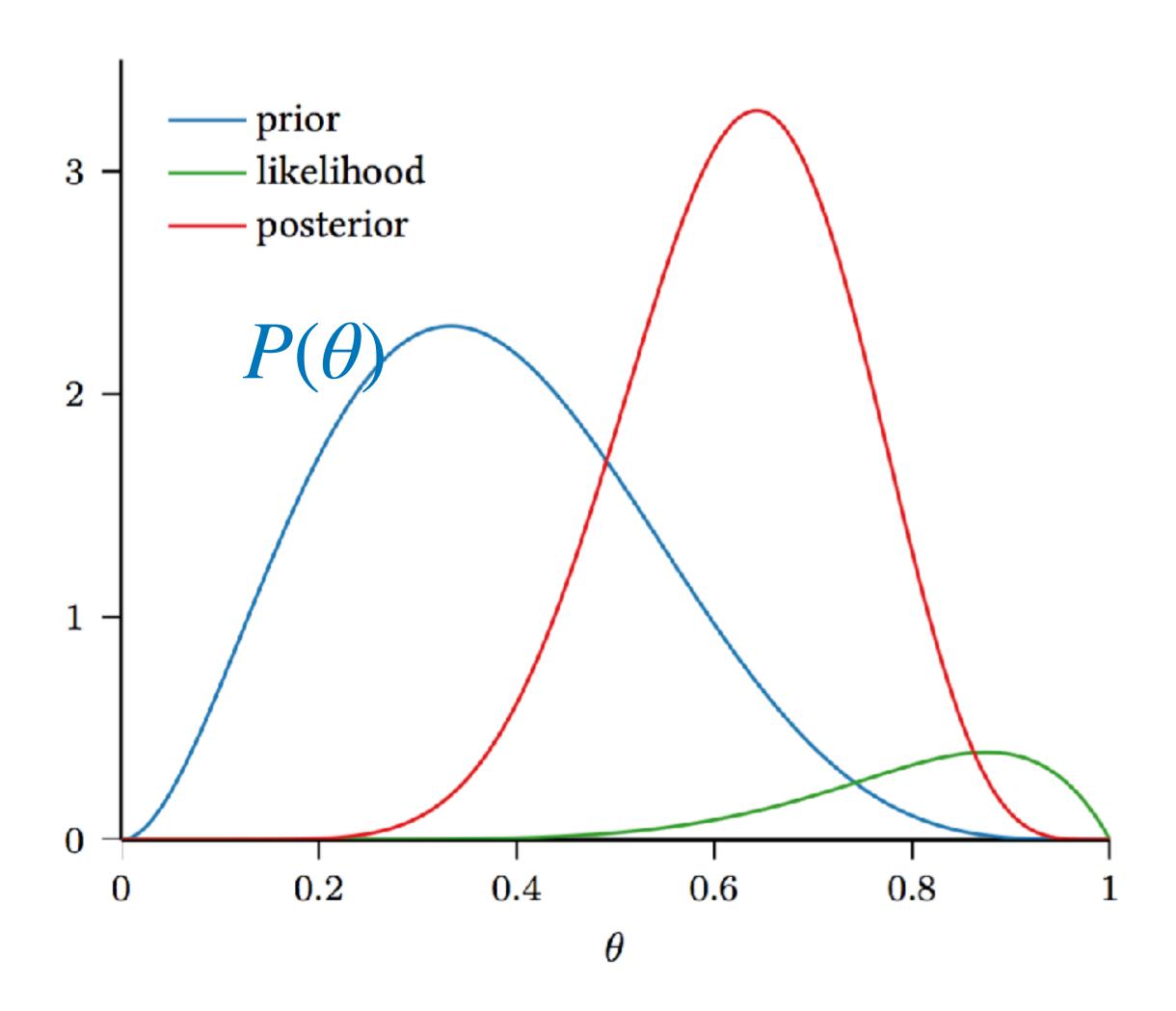
Now, we have a prior $P(\theta)$, and we have a dataset $\mathcal{D} = \{y_i\}_{i=1}^n$, define posterior distribution:

