
1

Instance-Based Learning

2

Instance-Based Learning

• Unlike most learning algorithms, case-based, also called
exemplar-based or instance-based, approaches do not
construct an abstract hypothesis but instead base
classification of test instances on similarity to specific
training cases. (e.g. Aha et al. (1991))

• Training is typically very simple: Just store the training
instances.

• Generalization is postponed until a new instance must be
classified. Therefore, case-based methods are sometimes
called “lazy” learners. (Aha,1997)

• Given a new instance, its relationship to the stored
examples is examined in order to assign a target function
value for the new instance.

• In the worst case, testing requires comparing a test
instance to every training instance. As a result, case-based
methods may require more expensive indexing of cases
during training to allow for efficient retrieval.

• Rather than estimating the target function for the entire
instance space, case-based methods estimate the target
function locally and differently for each new instance to be
classified.

3

Distance Metrics

• Case-based methods assume a function for calculating the
(dis)similarity of two instances.

• For continuous feature vectors, just use Euclidean distance

• For discrete features, just assume distance between two
values is 0 if they are the same, 1 if different (e.g. Hamming
distance).

• To compensate for differences in units, scale all continuous
values to normalize their values to be between 0 and 1.

• Can develop specialized distance metric to account for
relationships that exist among feature values. E.g. when
comparing parts-of-speech feature, a proper noun and
common noun are probably more similar than a proper
noun and a verb.

d X Y,() X f i
Y f j

–()2

i 1=

n

∑=

4

K-Nearest Neighbor
(Cover & Hart, 1967; Duda & Hart, 1973)

• Calculate the distance between a test instance and every
training instance.

• Pick the k closest training examples and assign the test
example to the most common category among these
“nearest neighors”

1-nearest neighbor says +, 5-nearest neighbor says -

• Voting multiple neighbors helps increase resistance to
noise. For binary classification tasks, odd values of k are
normally used to avoid ties. k=1,3,5 most common values
used.

-

?
+

+
+

+

+-

-

-

-

5

Implicit Classification Function

• Although it is not necessary to explicitly calculate it, the
learned classification rule is based on the regions of feature
space closest to each training example.

• For 1-nearest neighbor, the Voronoi diagram gives the
complex polyhedra that segment the space into the region
of points closest to each training example.

.
. .

.
.

6

Nearest Neighbor V ariations

• Since linear search is not a very efficient classification
procedure, a data structure called a k-d tree can be used to
index training examples and find nearest neighbors in
logarithmic time on average. Nodes branch on threshold
tests on individual features and leaves terminate at nearest
neighbors. (Bentley, 1975; Friedman et al., 1977)

• K-nearest neighbor can be used to approximate the value
of a continuous function (regression) by taking the average
function value of the k nearest neighbors. (Atkeson et al.,
1997; Bishop, 1995)

• All training examples can be used to contribute to the
classification by giving every example a vote that is
weighted by the inverse square of its distance from the test
example. (Shepard, 1968)

7

Feature Rele vance

• The standard distance metric weights each feature equally,
which can cause problems if only a few of the features are
relevant to the classification task, since the method could
be mislead by similarity along many irrelevant dimensions.

• Wrapper methods for feature selection generate a set of
candidate features, run the induction algorithm with these
features, use the accuracy of the resulting concept
description to evaluate the feature set. (John et al., 1994)

• Filter methods for feature selection consider attributes
independently of the induction algorithm that will use them.

• Global feature weighting methods compute a single weight
vector for the classification task.

• Local feature weighting methods allow feature weights to
vary for each training instance, for each test instance, or
both. (Wettschereck et al.,,1997)

8

Wrapper Methods f or Feature Selection

• Generate a set of candidate features, run the induction
algorithm with these features, use the accuracy of the
resulting concept description to evaluate the feature set.

• Forward selection. Start with no features and successively
add attributes. Continue until performance degrades.

• Backward elimination. Start with all features and
successively remove attributes. Continue until performance
degrades.

• General method for feature selection in that it can be used
in conjunction with any induction algorithm.

• Disadvantages: Computational cost.

9

Filter Methods
for Feature Selection and W eighting

• Consider attributes independently of the induction algorithm
that will use them.

• Decision trees for feature selection. In addition to storing
training cases in a case base, use them to induce a
decision tree. Features that do not appear in the decision
tree are considered irrelevant for the learning task and can
be discarded from the instance representation for the case-
based learning system. (Cardie, 1993)

• Information gain for feature weighting. Use the information
gain of each feature as the weight for each feature in the
similarity metric. (Daelemans et al., 1999; Cardie &
Howe,1997)

• Value-difference metric. Local feature weighting method
that computes a weight for each feature based on the
particular feature value exhibited in the test case and in the
training case. Weight is based on feature value distributions
across possible class values. (Stanfill & Waltz, 1986)

• Per-category feature importance. Weight for each feature-
class combination is P (f | c). Training case specific weight
vector. (Creecy et al., 1992)

• Filter methods use a separate measure/method for feature
selection with an inductive bias that is entirely different from
the bias employed in the induction algorithm.

10

Linguistic Biases and Feature W eighting

• Assign weights based on linguistic or cognitive preferences
(Cardie, 1996).

- recency bias: assign higher weights to features that
represent temporally recent information

- focus of attention bias: assign higher weights to features
that correspond to words or constituents in focus, e.g.
subject of a sentence

- restricted memory bias: keep the n features with the
highest weights

• Use cross validation to determine which biases apply to the
task and which actual weights to assign.

• Hybrid filter-wrapper approach.

- Wrapper approach for bias selection

- Selected biases direct feature weighting using filter
approach

11

Example Stora ge

• Some algorithms only store a subset of the most
informative training examples in order to focus the system
and make it more efficient. Sometimes called instance
editing.

• Edit superfluous regular instances, e.g. the “exemplar
growing” IB2 algorithm (Aha et al., 1991):

Initializ e set of stored examples to the empty set.
For eac h example in the training set do

If the example is correctly classified by picking the
 nearest neighbor in the current stored examples

then do not store the example
else add it to the stored examples.

• In some experimental results this approach works as well if
not better than storing all training examples.

• Edit unproductive exceptions, e.g. the IB3 algorithm (Aha et
al., 1991): Delete all instances that are bad class predictors
for their neighborhood in the training set.

• There is evidence that keeping all training instances is best
in case-based approaches to natural language processing
problems (Daelemans et al.,1999).

12

IBL Conc lusions

• IBL methods base decisions on similarity to specific past
instances rather than constructing abstractions.

• Instance-based methods abandon the goal of maintaining
concept “simplicity.”

• Consequently, they trade decreased learning time for
increased classification time.

• Important issues are:

- Defining appropriate distance metrics.

- Efficient indexing of training cases.

- Handling irrelevant features.

