
K-nearest Neighbor

 



Announcement:

1. HW1 will be out today / early tomorrow and Due Sep 13



Recap



Outline for Today

1. The K-NN Algorithm

3. Curse of dimensionality (i.e., when it can fail)

2. Why/When does K-NN work
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The K-NN Algorithm
Input: classification training dataset , and parameter , 


and a distance metric   (e.g.,  euclidean distance)
{xi, yi}n

i=1 K ∈ ℕ+

d(x, x′ ) ∥x − x′ ∥2

K-NN Algorithm: 

For any test point  : x

Find its top K nearest neighbors (under metric )  d
Return the most common label among these K neighbors
(If for regression, return the average value of the K neighbors)

Store all training data 



The K-NN Algorithm

Example: 3-NN for binary classification using Euclidean distance
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The choice of metric

1. We believe our metric  captures similarities between examples: d

Examples that are close to each other share similar labels

Another example: Manhattan distance ( )ℓ1

d(x, x′ ) =
d

∑
j=1

|x[ j] − x′ [ j] |
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The choice of K

1. What if we set  very large? K

Top K-neighbors will include examples that are very far away…

2. What if we set  very small (K=1)? K

label has noise (easily overfit to the noise)

(What about the training error when K = 1?)



Outline for Today

1. The K-NN Algorithm

3. Curse of dimensionality (i.e., why it can fail in high-dimension data)

2. Why/When does K-NN work
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Bayes Optimal Predictor

Assume our data is collected in an i.i.d fashion, i.e.,  (say )(x, y) ∼ P y ∈ {−1,1}

hopt(x) = arg max
y∈{−1,1}

P(y |x)Bayes optimal predictor:

Example:

{P(1 |x) = 0.8
P(−1 |x) = 0.2

yb := hopt(x) = 1

Q: What’s the probability of 
 making a mistake on ? hopt x

ϵopt = 1 − P(yb |x) = 0.2
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Guarantee of KNN when  and K = 1 n → ∞

Assume ,  has support everywhere  x ∈ [−1,1]2 P(x) P(x) > 0,∀x ∈ [−1,1]2

What does it look when n → ∞?

Given test , as , its nearest neighbor  is super close, i.e., !x n → ∞ xNN d(x, xNN) → 0
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Proof:
1. Fix a test example  denote its NN as . When , we have x, xNN n → ∞ xNN → x
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3. Calculate the 1-NN’s prediction error:
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Guarantee of KNN when  and K = 1 n → ∞

Theorem: as , 1-NN prediction error is no more than 
twice of the error of the Bayes optimal classifier

n → ∞

Case 1 when  (it happens w/ prob ):yNN = 1 P(1 |xNN) = P(1 |x)
The probability of making a mistake: ϵ = 1 − P(yb |x)

Case 2 when  (it happens w/ prob ):yNN = − 1 P(−1 |xNN) = P(−1 |x)
The probability of making a mistake: ϵ = P(y ≠ − 1 |x) = P(y = 1 |x)

Our prediction error at : x

= P(yb |x)

P(1 |x)(1 − P(yb |x)) + P(−1 |x)P(yb |x) ≤ (1 − P(yb |x)) + (1 − P(yb |x)) = 2ϵopt
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What happens if  is large?  
(e.g.,  )

K
K = 1e6, n → ∞

A: Given any , the K-NN should return the  — the solution of the Bayes optimalx yb
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Finite sample error rate of 1-NN in high-dimension setting

(Informal result and no proof)

Fix , assume , assume  is Lipschitz 
continuous with respect to , i.e., 

n ∈ ℕ+ x ∈ [0,1]d P(y |x)
x |P(y |x) − P(y |x′ ) | ≤ d(x, x′ )

Then, we have:

 ,x,y∼P [1(y ≠ 1NN(x))] ≤ 2,x,y∼P [1(y ≠ hopt(x))] + O (( 1
n )

1/d

)
The bound is meaningless when , 

while  is some finite number! 
d → ∞

nCurse of dimensionality! 
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Key problem: in high dimensional space, points that are draw from a 
distribution tends to be far away from each other! 

Example: let us consider uniform distribution over a cube [0,1]d

Q: sample  uniformly, what is the probability that  
is inside the small cube? 

x x

A:  Volume(small cube)/volume([0,1]d) = ld
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n
K

So empirically, the probability of sampling a 
point inside the small cube is roughly K/n
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Thus, we have
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Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube [0,1]d

ld ≈ K
n

We have Q: how large we should set , s.t., we will 
have K examples (out of n) fall inside the 

small cube? 

l

l ≈ (K/n)1/d → 1, as d → ∞

Bad news: when , the K nearest 
neighbors will be all over the place! 


(Cannot trust them, as they are not nearby 
points anymore!) 

d → ∞
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The distance between two sampled points increases as  growsd

In , we uniformly 
sample two points , 

calculate 
 

[0,1]d

x, x′ 

d(x, x′ ) = ∥x − x′ ∥2

Let’s plot the 
distribution of 
such distance:

Distance increases as d → ∞
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Luckily, real world data often has low-dimensional structure!

Data lives in 2-d manifold

Example: face images

Original image:  ℝ642

Next week: we will see 
that these faces 

approximately live in 100-
d space!
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Summary for Today

1. K-NN: the simplest ML algorithm (very good baseline, should always try!)

3. Suffer when data is high-dimensional, due to the fact that in high-
dimension space, data tends to spread far away from each other

2. Works well when data is low-dimensional (e.g., can compare 
against the Bayes optimal)


