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Outline

* Transform a linear learner into a non-linear
learner

* Kernels can make high-dimensional spaces
tractable

e Kernels can make non-vectorial data tractable



Non-Linear Problems

Problem:

e some tasks have non-linear structure

* no hyperplane is sufficiently accurate

How can SVMs learn non-linear classification rules?



Extending the Hypothesis Space

ldea: add more features

Input Space

O

=>» Learn linear rule in feature space.
Example:

=>» The separating hyperplane in feature space is degree
two polynomial in input space.



Example

* InputSpace: X = (xq,Xx;) (2 attributes)
* Feature Space: ®(¥) = (x%, x5, x1,%p,%X1%5,1) (6 attributes)




Dual SVM Optimization Problem

Primal Optimization Problem
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Theorem: If w* is the solution of the Primal and a* is the
solution of the Dual, then
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Kernels

e Problem:

— Very many Parameters! Polynomials of degree p over N
attributes in input space lead to O(Np) attributes in feature
space!

* Solution:
— The dual OP depends only on inner products
> Kernel Functions K (&, b) = ®(d) - @(b)
 Example:
— For CID(x) = (xl,xz,\/_xl,\/_xz,\/_xlxz, 1) calculating

K(a b) [a b+ 1] computes inner product in feature
space.

=>» no need to represent feature space explicitly.



SVM with Kernel
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* New hypotheses spaces through new Kernels:
— Linear: K(c_i, E) —Gd-b
5 S d
— Polynomial: K(&, b) = [& b+ 1]
N —42

— Radial Basis Function: K(&, b) = exp (—y[c? — b] )
— Sigmoid: K(&, I;) = tanh(y[& : 1_5] + c)



Examples of Kernels

Polynomial Radial Basis Function

K(a@b)=1[da b+1] K(d,5) = exp (—y[@ - 5] )




What is a Valid Kernel?

Definition: Let X be a nonempty set. A function
is a valid kernel in X if for all n and all x,,..., x,
e X it produces a Gram matrix

G; = K(x, xj)
that is symmetric
G=G’
and positive semi-definite

Va:al'Ga > 0



How to Construct Valid Kernels

Theorem: Let K, and K, be valid Kernels over X x X, a 20,
0 <A <1, fareal-valued function on X, ¢:X— R™ with a
kernel K; over '™ x 1™, and K a symmetric positive
semi-definite matrix. Then the following functions are

valid Kernels
K(x,z) = A K{(x,2) + (1-A) K,(x,2)
K(x,z) = a0 K,(x,2)
K(x,z) = K;(x,z) K,(x,2)
K(x,z) = f(x) f(z)
K(x,2) = Ks((x),9(z))

K(x,z) =x"K z



Kernels for Discrete
and Structured Data

Kernels for Sequences: Two sequences are similar, if the
have many common and consecutive subsequences.

Example [Lodhi et al., 2000]: For 0 £ A < 1 consider the
following features space
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=> K(car,cat) = A%, efficient computation via dynamic programming




Kernels for Non-Vectorial Data

* Applications with Non-Vectorial Input Data
—> classify non-vectorial objects

— Protein classification (x is string of amino acids)
— Drug activity prediction (x is molecule structure)
— Information extraction (x is sentence of words)
— Etc.
* Applications with Non-Vectorial Output Data
— predict non-vectorial objects
— Natural Language Parsing (y is parse tree)
— Noun-Phrase Co-reference Resolution (y is clustering)
— Search engines (y is ranking)

=>» Kernels can compute inner products efficiently!



Properties of SVMs with Kernels

* Expressiveness

— SVMs with Kernel can represent any boolean function (for
appropriate choice of kernel)

— SVMs with Kernel can represent any sufficiently “smooth”
function to arbitrary accuracy (for appropriate choice of
kernel)

e Computational
— Objective function has no local optima (only one global)
— Independent of dimensionality of feature space
* Design decisions
— Kernel type and parameters
— Value of C



SVMs for other Problems

Multi-class Classification
— [Schoelkopf/Smola Book, Section 7.6]

Regression
— [Schoelkopf/Smola Book, Section 1.6]

QOutlier Detection

— D.M.J. Tax and R.P.W. Duin, "Support vector domain description",
Pattern Recognition Letters, vol. 20, pp. 1191-1199, 1999b. 26

Structured Output Prediction

— B. Taskar, C. Guestrin, D. Koller - Advances in Neural Information
Processing Systems, 2003.

— |. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, Support Vector
Machine Learning for Interdependent and Structured Output Spaces,
Proceedings of the International Conference on Machine Learning
(ICML), 2004.



