# Learning Sets of Rules

- ullet Sequential covering algorithms
- FOIL
- Inductive Logic Programming

### Slide CS478-1

# Propositional vs. First-order Rules

Propositional (logic) rules do not contain any variables. First-order (logic) rules can contain variables.

| Name1:    | Chelsea | Name2:    | Bill                   |               |
|-----------|---------|-----------|------------------------|---------------|
| Mother 1: | Hillary | Mother 2: | Virginia               |               |
| Father 1: | Bill    | Father 2: | $\operatorname{Bruno}$ | $\Rightarrow$ |
| Male 1::  | False   | Male 2:   | True                   |               |
| Female1:  | True    | Female 2: | False                  |               |

 $Daughter_{1,2} = TRUE$ 

A propositional representation could only learn the rule: IF  $(Father1=Bill) \land (Name2=Bill) \land (Female1=True)$  THEN  $Daughter_{1,2}=TRUE$ 

A first-order representation could learn the rule: IF  $Father(x,y) \wedge Female(y)$  THEN Daughter(y,x)

#### Slide CS478-3

#### Sequential Covering Algorithms

The basic algorithm:

- 1. Learn one rule
- 2. Remove the data it covers
- 3. Repeat

More specific version:

- 1. Learn one rule with high accuracy, any coverage
- 2. Remove positive examples covered by this rule
- 3. Repeat

#### Slide CS478-4

### Generic Covering Algorithm

 $COVER(Target\_attr, Attrs, Examples, Threshold)$ 

- $Learned\_rules \leftarrow \{\}$
- $Rule \leftarrow \text{LEARN-ONE-RULE}(Target\_attr, Attrs, Examples)$
- WHILE PERFORMANCE(Rule, Examples) > Threshold, DO
  - $-\ Learned\_rules \leftarrow Learned\_rules + Rule$
  - $Examples \leftarrow Examples$  {Examples correctly classified by Rule}
  - $-Rule \leftarrow \text{LEARN-ONE-RULE}(Target\_attr, Attrs, Examples)$
- $Learned\_rules \leftarrow \text{SORT } Learned\_rules \text{ ACCORD TO}$ PERFORMANCE OVER Examples
- RETURN Learned\_rules

#### Slide CS478-5

| Day | Outlook  | Temperature           | Humidity              | Wind   | Ski? |
|-----|----------|-----------------------|-----------------------|--------|------|
| D1  | Sunny    | Hot                   | High                  | Weak   | No   |
| D2  | Sunny    | Hot                   | High                  | Strong | No   |
| D3  | Overcast | Hot                   | High                  | Weak   | Yes  |
| D4  | Rain     | $\operatorname{Mild}$ | High                  | Weak   | Yes  |
| D5  | Rain     | Cool                  | Normal                | Weak   | Yes  |
| D6  | Rain     | Cool                  | Normal                | Strong | No   |
| D7  | Overcast | Cool                  | Normal                | Strong | Yes  |
| D8  | Sunny    | $\operatorname{Mild}$ | $\operatorname{High}$ | Weak   | No   |
| D9  | Sunny    | Cool                  | Normal                | Weak   | Yes  |
| D10 | Rain     | $\operatorname{Mild}$ | Normal                | Weak   | Yes  |
| D11 | Sunny    | $\operatorname{Mild}$ | Normal                | Strong | Yes  |
| D12 | Overcast | $\operatorname{Mild}$ | $\operatorname{High}$ | Strong | Yes  |
| D13 | Overcast | Hot                   | Normal                | Weak   | Yes  |
| D14 | Rain     | $\operatorname{Mild}$ | High                  | Strong | No   |



Slide CS478-7

#### LEARN-ONE-RULE(Target\_attr, Attrs, Examples)

- $Pos \leftarrow positive \ Examples; \ Neg \leftarrow negative \ Examples$
- If Pos

 $NewRule \leftarrow \text{most general rule possible; } NewRuleNeg \leftarrow Neg$  While NewRuleNeg

- 1.  $Candidate\_literals(CLs) \leftarrow generate candidates$
- 3. add Best\_literal to NewRule preconditions
- 4.  $NewRuleNeg \leftarrow$  subset of NewRuleNeg that satisfies NewRule preconditions
- $\bullet$  Return NewRule

#### **Common Performance Metrics**

**Entropy:** S = examples that match the rule's preconditions.

$$-Entropy(S) \equiv \sum_{i=1}^{c} x_i \log_2 x_i$$

#### Relative Frequency:

$$\frac{n_c}{n}$$

n = # examples the rule matches

 $n_c = \#$  examples the rule matches and classifies correctly

#### m estimate:

$$\frac{n_c + mp}{n + m}$$

p = prior probability of the class assigned by the rule m = # examples needed to override the prior

Slide CS478-9

# Learn-One-Rule Search Space

- general-to-specific search
- searches for a rule with high accuracy, but possibly low coverage
- measure to select the "best" descendant: one whose covered examples have the lowest entropy
- greedy
- can extend to perform a beam search

#### Variants of Rule Learning Programs

- Sequential or simultaneous covering of data?
- General  $\rightarrow$  specific, or specific  $\rightarrow$  general?
- Generate-and-test, or example-driven?
- Whether and how to post-prune?
- What statistical evaluation function?

