Decision Trees on Real Problems

Must consider the following issues:

e Multi-class problems

Alternative splitting criterion

Noise in the data

Real-valued attributes

Missing values

Attributes with costs

Slide CS478-1

Applying Entropy to Multiple Classes

Thus far we have assumed that the target class is Boolean. More
generally, the class can take on ¢ values, then the entropy of S

relative to this c-wise classification is defined as:

o~ S

=1

Where S; is the proportion of S belonging to class i.

Slide CS478-2

A Problem with Information Gain

e Biased toward attributes that have many possible values.
Examples:
Date attribute: 365 possible values
Name attribute: 50,000 possible values

e Splits data into (possibly) perfectly classified (albeit small)
partitions

e Problem: Not good class predictors.

Slide CS478-3

An Alternative Measure

GainRatio: penalizes attributes with many values by

incorporating a term called SplitIn formation.

SplitIn formation measures the entropy of the data with respect

to the attribute values, not the class.

4
Splitin formation(S, A) = — Z
=1

|Si| log, |Si|
S| S|

where S; is subset of S for which A has value v; € V

Slide CS478-4

GainRatio uses SplitInformation to discourage preference for

these attributes.

. . Gain(S, A)
A) =
GainRatio(S, A) SplitIn formation(S, A)

Slide CS478-5

A Problem with Gain Ratio

e SplitInformation can be very small or even zero when
| S; |~| S| for some S;.

e In this case, GainRatio becomes very large or even

undefined, skewing the results.

e To avoid this problem, one approach is to compute the Gain
of each attribute. Then for those that have above average
Gain, choose the best by applying the GainRatio test. This
is the approach used by C4.5.

Slide CS478-6

Overfitting in Decision Trees

Consider adding noisy training example #15:
Sunny, Hot, Normal, Strong, PlayTennis = No

What effect on earlier tree?

Sunny Overcast Rain

L i

High Normal Srong Wea<
No Yes No Yes

Slide CS478-7

Overfitting

Quverfitting occurs when the learned concept is too specific to the

training data. Overfitting can occur for several reasons:

e Noise

e Not enough training examples

In one study of 5 learning tasks, overfitting decreased the

accuracy of the decision trees by 10-25%.

Moral: Overfitting is a real problem!

Slide CS478-8

A precise definition

Consider error of hypothesis h over

e training data: errory.qin(h)

e entire distribution D of data: errorp(h)

Hypothesis h € H overfits training data if there is an
alternative hypothesis A’ € H such that

erroryrain(h) < erroryqin(h')

and

errorp(h') < errorp(h)

Slide CS478-9

Recognizing Overfitting

0.9 T T T T T T T T

0.85

0.8

0.75

0.7

Accuracy

0.65

0.6 | On training data ——
On test data ----

055

05 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80
Size of tree (number of nodes)

90

100

Slide CS478-10

Avoiding Overfitting

e Prepruning: Stop growing the tree when there is not
enough data to make reliable decisions, or when the

examples are acceptably homogeoeous

e Postpruning: Grow the full decision tree and then remove

nodes for which there is not sufficient evidence.

Prepruning: easier and more intuitive

Postpruning: generally works better in practice

Slide CS478-11

Evaluation Methods for Pruning

e Validation Methods: Reserve some portion of the training
data as a walidation set. Two common methods are:

— Use a single training set and a single validation set.

— Clross-validation: Divide the training set into N
partitions. Do N experiments: each partition is used once
as the validation set, and the other N-1 partitions are
used as the training set.

e Statistical Analyses: Use statistical tests to estimate
whether expanding/pruning a node is likely to produce an

improvement beyond the training data.

Slide CS478-12

Reduced-Error Pruning

e Split data into training and validation set.
e Build a full decision tree from the training set.
e Do until further pruning is harmful (decreases accuracy on
the validation set):
— For each non-leaf node N:
+ Temporarily prune the subtree rooted by N and replace
it with a leaf node labelled with the majority class.
* Test the accuracy of the pruned tree on the validation
set.
— Greedily remove the subtree that results in the greatest

improvement in accuracy on the validation set.

Slide CS478-13

Effect of Reduced-Error Pruning

0.9 T T T T T T T T T

0.85

0.8

0.75

0.7

Accuracy

0.65

06 On training data — i
On test data ----
0.55 On test data (during pruning) -----

0. 5 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Size of tree (number of nodes)

Slide CS478-14

Rule Post-Pruning
Perhaps most frequently used pruning method (e.g. C4.5).
1. Split data into training and validation sets.
2. Build a full decision tree from the training set.
3. Convert tree to an equivalent set of rules.
4. Prune (generalize) each rule by removing preconditions.

. Sort pruned rules based on estimated accuracy. Use them in

Ut

this order to classify new instances.

Slide CS478-15

Converting A Tree to Rules

Outlook
Sunny Overcast Rain
Humidity Yes Wind
High Normal Strong Weak
No Yes No Yes

Slide CS478-16

IF (Outlook = Sunny) A (Humidity = High)
THEN PlayTennis = No

IF (Outlook = Sunny) A (Humidity = Normal)
THEN PlayTennis = Yes

IF (Outlook = Overcast)
THEN PlayTennis =Yes ...

Slide CS478-17

Discretizing Continuous-Valued Attributes

e Idea: dynamically define a set of discrete values that are
candidates for partitioning the examples.

e For a continuous feature A, each discretized value will be a
binary attribute of the form (A < THRESHOLD).

e These dynamically generated attributes can then compete
with all other (discrete) attributes when building the

decision tree.

Sort the examples according to their values for A.
For each ordered pair X;, X;4+1 in the sorted list,

If the category of X; and X, are different,

Then use the midpoint between their values as a candidate
threshold.

Slide CS478-18

An Example

Value: 10 15 21 28 32 40 50
Class: No Yes Yes No Yes Yes No

Slide CS478-19

Unknown Attribute Values

1. Assign the most common value for the attribute among the
training examples that reached the same node in the decision

tree.

2. Assign the most common value for the attribute among the
training examples with the same class ¢; that reached the

same node in the decision tree.

3. Push the example down the decision tree in fractions,
probabilistically. The fractions are based on the proportion

of examples at the node that have each attribute value.

Slide CS478-20

Attributes with Costs

e Introduce a cost term into attribute selection measure:

Gain?(S, A)
Cost(A)

Slide CS478-21

Strengths of decision trees

Easy to generate; simple algorithm.

Easy to read small trees; can be converted to rule set.

Decision trees are highly expressive.

Relatively fast to construct; classification is very fast.

Can achieve good performance on many tasks.

A wide variety of problems can be recast as classification

problems.

Slide CS478-22

Weaknesses of decision trees

Not always sufficient to learn complex concepts.
Can be hard to understand.

Some problems with continuously-valued attributes or classes

may not be easily discretized.

Methods for handling missing attribute values are somewhat

clumsy.

Slide CS478-23

