Learning Sets of Rules

e Sequential covering algorithms
e FOIL

e Inductive Logic Programming

Slide CS478-1

Propositional vs. First-order Rules

Propositional (logic) rules do not contain any variables.

First-order (logic) rules can contain variables.

Namel: Chelsea | Name2: Bill

Mother1: Hillary | Mother2: Virginia
Father1: Bill Father2: DBruno |=
Malel: : False Male2: True

Femalel: True Female2: False
Daughterio = TRUE

Slide CS478-2

A propositional representation could only learn the rule:
IF (Father1=Bill) A (Name2=Bill) A (Femalel=True)
THEN Daughter;» = TRUE

A first-order representation could learn the rule:
IF Father(z,y) A Female(y) THEN Daughter(y,x)

Slide CS478-3

Sequential Covering Algorithms

The basic algorithm:
1. Learn one rule
2. Remove the data it covers
3. Repeat
More specific version:
1. Learn one rule with high accuracy, any coverage
2. Remove positive examples covered by this rule

3. Repeat

Slide CS478—4

Generic Covering Algorithm

COVER(Target_attr, Attrs, Examples, Threshold)

e Learned_rules «— {}

e Rule « LEARN-ONE-RULE(Target_attr, Attrs, Examples)

e WHILE PERFORMANCE(Rule, Examples) > Threshold, Do

— Learned_rules <+ Learned_rules + Rule

— Ezamples — Examples — {EXAMPLES CORRECTLY

CLASSIFIED BY Rule}
— Rule <« LEARN-ONE-RULE(Target_attr, Attrs, Examples)

o Learned_rules < SORT Learned_rules ACCORD TO

PERFORMANCE OVER FEzxamples

e RETURN Learned_rules

Slide CS478-5

Day Outlook Temperature Humidity Wind | Ski?
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 | Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 | Overcast Cool Normal Strong | Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong | Yes

D12 | Overcast Mild High Strong | Yes

D13 | Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

Slide CS478-6

Learn-One-Rule Search Space

IF
THEN PlayTennis=yes

/

IF Wind=weak
THEN PlayTennis=yes

IF Wind=strong IF Humidity=high
THEN PlayTennis=no IF Humidity=normal THEN PlayTennis=no
THEN PlayTennis=yes

IF Humidity=normal /
Wind=weak
IF Humidity=normal

THEN PlayTennis=yes

IF Humidity=normal
Wind=strong IF Humidity=normal Outlook=rain
THEN PlayTennis=yes Outlook=sunny THEN PlayTennis=yes
THEN PlayTennis=yes

Slide CS478-7

LEARN-ONE-RULE(T arget_attr, Attrs, Examples)
e Pos <« positive Examples; Neg < negative Fxamples
e If Pos
NewRule — most general rule possible; NewRuleNeg «— Neg
While NewRuleNeg
1. Candidate_literals(C'Ls) « generate candidates
2. Best_literal «— argmazccrs
PERFORMANCE(Specialize(NewRule, L))
3. add Bestliteral to NewRule preconditions
4. NewRuleNeg < subset of NewRuleNeg that satisfies
NewRule preconditions
e Return NewRule

Slide CS478-8

Common Performance Metrics

Entropy: S = examples that match the rule’s preconditions.

—Entropy(S) = Z x; logy x5
i=1

Relative Frequency:

n

n = # examples the rule matches
n. = # examples the rule matches and classifies correctly

m estimate:
Ne +mp

n-—+m

p = prior probability of the class assigned by the rule
m = # examples needed to override the prior

Slide CS478-9

Learn-One-Rule Search Space

e general-to-specific search

e searches for a rule with high accuracy, but possibly low

coverage

e measure to select the “best” descendant: one whose covered

examples have the lowest entropy
e greedy

e can extend to perform a beam search

Slide CS478-10

Variants of Rule Learning Programs

Sequential or simultaneous covering of data?
e General — specific, or specific — general?