$$P(\theta | \mathcal{D})$$

Using Bayes rule, we get:

$$P(\theta \mid \mathcal{D}) = P(\theta)P(\mathcal{D} \mid \theta)/P(\mathcal{D})$$

$$\propto P(\theta)P(\mathcal{D} \mid \theta)$$



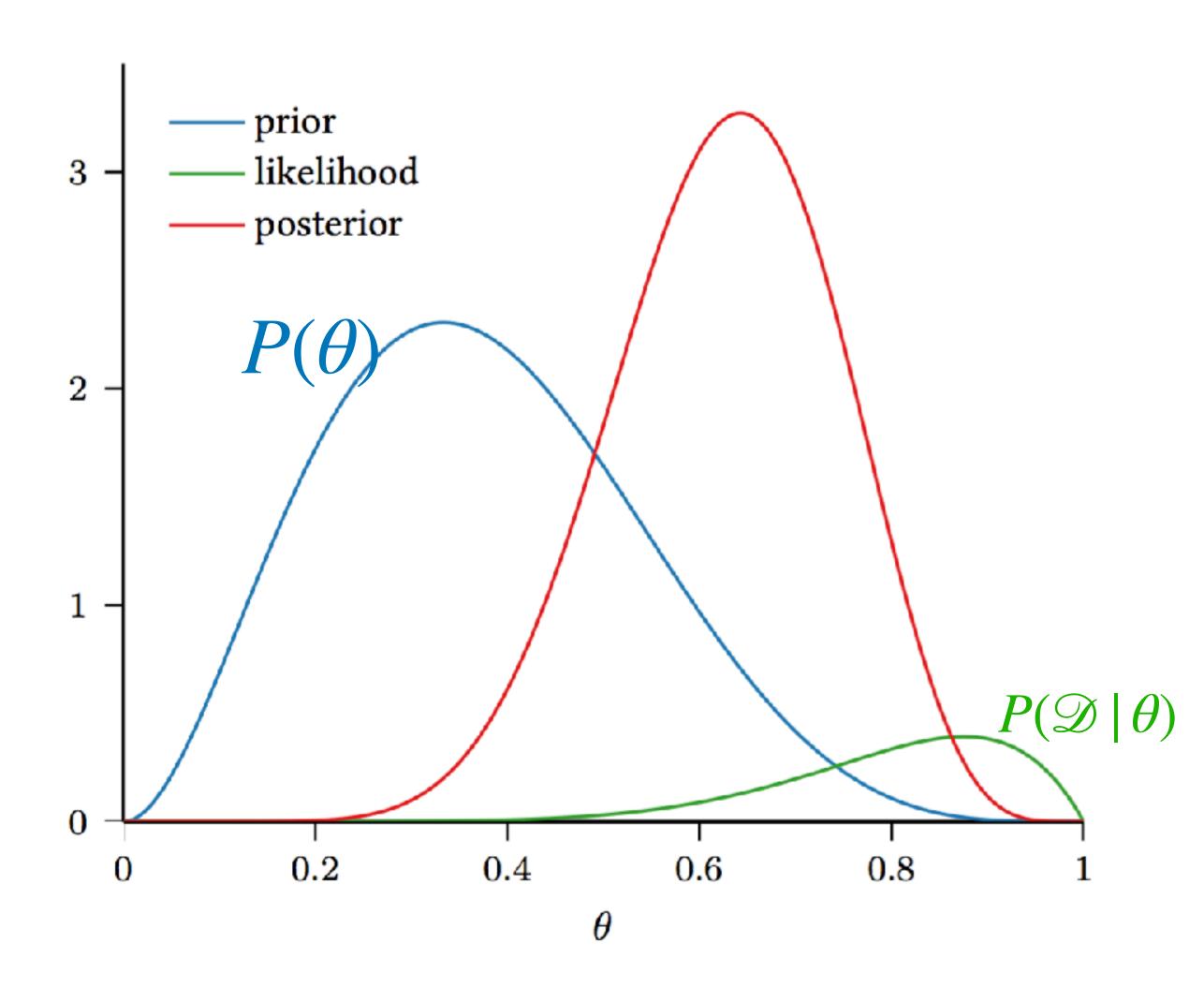
Now, we have a prior $P(\theta)$, and we have a dataset $\mathcal{D} = \{y_i\}_{i=1}^n$, define posterior distribution:

