Maximum Likelihood Estimation

&

Maximum A Posteriori Probability
Estimation




Announcements

1. P1 and HW1 are due today

2. HW2 will be out today

3. No office hour (wen) this Thursday



Recap on Perceptron

Binary classifier: sign(w ' x)

The Perceptron Alg:
Initialize wy = 0

Fort=0 — o




Recap on Perceptron

Binary classifier: sign(w ' x)

The Perceptron Alg:
Initialize wy = 0

Fort=0 — o

User comes with feature X,




Recap on Perceptron

Binary classifier: sign(w ' x)

The Perceptron Alg:

Initialize wy = 0

Fort =0 — oo

User comes with feature X,

We make a prediction $, = sign(w, x,)




Recap on Perceptron

Binary classifier: sign(w ' x)

The Perceptron Alg:
Initialize wy = 0

Fort=0 — o

User comes with feature X,
We make a prediction $, = sign(w, x,)

User reveals the real label y,




Recap on Perceptron

Binary classifier: sign(w ' x)

The Perceptron Alg:

Initialize wy = 0

Fort =0 — oo

User comes with feature X,

We make a prediction $, = sign(w, x,)
User reveals the real label y,

We update w,,., = w, + 1(y, # y,)y,x,




Recap on Perceptron

Binary classifier: sign(w ' x)

Theorem:
The Perceptron Alg: if there exists w™ with ||w*||, = 1, such that
Initialize wy = 0 y(x'w*) >y > 0,Vr,
Fort =0 — oo . then:
User comes with feature x, 2 13, #y) < Uy
t=0

We make a prediction y, = sign(thxt)
User reveals the real label y,

We update w,,., = w, + 1(y, # y,)y,x,




Recap on Perceptron

Binary classifier: sign(w ' x)

Theorem:

The Perceptron Alg: if there exists w™ with Hw*Hz = 1, such that
Initialize WO — O yt(xt_rw*) Z }/ > O’Vl‘,
Fort =0 — oo . then:

User comes with feature x, Z 13, #y) < Uy

We make a prediction y, = sign(thxt) =0

User reveals the real label y, Q: does the data need to be i.i.d?

We update w,,., = w, + 1(y, # y,)y,x,




Recap on Perceptron

Binary classifier: sign(w ' x)

Theorem:
The Perceptron Alg: if there exists w™ with ||w*||, = 1, such that
Initialize wy = 0 y(x'w*) >y > 0,Vr,
Fort =0 — oo . then:
User comes with feature x, 2 13, #y) < Uy
t=0

We make a prediction y, = sign(thxt)
User reveals the real label y,

We update w,,., = w, + 1(y, # y,)y,x,




Recap on Perceptron

Binary classifier: sign(w ' x)

Theorem:
The Perceptron Alg: if there exists w™ with ||w*||, = 1, such that
Initialize wy = 0 y(x'w*) >y > 0,Vr,
Fort =0 — oo . then:
A 2
User comes with feature x, Z 1y, # yp < 11y
t=0

We make a prediction $, = sign(w, x,)

User reveals the real label y,
No I.I.d assumption, and indeed data

X1, Vq..., X, Y7} can be selected by an
Adversary (as long as it is separable)!!!
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Recap on Perceptron

Binary classifier: sign(w ' x)

Theorem:
The Perceptron Alg: if there exists w™ with Hw*Hz = 1, such that
Initialize WO — O yt(xt_rw*) Z }/ > O,Vl‘,
Fort =0 — oo . then:
- 19, # y,) < 1/y2

User comes with feature x, Ye 7 V) = Y

We make a prediction y, = sign(thxt) =0

User reveals the real label y, Q: Can this be applied to infinite

We update w,., = w, + 1(5, # y)yx, dimension space (d — 00))

Yes! As long as margin exists!
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Recap on Perceptron

When we make a mistake, i.e., y(w,'x) <0 (e.g.,y,=— 1, w'x > 0)

We should track how the cos(6,) is changing:

WtTW *

cos(0,) = —llw ”
¢112

Q: What does w* look like?



Outline for today:

1. Maximum Likelihood estimation (MLE)

2. Maximum a posteriori probability (MAP)

3. Example: MLE and MAP for classification
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We toss a coin n times (independently), we observe the following outcomes:

QZ — {yl- ?=1’ yl- & {— 1,1 } (V; = I means head in i’s trial, -1 means tail)

Q: assume y; ~ Bernoulli(6™), how to estimate 6™ given 2?