Generate-and-test, or example-driven?

Whether and how to post-prune?

What statistical evaluation function?

Slide CS478-11

Learning First Order Rules
Why do that?

e Can learn sets of rules such as
Ancestor(z,y) < Parent(z,y)
Ancestor(z,y) < Parent(z,z) N\ Ancestor(z,y)
e General purpose programming language PROLOG: programs

are sets of such rules

Slide CS478-12

First Order Rule for Classifying Web Pages
[Slattery, 1997]

course(A) «—
has-word (A, instructor),
Not has-word(A, good),
link-from(A, B),
has-word(B, assign),

Not link-from(B, C)

Train: 31/31, Test: 31/34

Slide CS478-13

Learning First-Order Rules

e Inductive learning of first-order rules is often called
inductive logic programming (ILP), because it can be
used to learn PROLOG programs.

e ILP methods usually learn first-order Horn Clauses. A
Horn clause is a disjunction of literals that has at most one

positive literal (see book for details), such as:
Cv-XiV...Vv-X,
which can conveniently be rewritten as:

Xl/\.../\Xn—>O

Slide CS478-14

FOIL(Target_predicate, Predicates, Examples)

e Pos <« positive Examples; Neg < negative Examples
e While Pos
NewRule <+ most general rule possible; NewRuleNeg «— Neg
While NewRuleNeg
1. Candidate_literals(C'Ls) < generate candidates
2. Best_literal — argmaxecrs Foil_Gain(L, NewRule)
3. add Bestliteral to NewRule preconditions
4. NewRuleNeg «+ subset of NewRuleNeg that satisfies
NewRule preconditions
Learned_rules < Learned_rules + NewRule
Pos «+ Pos — {members of Pos covered by NewRule}

e Return Learned_rules

Slide CS478-15

Specializing Rules in FOIL

Given a rule:

P(Il,xg,...,xk) — Ll---Ln
Candidate specializations can add a new literal of form:

e Q(v1,...,v,), where at least one of the v; in the created

literal must already exist as a variable in the rule.

e Fqual(xj,xy), where z; and x), are variables already present
in the rule

e The negation of either of the above forms of literals

Slide CS478-16

FOIL Gain Metric

Two Goals:

1. Decrease coverage of negative examples.

2. Maintain coverage of as many positive examples as possible.

FOIL Gain(L, R) = t [logs (5255) — logs (525-) |

Pryr+NR+L

where

L is a literal and R is a rule

Pg is the number of positive bindings for R

Np is the number of negative bindings for R

Pr4 1, is the number of positive bindings for R 4 L
Np+r is the number of negative bindings for R + L
t is the number of positive bindings of R and R+ L

Slide CS478-17

Learning Recursive Rules
FOIL can learn recursive rules, such as:

Ancestor(z,y) < Parent(z,y)
Ancestor(z,y) < Parent(z, z) A Ancestor(z,y)

To learn recursive rules, the target predicate can be added to

the list of candidate predicates used during rule learning,.

Special tricks are needed to avoid learning infinitely recursive

rules.

Slide CS478-18

FOIL Example

X —=y represents LinkedTo(x,y)

Instances:

e pairs of nodes, e.g. (1,5), with graph described by literals
LinkedTo(0,1), — LinkedTo(0,8) etc.

Slide CS478-19

Target function:
e CanReach(z,y) true iff directed path from z to y
Hypothesis space:

e Each h € H is a set of horn clauses using predicates

LinkedTo (and CanReach)

Slide CS478-20

Summary

Rule learning systems have achieved good results and have
produced rules that perform at least as well as manually
engineered rules.

Rule learning approaches can consider one attribute value
independent of the others.

To deal with overfitting, rules can be post-pruned.

To handle noise, the criteria for adding literals must be
loosened up.

But the search can become intractable if the space of literals
gets too large.

Hill-climbing search can get stuck on local maxima.

Closed-world assumption required for negative examples.

Slide CS478-21

