Genetic Algorithms

Inspired by biological processes that produce genetic change in

populations of individuals.

Genetic algorithms (GAs) are adaptive search procedures

that usually include three basic elements:

1. A Darwinian notion of fitness: the most fit individuals have

the best chance of survival and reproduction.

. Mating operators: individuals contribute their genetic

material to their children.

. Mutation: individuals are subject to random changes in their

genetic material.

Slide CS478-1

Learning through populations

Many learning algorithms commit to a single hypothesis at

any one point in time.
Genetic algorithms maintain a population of hypotheses.

Each hypothesis is evaluated using a fitness function. The
fitness scores force individuals to compete for the privilege of

survival and reproduction.

Genetic algorithms are typically performance-oriented. The
fitness of a hypothesis is often measured by the performance

of the hypothesis on a set of tasks.

Slide CS478-2

Genetic algorithms as search

Genetic algorithms are local heurisitc search algorithms.
“Weak” (i.e. general-purpose) method.

Especially good for problems that have large and poorly

understood search spaces.

Genetic algorithms use a randomized parallel beam search to

explore the hypothesis space.

You must be able to define a good fitness function, and of

course, a good hypothesis representation.

Slide CS478-3

Binary string representations

Hypotheses are usually represented using bit strings.
Hypotheses represented can be arbitrarily complex.
E.g. each attribute is allocated a specific portion of the
string, which encodes the attribute values that are
acceptable.

Each bit encodes whether a single attribute value is
acceptable or not. So you need N bits to represent N
attribute values.

Why not use binary-valued encoding (e.g., 2 bits could
represent 4 values)?

Bit string representation allows crossover operation to

change multiple values. Crossover and mutation can also

Slide CS478—4

produce previously unseen values.

Slide CS478-5

Representing Hypotheses

Bit sequences can also represent conjunctions of constraints on

attribute values. For example:

(Outlook = Overcast V Rain) A (Wind = Strong)

Outlook Wind
=
011 10

Bit sequences can also represent rules, or more complicated

structures. For example:

IF Wind = Strong THEN Ski? = yes

Slide CS478-6

Outlook Wind Ski?
=
011 10 1

Slide CS478-7

GA (Fitness, Fitness_threshold, p,r,m)

e P «— randomly generate p hypotheses

e For each h in P, compute Fitness(h)
e While [max), Fitness(h)] < Fitness_threshold

1.

3.
4.
5.

Probabilistically select (1 —r)p members of P to add to
Ps.

. Probabilistically choose 5F pairs of hypotheses from P.

For each pair, (hq, ho), apply crossover and add the
offspring to P;

Mutate m - p random members of P

P« P

For each h in P, compute Fitness(h)

e Return the hypothesis in P with the highest fitness.

Slide CS478-8

Selecting Most Fit Hypotheses

Hypotheses are chosen probabilistically for survival and crossover

based on fitness proportionate selection:

Fitness(h)

P
Z Fitness(h;)
j=1

Pr(h) =

Other selection methods include:

e Tournament Selection: 2 hypotheses selected at random.
With probability p, the most fit is selected. With probability
(1 — p), the less fit is selected.

Slide CS478-9

e Rank Selection: The hypotheses are sorted by fitness and
the probability of selecting a hypothesis is proportional to its

rank in the list.

Slide CS478-10

Crossover Operators

Single-point crossover:
Parent A: 1 0 0 1 0 1 1
ParentB: 0 1 0 1 1 1 0

Child AB:
Child BA: 0 1 0 1 1 1 1

o
=}
[e=}
-
[e=}
—
o

Slide CS478-11

Two-point crossover:

Parent A: 1 0 0 1 0 1 1
ParentB: 0 1 0 1 1 1 O

Child AB: 1 0 0 1 1 1 0
Child BA: 0 1 0 1 0 1 1

Slide CS478-12

Uniform Crossover

Uniform crossover:

Parent A: 1 0 0 1 0 1
Parent B: 0 1 0 1 1 1

Child AB: 1 1 0 1 1 1
Child BA: 0 0 0 1 0 1

Slide CS478-13

Mutation

Mutation: randomly toggle one bit

Individual A: 1 0 0 1 0 1
Individual A2 1 0 0 0 0 1

Slide CS478-14

Mutation

e The mutation operator introduces random variations,

allowing hypotheses to jump to different parts of the search

space.

e What happens if the mutation rate is too low?

e What happens if the mutation rate is too high?

e A common strategy is to use a high mutation rate when

learning begins but to decrease the mutation rate as learning

progresses.

Slide CS478-15

Learning illegal structures

Consider the traveling salesman problem, where an individual

represents a potential solution. The standard crossover operator

can produce illegal children:

Parent A: ITH Pitt Chicago Denver Boise
Parent B: Boise Chicago ITH Phila Pitt
Child AB: ITH Pitt Chicago Phila Pitt
Child BA: Boise Chicago ITH Denver Boise

Slide CS478-16

Two solutions:

1. define special genetic operators that only produce
syntactically and semantically legal hypotheses.
2. ensure that the fitness function returns extremely low fitness

values to illegal hypotheses.