Z?zl l(yl — 1)

n

Va\
0 ~
N/

Let’s make this rigorous!
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Maximum Likelihood Estimation

We toss a coin n times (independently), we observe the following outcomes:

QZ — {yl- ?=1’ yl- & {— 1,1 } (V; = I means head in i’s trial, -1 means tail)

MLE Principle: Find @ that maximizes the likelihood of the data:
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_ n d
Assume data is from A (1™, I), want to estimate u™ from the data &

Let’s apply the MLE Principle:

n

Step 1: P(D|u) =
g \/ (2rm)4

Step 2: apply log and maximize the log-likelihood:

1 T
exp (_E(X" — 1) (x; — ﬂ))

n

argmax ) — (x;— 1) (x; — p)
iz



Ex 2: Estimate the mean
T {.X }n 19 E Rd

Assume data is from A (4™, I), want to estimate u™ from the data 9

Let’s apply the MLE Principle:

n

Step 1: P(sz)zn

=
exp
=1V (Q2m)!

Step 2: apply log and maximize the log-likelihood:

1
_E(Xi — ﬂ)T(xi — /4))

n n

arg max 2 — (=) G —p) =4, = Z x./n
Pzl =1
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Assume data is from A/ (u*, ), want to estimate

o—O0 000000 0 ¢ o—

u™, o from the data &

Let’s apply the MLE Principle:

n

1 1
Step 1: P(D | u,0) = H > eXp (—E(Xi — /4)2/62)
T

i=1 O

Step 2: apply log and maximize the log-likelihood:
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Summary of MLE

1. MLE is consistent: if our model assumption is correct (e.g., coin flip follows some Bernoulli
distribution), then 6 ,, — 0*, asn —

2. When our model assumption is wrong (e.g., we use Gaussian to model
data which is from some more complicated distribution), then MLE loses
such guarantee
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Ex: Estimating the probability of a coin flip

We toss a coin n times (independently), we observe the following outcomes:

D = {yl-};f‘zl, V; € {— 1,1 } (y; = 1 means head in i’s trial, -1 means tail)

PDF of Beta (Bell-shape)

4.0

A Bayesian Statistician will treat the optimal
parameter @ being a random variable:

6* ~ P(6)

Example: P(6) being a Beta distribution:

PO =601 -0y-1/z,

Beta(2,8) Beta(8,2)

w
o
1

N
(&)
1

Probability Density

-
o
1

o
w

where Z = J 0°~1(1 — 6y~d,

0€(0,1] —y 0.2 0.4 0.6 0.8

o
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Maximum A Posteriori Probability estimation (MAP)
PO D) x P(O)P(D | 0)

A\

0, . = arg max P(0|Y) = arg max P(O)P(Z |0)
0<[0,1] 0<(0,1]

PO D)
—— prior

= arg max InP(O) + InP(D|0) 27 o
0<(0,1]
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MAP for coin flip

A\

O napy = arg max In(P(0)P(Z|0))
0e[0,1]
Step 1: specify Prior P(0) 6’“‘1(1 — 9)5—1
Step 2: data likelihood P(2 |0) = 0"(1 — 6)"™™

Step 3: Compute posterior P(0| D) «x @1~ 1(1 — gyr—mt/-1

Step 4: C te MAP @ mta— |
ep 4: Compute map = —————
n+a+p—2

(a — 1,/ — 1) can be understood as some fictions flips: we had o — 1
hallucinated heads, and f/ — 1 hallucinated tails
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Some considerations on prior distributions

. . A Ifll + CZ - 1 nl . A
1. In coin flip example, when n — ©0, Hmap — m — 7('-9-,‘9mle)

2. When n is small and our prior is accurate, MAP can work better than MLE

3. In general, not so easy to set up a good prior....
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exp((6™) ' x)

Let us assume the ground truth has the form P(y = 1 | x;0*) = —————
[ + exp((0%)Tx)

Goal: estimate 8* using 9
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Given labeled dataset {x;,y,}" ,x; € R% y, € {—1,1}, we want to estimate P(y | x)
exp(0 ' x)

Start with a parametric form P(y = 1 |x;0) = —————
1 + exp(0'x)

Using MLE: Using MAP:

arg max P(& | 0) = arg max H P(x,y:|0) arg max P(0| ) = arg max P(60) H P(x,y:|0)
0 % 0

0

= arg max lnH P(y;|x;; 0) = aIg mHaX In(P (Q)HP Vi 1% 0))

i=1 =1

—argmax » InP(y:|x.;6 — arg max In P(vy: | x:; 6
cmgs 3107t 50 s PO T 01500

Independent of the data




Binary Classification

ML E- MAP:

arg max Z In P(y; | x;; 0) arg max In P(0) + 2 In P(y; | x;; 0)
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prior
likelihood

posterior
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1 MLE (frequentist perspective):

The ground truth 8™ is unknown but fixed; we search for the parameter that makes
the data as likely as possible

arg max P(& | 0)
0

2 MAP (Bayesian perspective):

The ground truth @* treated as a random variable, i.e., 0% ~ P(6); we search for
the parameter that maximizes the posterior

arg max P(0| <) = argmax P(0)P(2 | 6)
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