#### Slide CS478-11

#### Learning First Order Rules

Why do that?

- Can learn sets of rules such as  $Ancestor(x,y) \leftarrow Parent(x,y)$   $Ancestor(x,y) \leftarrow Parent(x,z) \wedge Ancestor(z,y)$
- General purpose programming language Prolog: programs are sets of such rules

## First Order Rule for Classifying Web Pages

[Slattery, 1997]

 $course(A) \leftarrow$ 

has-word(A, instructor),

Not has-word(A, good),

link-from(A, B),

has-word(B, assign),

Not link-from(B, C)

Train: 31/31, Test: 31/34

#### Slide CS478-13

#### Learning First-Order Rules

- Inductive learning of first-order rules is often called inductive logic programming (ILP), because it can be used to learn PROLOG programs.
- ILP methods usually learn first-order **Horn Clauses**. A Horn clause is a disjunction of literals that has at most one positive literal (see book for details), such as:

$$C \vee \neg X_1 \vee \ldots \vee \neg X_n$$

which can conveniently be rewritten as:

$$X_1 \wedge \ldots \wedge X_n \to C$$

 $FOIL(Target\_predicate, Predicates, Examples)$ 

- $Pos \leftarrow positive\ Examples;\ Neg \leftarrow negative\ Examples$
- While Pos

 $NewRule \leftarrow most$  general rule possible;  $NewRuleNeg \leftarrow Neg$ While NewRuleNeg

- 1.  $Candidate\_literals(CLs) \leftarrow generate candidates$
- 2.  $Best\_literal \leftarrow argmax_{L \in CLs} \ Foil\_Gain(L, NewRule)$
- 3. add Best\_literal to NewRule preconditions
- 4.  $NewRuleNeg \leftarrow$  subset of NewRuleNeg that satisfies NewRule preconditions

 $Learned\_rules \leftarrow Learned\_rules + NewRule \\ Pos \leftarrow Pos - \{\text{members of } Pos \text{ covered by } NewRule\}$ 

ullet Return  $Learned\_rules$ 

#### Slide CS478-15

### Specializing Rules in FOIL

Given a rule:

$$P(x_1, x_2, \dots, x_k) \leftarrow L_1 \dots L_n$$

Candidate specializations can add a new literal of form:

- $Q(v_1, \ldots, v_r)$ , where at least one of the  $v_i$  in the created literal must already exist as a variable in the rule.
- $Equal(x_j, x_k)$ , where  $x_j$  and  $x_k$  are variables already present in the rule
- The negation of either of the above forms of literals

#### FOIL Gain Metric

Two Goals:

- 1. Decrease coverage of negative examples.
- 2. Maintain coverage of as many positive examples as possible.

$$FOIL\_Gain(L,R) \equiv t \left[ log_2(\frac{P_{R+L}}{P_{R+L}+N_{R+L}}) - log_2(\frac{P_{R}}{P_{R}+N_{R}}) \right]$$

where

- $\bullet$  L is a literal and R is a rule
- $P_R$  is the number of positive bindings for R
- $N_R$  is the number of negative bindings for R
- $P_{R+L}$  is the number of positive bindings for R+L
- $N_{R+L}$  is the number of negative bindings for R+L
- t is the number of positive bindings of R and R + L

#### Slide CS478-17

#### Learning Recursive Rules

• FOIL can learn recursive rules, such as:

$$Ancestor(x, y) \leftarrow Parent(x, y)$$
  
 $Ancestor(x, y) \leftarrow Parent(x, z) \wedge Ancestor(z, y)$ 

- To learn recursive rules, the target predicate can be added to the list of candidate predicates used during rule learning.
- Special tricks are needed to avoid learning infinitely recursive rules.



#### Instances:

• pairs of nodes, e.g.  $\langle 1,5 \rangle$ , with graph described by literals  $LinkedTo(0,1), \neg LinkedTo(0,8)$  etc.

#### Slide CS478-19

# Target function:

ullet CanReach(x,y) true iff directed path from x to y

# Hypothesis space:

• Each  $h \in H$  is a set of horn clauses using predicates LinkedTo (and CanReach)

### Summary

- Rule learning systems have achieved good results and have produced rules that perform at least as well as manually engineered rules.
- Rule learning approaches can consider one attribute value independent of the others.
- To deal with overfitting, rules can be post-pruned.
- To handle noise, the criteria for adding literals must be loosened up.
- But the search can become intractable if the space of literals gets too large.
- Hill-climbing search can get stuck on local maxima.
- Closed-world assumption required for negative examples.

Slide CS478-21