$$P(\theta | \mathcal{D})$$

Using Bayes rule, we get:

$$P(\theta | \mathcal{D}) = P(\theta)P(\mathcal{D} | \theta)/P(\mathcal{D})$$

$$\propto P(\theta)P(\mathcal{D} | \theta)$$

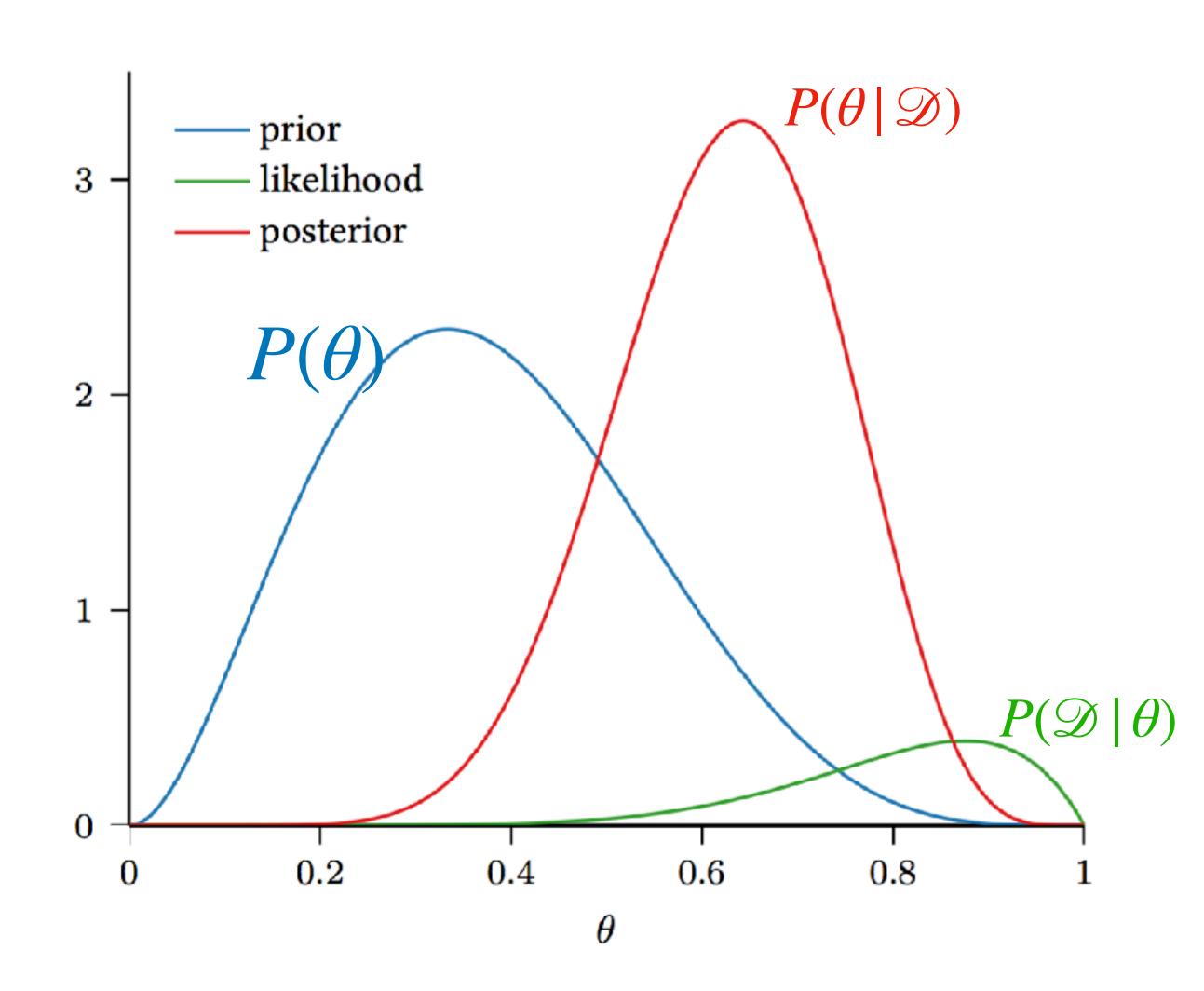


Now, we have a prior $P(\theta)$, and we have a dataset $\mathscr{D} = \{y_i\}_{i=1}^n$, define posterior distribution: $P(\theta \mid \mathscr{D})$

Using Bayes rule, we get:

$$P(\theta \mid \mathcal{D}) = P(\theta)P(\mathcal{D} \mid \theta)/P(\mathcal{D})$$

$$\propto P(\theta)P(\mathcal{D} \mid \theta)$$



