Evaluating Hypotheses
Why bother?
e Want to decide whether or not to use it.

e Integral part of many learning algorithms, e.g. post-pruning.

e Clients want to know the accuracy of the learned hypothesis.
Given only a limited set of data, two key difficulties arise:

Bias in the estimate: Accuracy on training date is an
optimistically biased estimate of the accuracy over future

examples. Estimate accuracy on blind test set.

Variance in the estimate: Accuracy can vary from true

accuracy depending on the makeup of the test examples.
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Evaluating Hypotheses

1. Methods for evaluating learned hypotheses
2. Methods for comparing the accuracy of two hypotheses

3. Methods for comparing the accuracy of two learning

algorithms
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Definitions

X: space of possible instances

D: unknown probability distribution that defines the probability

of encountering each instance in X.
f: target concept/function
H: hypothesis space

h: hypothesis in H
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Two Definitions of Error

The true error of hypothesis A with respect to target function f
and distribution D is the probability that A will misclassify an

instance drawn at random according to D.

errorp(h) = Pr[f(x) # h(e)

The sample error of h with respect to target function f and

data sample S is the proportion of examples h misclassifies.

errorg(h) = % S 6(f(x) # h()

zeS
Where 6(f(x) # h(x)) is 1 if f(z) # h(z), and 0 otherwise.

How well does errorg(h) estimate errorp(h)?
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Example
Hypothesis h misclassifies 12 of the 40 examples in S

12

=—=.30
40

errorg(h)

How good an estimate of errorp(h) is errorg(h)?
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Confidence Intervals

If

e S contains n examples, drawn independently of h and each
other
e n>30

Then

¢ With approximately 95% probability, errorp(h) lies in

interval

errorg(h)(1 — errorg(h))

errorg(h) + 1.96\/

n

95% confidence interval estimate: 0.30+ (1.96)(0.07) = 0.30 £ .14.
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Confidence Intervals

If (1) S contains n examples, drawn independently of h and each
other, and (2) n > 30, then

e With approximately N% probability, errorp(h) lies in

interval

errorg(h)(1 — errorg(h))

errorg(h) + zN\/

where

N%: | 50% 68% 80% 90% 95% 98% 99%
zy: | 067 1.00 1.28 1.64 1.96 233 2.58

Slide CS478-7

Comparing Hypotheses

Test hy on sample S, test ho on Sy

e Given h; and ho, we can determine whether the difference in

their error rates is meaningful or not.
d = errorp(hy) — errorp(hs)
e Estimator is the difference between the sample errors:

d= errorg, (h1) — errorg,(hg)
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e The variance of this distribution is the sum of the variances
of errorg, (h1) and errorg,(hs):

\/errorsl (h1)(1 — errors, (h1)) 4 Errors, (h2)(1 — errors, (hz))
05~
ny UP)

e Can compute confidence interval estimate for d:

diZN\/errorgl (h1)(1 — errorg, (h1)) n errors, (ha)(1 — errorg, (hz))

ni no
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Comparing Learning Algorithms

e We are often interested in comparing the performance of two
learning algorithms, L4 and Lp, instead of two specific
hypotheses.

o Ideally, we'd like to measure the expected value of the

difference in their error:
Escplerrorp(La(S)) — errorp(Lp(S))]

where L(S) is the hypothesis output by learner L using

training set S from distribution D.

e To estimate this difference, we need to average results over

many different training and testing sets.
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K-fold Cross Validation

1. Partition data Dy into k disjoint test sets 17, 75,..., T} of
equal size, where this size is at least 30.

2. For i from 1 to k

use T; for the test set, and the remaining data for training
set S;

ha <« La(S;), hg < Lp(S;)
0; < errory,(ha) — errory,(hp)

3. Return the average difference in error: 6 = %Zle 0;
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McNemar’s Test

e For each example x € T (test set), record how it was
classified.

e Construct the following contingency table:

Noo | Mo1

nio | N1

where
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— ngp = number of examples misclassified by both L4 and Lp.

— np1 = number of examples misclassified by L 4, but not by Lg.

— ni19 = number of examples misclassified by Lpg, but not by L 4.

— ngp = number of examples misclassified by neither L 4 nor Lp.

McNemar’s test is based on a x? test for goodness-of-fit that
compares the distribution of the observed counts to the counts
expected when the learning algorithms have the the same

performance.
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McNemar’s Test

Contingency table:

Too | Mol
nio | N1
Expected counts:
noQ (no1 + n10)/2
(no1 + n10)/2 ni1

1f Uror=nol=1) ;o greater than 3.841459, then the difference in

no1+n1o
error between L4 and Lp is statistically significant at or above

the 95% confidence level.
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Summary

Statistical analysis is important to compare empirical

learning results.

No single procedure for comparing learning methods based

on limited data satisfies all the constraints we would like.

Statistical models rarely fit perfectly the practical constraints

in testing learning algorithms when available data is limited.

They do provide approximate confidence intervals that can
be of great help in interpreting experimental comparisons of

learning methods.
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