K-nearest Neighbor



Announcement:

1. HW1 will be out today / early tomorrow and Due Sep 13



Recap

u:— *
‘v—/?xl‘.g‘\};’\‘ Y = Xaz ‘) € K Bé?",f’j

4.4
Y% v Qn,f.g);j.[jxhbo ¥
h(x) =Y ;fg, ';jfrh(")

H"?hj /}\"W\‘;i\ %R(h;)h‘,%{)
hé v

- T
Lx. W(X)= 53\'\( W 7‘) Gastolr|iethn Bies £ Dl (/Y:) 7‘“@)1
Y= s Dulbe 1Y, o e



Outline for Today

1. The K-NN Algorithm
2. Why/When does K-NN work

3. Curse of dimensionality (i.e., when it can fail)
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The K-NN Algorithm

Input: classification training dataset {x;, y;}'_,, and parameter K € NT,

and a distance metric d(x, x) (e.g., ||x — x'||, euclidean distance)

K-NN Algorithm:

Store all training data
For any test point x :

Find its top K nearest neighbors (under metric d)
Return the most common label among these K neighbors

(If for regression, return the average value of the K neighbors)




The K-NN Algorithm

L=
Example@N for binary classification using Euclidean distance

o Oy °
[ -
9 -
-
‘ . ’+1
‘ix ‘ ‘.1
X



The choice of metric

1. We believe our metric d captures similarities between examples:

Examples that are close to each other share similar labels



The choice of metric

1. We believe our metric d captures similarities between examples:

other share similar labels

4
%, 4 )= > CU‘XEA — ¢
D, e § (AT 3J) 0 |

Another example: Manhattan distance ()

d

dx,x) = ) |xLj1 - x| ‘
j=1 - ]\77‘%/ -




The choice of K

1. What if we set K very large?



The choice of K

1. What if we set K very large?

Top K-neighbors will include examples that are very far away...



The choice of K

1. What if we set K very large?

Top K-neighbors will include examples that are very far away...

2. What if we set K very small (K=1)?



The choice of K

1. What if we set K very large?

Top K-neighbors will include examples that are very far away...

2. What if we set K very small (K=1)?

label has noise (easily overfit to the noise)



The choice of K

1. What if we set K very large?

Top K-neighbors will include examples that are very far away...

2. What if we set K very small (K=1)?
label has noise (easily overfit to the noise)

(What about the training error when K = 17?)
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2. Why/When does K-NN work

3. Curse of dimensionality (i.e., why it can fail in high-dimension data)
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Bayes Optimal Predictor

Assume our data is collected in an i.i.d fashion, i.e., (x,y) ~ P (sayy € {—1,1})

Bayes optimal predictor: h()pt(x) =arg max P(y|x)
ye{-1,1}

Example:

P(1|x)=0.8 Q: What'’s the probability of
P(-1]|x) =02 h,,, making a mistake on x?

Vp 1= (%) =1 €ppr = 1 = P(y,|x) = 0.2
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Guarantee of KNNwhen K = 1 andn — o

Assume x € [—1,1]% P(x) has support everywhere P(x) > 0,Vx € [—1,1]?

What does it look whenn — oo ?
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Given test x, as n — o0, its nearest neighbor Xy, is super close, i.e., d(x, xy) — 0!
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Guarantee of KNNwhen K = 1 andn — o0

Theorem: as n — o0, 1-NN prediction error is no more than
twice of the error of the Bayes optimal classifier

Proof:

1. Fix a test example x, denote its NN as x,,,. When n — e have xyy — x

N

\

2. WLOG assume for x, the Bayes optimal predicts y, = h,,(x) = 1

3. Calculate the 1-NN'’s prediction error:
Case 1 when yyy = 1 (it happens w/ prob P(1 | xyy) = P(1|x)):
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Theorem: as n — o0, 1-NN prediction error is no more than
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Guarantee of KNNwhen K = 1 andn — o0

Theorem: as n — o0, 1-NN prediction error is no more than
twice of the error of the Bayes optimal classifier

Case 1 when yyy = 1 (it happens w/ prob P(1 | xyy) = P(1]x)):
The probability of making a mistake: € = 1 — P(y, | x)

Case 2 when yyy = — 1 (it happens w/ prob P(—1 | xyy) = P(—1|x)):
The probability of making a mistake: € = P(y # — 1 |x) = P(y = 1|x) = P(y, | x)

Our prediction error at x:

P(1[x)(1 = P(yp|x)) + P(=1[0)P(y, |x) < (1= POy |0)) + (1 = POy, | 0) = 2¢,,



What happens if K is large?

(e.g., K= 1e6, n »> )
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What happens if K is large?
(e.g., K= 1e6, n —> )

A: Given any x, the K-NN should return the y, — the solution of the Bayes optimal
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Finite sample error rate of 1-NN in high-dimension setting

(Informal result and no proof)

Fixn € N*t, assume x € [O,l]d, assume P(y | x) is Lipschitz
continuous with respect to x, i.e., | P(y|x) — P(y|x")| < d(x, x")

Then, we have:

1 1/d
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n

The bound is meaningless when d — oo,

Curse of dimensionality! while n is some finite number!
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Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube [0,1]¢

Now assume we sample n points uniform randomly, and
we observe K points fall inside the small cube

So empirically, the probability of sampling a
point inside the small cube is roughly K/n

- . K
SR : Thus, we have [¢ ~ —
1 T n

__________________
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Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube [0,1]¢

K

We have ld ~N — Q: how large we should set [, s.t., we will

have K examples (out of n) fall inside the
small cube?

Tl SN [~ (K/n)" > 1,asd - oo

| | Bad news: when d — o0, the K nearest

! ! neighbors will be all over the place!
—————————————— (Cannot trust them, as they are not nearby
g points anymore!)
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The distance between two sampled points increases as d grows
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Luckily, real world data often has low-dimensional structure!

Example: face images

Arnold Schwarzenegger Gwyneth Paltrow Angelina Jolie
2 — -~
- ~
Original image: R’
riginal image:
ichael Jordan_
-

Next week: we will see
that these faces
approximately live in 100-
d space!
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Data lives in 2-d manifold
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Summary for Today

1. K-NN: the simplest ML algorithm (very good baseline, should always try!)

2. Works well when data is low-dimensional (e.g., can compare
against the Bayes optimal)

3. Suffer when data is high-dimensional, due to the fact that in high-
dimension space, data tends to spread far away from each other