$$P(\theta \mid \mathcal{D}) \propto P(\theta)P(\mathcal{D} \mid \theta)$$

$$P(\theta \mid \mathcal{D}) \propto P(\theta)P(\mathcal{D} \mid \theta)$$

$$\hat{\theta}_{map} = \arg \max_{\theta \in [0,1]} P(\theta | \mathcal{D}) = \arg \max_{\theta \in [0,1]} P(\theta)P(\mathcal{D} | \theta)$$

$$P(\theta \mid \mathcal{D}) \propto P(\theta)P(\mathcal{D} \mid \theta)$$

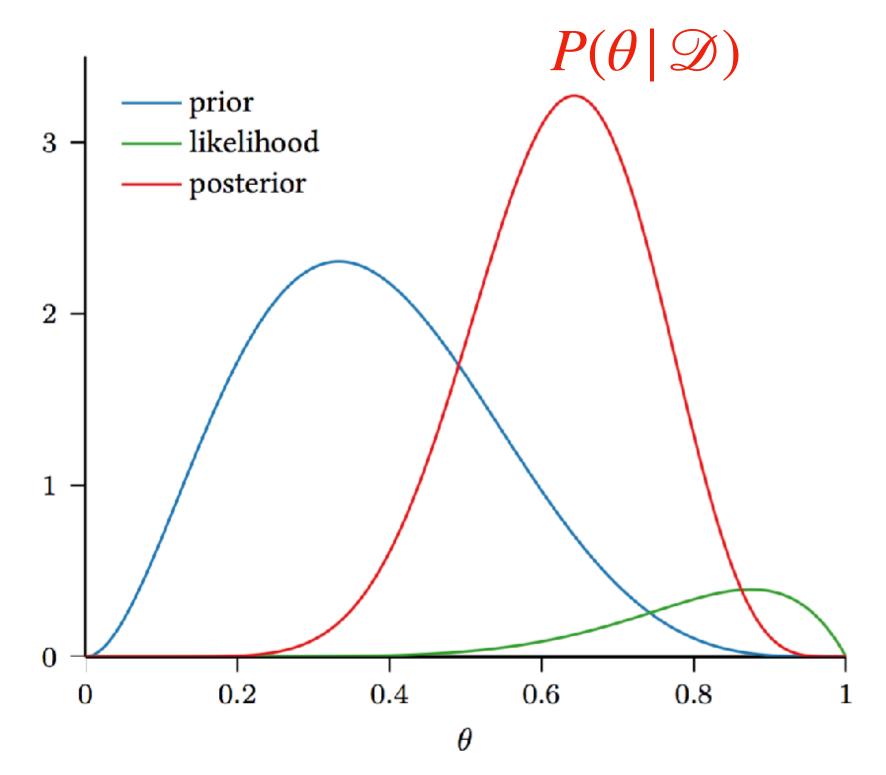
$$\hat{\theta}_{map} = \arg\max_{\theta \in [0,1]} P(\theta \mid \mathcal{D}) = \arg\max_{\theta \in [0,1]} P(\theta)P(\mathcal{D} \mid \theta)$$