Slide CS478-17

Applications: Parameter Optimization

e Parameter optimization problems are well-suited for GAs.
Each individual represents a set of parameter values and the
GA tries to find the set of parameter values that achieves the
best performance.

e The crossover operator creates new combinations of
parameter values and, using a binary representation, both
the crossover and mutation operators can produce new
values.

e Many learning systems can be recast as parameter
optimization problems. For example, most neural networks
use a fixed architecture so learning consists entirely of

adjusting weights and thresholds.

Slide CS478-18

GABIL [DeJong et al. 1993]

Learn disjunctive set of propositional rules Fitness:

Fitness(h) = (correct(h))?

Representation:
IFag=TNaya=F THEN ¢c=T; 1IF apo =T THEN ¢ = F

represented by

ay a2 ¢ aiy ay ¢C
10 01 1 11 10 0

Genetic operators: 777

Slide CS478-19

Crossover with Variable-Length Bitstrings

Start with

aq an (& aq a9 (&

hi: 10 01 1 11 10 0

hey: 01 11 0 10 01 O

1. choose crossover points for hy, e.g., after bits 1, 8

2. now restrict points in hs to those that produce bitstrings
with well-defined semantics, e.g., (1,3), (1,8), (6,8).

Slide CS478-20

if we choose (1, 3), result is
aq as C
hy: 11 10 0

aq a9 C aq as & aq as (&

hgy: 00 01 1 11 11 0 10 01 O

Slide CS478-21

GABIL Extensions

Add new genetic operators, also applied probabilistically:

1. AddAlternative: generalize constraint on a; by changing a 0
to 1

2. DropCondition: generalize constraint on a; by changing every
Oto1l

And, add new field to bitstring to determine whether to allow
these

a1 ay c a1 ay c AA DC
01 11 0 10 01 O 1 0

So now the learning strategy also evolves!

Slide CS478-22

Genetic Programming

In Genetic Programming, programs are evolved instead of bit

strings. Programs are often represented by trees. For example:

sin(z) + /22 +y

Slide CS478-23

Crossover in genetic programming

f Ay

Slide CS478-24

Block Problem

|=lv]o[s]

[v] [u] [1][2]

Goal: spell UNIVERSAL

Terminals:

e CS (“current stack”) = name of the top block on stack, or F.
e TB (“top correct block”) = name of topmost correct block

on stack
e NN (“next necessary”) = name of the next block needed

above TB in the stack

Slide CS478-25

Primitive functions:

e (MS z): (“move to stack”), if block z is on the table, moves
x to the top of the stack and returns the value T'. Otherwise,
does nothing and returns the value F.

e (MT z): (“move to table”), if block x is somewhere in the
stack, moves the block at the top of the stack to the table
and returns the value 7. Otherwise, returns F'.

e (EQ z y): (“equal”), returns T if z equals y, and returns F
otherwise.

e (NOT z): returns 7' if z = F, else returns F’

e (DU z y): (“do until”) executes the expression x repeatedly

until expression y returns the value T’

Slide CS478-26

Learned Program

Trained to fit 166 test problems

Using population of 300 programs, found this after 10
generations:

(EQ (DU (MT CS)(NOT CS)) (DU (MS NN)(NOT NN)))

Slide CS478-27

Genetic Programming

More interesting example: design electronic filter circuits

e Individuals are programs that transform begining circuit to
final circuit, by adding/subtracting components and

connections
e Use population of 640,000, run on 64 node parallel processor

e Discovers circuits competitive with best human designs

Slide CS478-28

Biological Evolution

Lamarck (19th century)

e Believed individual genetic makeup was altered by lifetime

experience

e But current evidence contradicts this view

What is the impact of individual learning on population

evolution?

Slide CS478-29

Baldwin Effect
Assume
e Individual learning has no direct influence on individual DNA

e But ability to learn reduces need to “hard wire” traits in

DNA — can perform local search!
Then

e Ability of individuals to learn will support more diverse gene
pool
e More diverse gene pool will support faster evolution of gene

pool

— individual learning (indirectly) increases rate of evolution

Slide CS478-30

Computer Experiments on Baldwin Effect
[Hinton and Nowlan, 1987]

Evolve simple neural networks:
e Some network weights fixed during lifetime, others trainable

e Genetic makeup determines which are fixed, and their weight

values

Results:

e With no individual learning, population failed to improve
over time

e When individual learning allowed

Slide CS478-31

— Early generations: population contained many individuals
with many trainable weights
— Later generations: higher fitness, while number of

trainable weights decreased

Slide CS478-32