$$= \underset{\theta \in [0,1]}{\operatorname{arg max}} \ln P(\theta) + \ln P(\mathcal{D} \mid \theta)$$

$$P(\theta \mid \mathcal{D}) \propto P(\theta)P(\mathcal{D} \mid \theta)$$

$$\hat{\theta}_{map} = \arg \max_{\theta \in [0,1]} P(\theta \mid \mathcal{D}) = \arg \max_{\theta \in [0,1]} P(\theta)P(\mathcal{D} \mid \theta)$$

$$= \underset{\theta \in [0,1]}{\operatorname{arg}} \max_{\mathbf{n}} \ln P(\theta) + \ln P(\mathcal{D} \mid \theta)$$



$$\hat{\theta}_{map} = \underset{\theta \in [0,1]}{\arg \max} \ln(P(\theta)P(\mathcal{D} \mid \theta))$$

$$\hat{\theta}_{map} = \arg\max_{\theta \in [0,1]} \ln(P(\theta)P(\mathcal{D} \mid \theta))$$

Step 1: specify Prior $P(\theta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$

$$\hat{\theta}_{map} = \underset{\theta \in [0,1]}{\arg \max} \ln(P(\theta)P(\mathcal{D} \mid \theta))$$

Step 1: specify Prior $P(\theta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$

Step 2: data likelihood $P(\mathcal{D} \mid \theta) = \theta^{n_1} (1 - \theta)^{n - n_1}$

$$\hat{\theta}_{map} = \arg\max_{\theta \in [0,1]} \ln(P(\theta)P(\mathcal{D} \mid \theta))$$

Step 1: specify Prior $P(\theta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$

Step 2: data likelihood $P(\mathcal{D} \mid \theta) = \theta^{n_1} (1 - \theta)^{n - n_1}$

Step 3: Compute posterior $P(\theta \mid \mathcal{D}) \propto \theta^{n_1 + \alpha - 1} (1 - \theta)^{n - n_1 + \beta - 1}$

$$\hat{\theta}_{map} = \underset{\theta \in [0,1]}{\arg \max} \ln(P(\theta)P(\mathcal{D} \mid \theta))$$

Step 1: specify Prior $P(\theta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$

Step 2: data likelihood $P(\mathcal{D} \mid \theta) = \theta^{n_1} (1 - \theta)^{n-n_1}$

Step 3: Compute posterior $P(\theta \mid \mathcal{D}) \propto \theta^{n_1 + \alpha - 1} (1 - \theta)^{n - n_1 + \beta - 1}$

Step 4: Compute MAP $\hat{\theta}_{map} = \frac{n_1 + \alpha - 1}{n + \alpha + \beta - 2}$

$$\hat{\theta}_{map} = \underset{\theta \in [0,1]}{\arg \max} \ln(P(\theta)P(\mathcal{D} \mid \theta))$$

Step 1: specify Prior $P(\theta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$

Step 2: data likelihood $P(\mathcal{D} \mid \theta) = \theta^{n_1} (1 - \theta)^{n - n_1}$

Step 3: Compute posterior $P(\theta \mid \mathcal{D}) \propto \theta^{n_1 + \alpha - 1} (1 - \theta)^{n - n_1 + \beta - 1}$

Step 4: Compute MAP
$$\hat{\theta}_{map} = \frac{n_1 + \alpha - 1}{n + \alpha + \beta - 2}$$

 $(\alpha-1,\!\beta-1)$ can be understood as some fictions flips: we had $\alpha-1$ hallucinated heads, and $\beta-1$ hallucinated tails

Some considerations on prior distributions

1. In coin flip example, when $n \to \infty$, $\hat{\theta}_{map} = \frac{n_1 + \alpha - 1}{n + \alpha + \beta - 2} \to \frac{n_1}{n} \text{(i.e.,} \hat{\theta}_{mle})$

Some considerations on prior distributions

1. In coin flip example, when $n \to \infty$, $\hat{\theta}_{map} = \frac{n_1 + \alpha - 1}{n + \alpha + \beta - 2} \to \frac{n_1}{n} \text{(i.e.,} \hat{\theta}_{mle})$

2. When n is small and our prior is accurate, MAP can work better than MLE

Some considerations on prior distributions

1. In coin flip example, when
$$n \to \infty$$
, $\hat{\theta}_{map} = \frac{n_1 + \alpha - 1}{n + \alpha + \beta - 2} \to \frac{n_1}{n} \text{(i.e.,} \hat{\theta}_{mle})$

2. When n is small and our prior is accurate, MAP can work better than MLE

3. In general, not so easy to set up a good prior....

Outline for today:

1. Maximum Likelihood estimation (MLE)

2. Maximum a posteriori probability (MAP)

3. Example: MLE and MAP for classification

Given labeled dataset $\{x_i, y_i\}_{i=1}^n, x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$, we want to estimate $P(y \mid x)$

Let us assume the ground truth has the form $P(y = 1 \mid x; \theta^*) = \frac{\exp((\theta^*)^T x)}{1 + \exp((\theta^*)^T x)}$

Given labeled dataset $\{x_i, y_i\}_{i=1}^n, x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$, we want to estimate $P(y \mid x)$

Let us assume the ground truth has the form $P(y = 1 \mid x; \theta^*) = \frac{\exp((\theta^*)^T x)}{1 + \exp((\theta^*)^T x)}$

Goal: estimate θ^* using \mathscr{D}

Start with a parametric form
$$P(y = 1 \mid x; \theta) = \frac{\exp(\theta^{T}x)}{1 + \exp(\theta^{T}x)}$$

Start with a parametric form
$$P(y = 1 \mid x; \theta) = \frac{\exp(\theta^{T}x)}{1 + \exp(\theta^{T}x)}$$

Using MLE:
$$\arg \max_{\theta} P(\mathcal{D} \mid \theta) = \arg \max_{\theta} \prod_{i=1}^{n} P(x_i, y_i \mid \theta)$$

Start with a parametric form
$$P(y = 1 \mid x; \theta) = \frac{\exp(\theta^{\top} x)}{1 + \exp(\theta^{\top} x)}$$

Using MLE:

$$\arg \max_{\theta} P(\mathcal{D} | \theta) = \arg \max_{\theta} \prod_{i=1}^{n} P(x_i, y_i | \theta)$$

$$= \arg \max_{\theta} \ln \prod_{i=1}^{n} P(y_i | x_i; \theta)$$

Start with a parametric form
$$P(y = 1 \mid x; \theta) = \frac{\exp(\theta^{T}x)}{1 + \exp(\theta^{T}x)}$$

Using MLE:
$$\arg \max_{\theta} P(\mathcal{D} \mid \theta) = \arg \max_{\theta} \prod_{i=1}^{n} P(x_i, y_i \mid \theta)$$

$$= \arg \max \ln \prod_{i=1}^{n} P(y_i | x_i; \theta)$$

$$= \arg \max_{\theta} \sum_{i} \ln P(y_i | x_i; \theta)$$

Start with a parametric form
$$P(y = 1 \mid x; \theta) = \frac{\exp(\theta^{T}x)}{1 + \exp(\theta^{T}x)}$$

Using MLE:
$$\arg \max_{\theta} P(\mathcal{D} \mid \theta) = \arg \max_{\theta} \prod_{i=1}^{n} P(x_i, y_i \mid \theta)$$

$$= \arg \max \ln \prod_{i=1}^{n} P(y_i | x_i; \theta)$$

$$= \arg \max_{\theta} \sum_{i} \ln P(y_i | x_i; \theta)$$

Using MAP:
$$\arg \max_{\theta} P(\theta | \mathcal{D}) = \arg \max_{\theta} P(\theta) \prod_{i=1}^{n} P(x_i, y_i | \theta)$$

Start with a parametric form
$$P(y = 1 \mid x; \theta) = \frac{\exp(\theta^{T}x)}{1 + \exp(\theta^{T}x)}$$

Using MLE:
$$\arg \max_{\theta} P(\mathcal{D} \mid \theta) = \arg \max_{\theta} \prod_{i=1}^{n} P(x_i, y_i \mid \theta)$$

$$= \arg \max \ln \prod_{i=1}^{n} P(y_i | x_i; \theta)$$

$$= \arg \max_{\theta} \sum_{i} \ln P(y_i | x_i; \theta)$$

Using MAP:

$$\arg \max_{\theta} P(\theta | \mathcal{D}) = \arg \max_{\theta} P(\theta) \prod_{i=1}^{n} P(x_i, y_i | \theta)$$

$$= \arg \max_{\theta} \ln(P(\theta) \prod_{i=1}^{n} P(y_i | x_i; \theta))$$

Start with a parametric form
$$P(y = 1 \mid x; \theta) = \frac{\exp(\theta^{\top} x)}{1 + \exp(\theta^{\top} x)}$$

Using MLE:
$$\arg \max_{\theta} P(\mathcal{D} \mid \theta) = \arg \max_{\theta} \prod_{i=1}^{n} P(x_i, y_i \mid \theta)$$

$$= \arg \max \ln \prod_{i=1}^{n} P(y_i | x_i; \theta)$$

$$= \arg \max_{\theta} \sum_{i} \ln P(y_i | x_i; \theta)$$

Using MAP:

$$\arg \max_{\theta} P(\theta | \mathcal{D}) = \arg \max_{\theta} P(\theta) \prod_{i=1}^{n} P(x_i, y_i | \theta)$$

$$= \arg \max_{\theta} \ln(P(\theta) \prod_{i=1}^{n} P(y_i | x_i; \theta))$$

$$= \arg \max_{\theta} \ln P(\theta) + \sum_{i} \ln P(y_i | x_i; \theta)$$

Given labeled dataset $\{x_i, y_i\}_{i=1}^n, x_i \in \mathbb{R}^d, y_i \in \{-1,1\}$, we want to estimate $P(y \mid x)$

Start with a parametric form
$$P(y = 1 \mid x; \theta) = \frac{\exp(\theta^{T}x)}{1 + \exp(\theta^{T}x)}$$

Using MLE:
$$\arg \max_{\theta} P(\mathcal{D} \mid \theta) = \arg \max_{\theta} \prod_{i=1}^{n} P(x_i, y_i \mid \theta)$$

$$= \arg \max \ln \prod_{i=1}^{n} P(y_i | x_i; \theta)$$

$$= \arg \max_{\theta} \sum_{i} \ln P(y_i | x_i; \theta)$$

Using MAP:

$$\arg \max_{\theta} P(\theta | \mathcal{D}) = \arg \max_{\theta} P(\theta) \prod_{i=1}^{n} P(x_i, y_i | \theta)$$

$$= \arg \max_{\theta} \ln(P(\theta) \prod_{i=1}^{n} P(y_i | x_i; \theta))$$

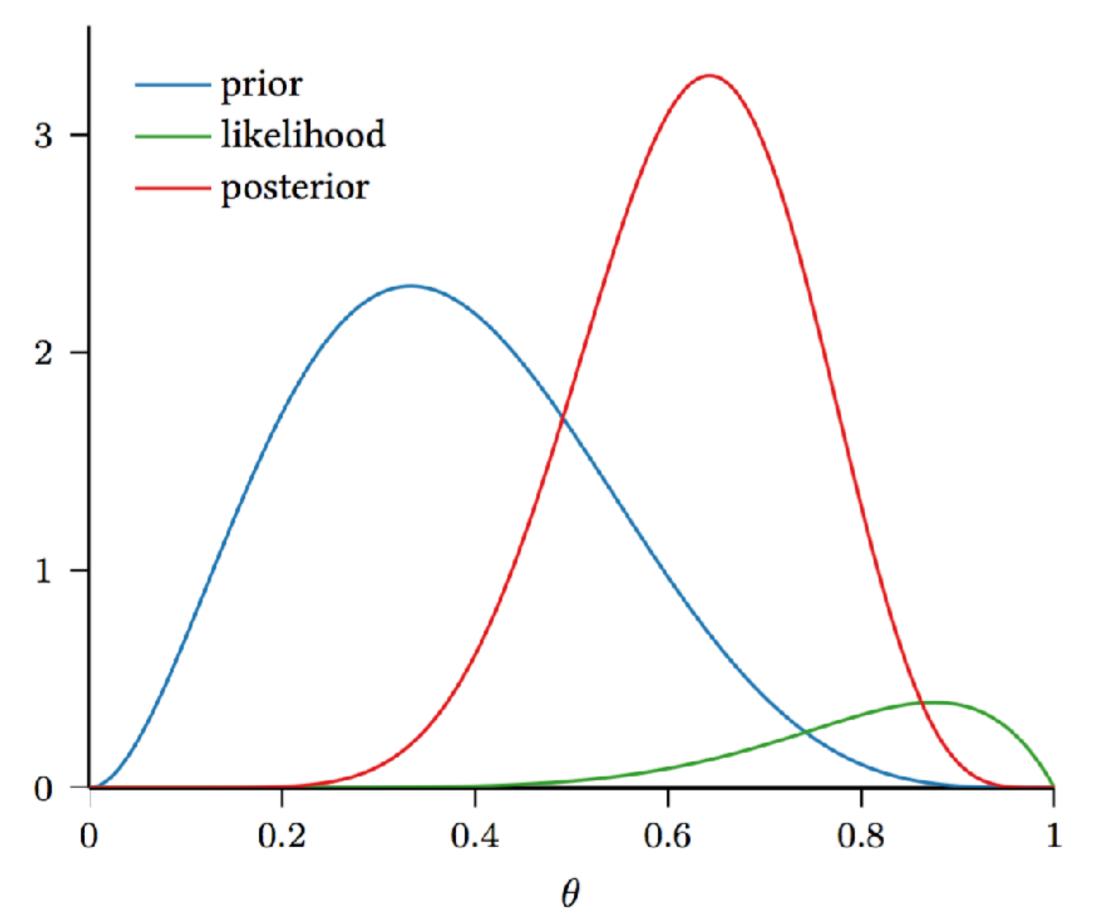
$$= \arg \max_{\theta} (\ln P(\theta)) + \sum_{i} \ln P(y_i | x_i; \theta)$$

Independent of the data

MLE:

$$\underset{\theta}{\operatorname{arg max}} \sum_{i} \ln P(y_i | x_i; \theta)$$

$$\arg \max_{\theta} \ln P(\theta) + \sum_{i} \ln P(y_i | x_i; \theta)$$



1 MLE (frequentist perspective):

The ground truth θ^{\star} is unknown but fixed; we search for the parameter that makes the data as likely as possible

1 MLE (frequentist perspective):

The ground truth θ^{\star} is unknown but fixed; we search for the parameter that makes the data as likely as possible

$$\arg \max_{\theta} P(\mathcal{D} \mid \theta)$$

1 MLE (frequentist perspective):

The ground truth θ^{\star} is unknown but fixed; we search for the parameter that makes the data as likely as possible

$$\underset{\theta}{\operatorname{arg max}} P(\mathcal{D} \mid \theta)$$

2 MAP (Bayesian perspective):

The ground truth θ^* treated as a random variable, i.e., $\theta^* \sim P(\theta)$; we search for the parameter that maximizes the posterior

1 MLE (frequentist perspective):

The ground truth θ^{\star} is unknown but fixed; we search for the parameter that makes the data as likely as possible

$$\underset{\theta}{\operatorname{arg\,max}} P(\mathcal{D} \mid \theta)$$

2 MAP (Bayesian perspective):

The ground truth θ^* treated as a random variable, i.e., $\theta^* \sim P(\theta)$; we search for the parameter that maximizes the posterior

$$\arg \max_{\theta} P(\theta | \mathcal{D}) = \arg \max_{\theta} P(\theta) P(\mathcal{D} | \theta)$$