Computational Learning Theory

What general laws constrain inductive learning?

We seek theory to relate:

e Probability of successful learning

Number of training examples
e Complexity of hypothesis space

e Accuracy to which target concept is approximated

Manner in which training examples presented
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PAC Learning Setting

Given: )
e set of instances X

e set of hypotheses H
e set of possible target concepts C
e training instances generated by a fixed, unknown probability
distribution D over X
Learner observes a seqence D of training examples of form

(x,c(x)), for some target concept ¢ € C'
e instances z are drawn from distribution D

e teacher provides target value c(x) for each

Learner must output a hypothesis h estimating ¢
e h is evaluated by its performance on subsequent instances

drawn according to D
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True Error of a Hypothesis

Instance space X

Where ¢
and h disagree

Definition: The true error (denoted errorp(h)) of hypothesis h with
respect to target concept ¢ and distribution D is the probability that h
will misclassify an instance drawn at random according to D.

errorp(h) = IIZI“D[C(T) # h(z))
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PAC Learning

Consider a class C' of possible target concepts defined over a set
of instances X of length n, and a learner L using hypothesis

space H.

Definition: C' is PAC-learnable by L using H if for all
c € C, distributions D over X, € such that 0 < e < 1/2,
and d such that 0 < ¢ < 1/2,

learner L will with probability at least (1 — §) output a
hypothesis h € H such that errorp(h) < e, in time that

is polynomial in 1/e¢, 1/0, n and size(c).
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Mistake Bounds

So far: how many examples needed to learn?

What about: how many mistakes before convergence?

Let’s consider similar setting to PAC learning:

e Instances drawn at random from X according to distribution

D

e Learner must classify each instance before receiving correct

classification from teacher

e Can we bound the number of mistakes learner makes before

converging?
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Mistake Bounds: Find-S

Consider Find-S when H = conjuntion of boolean literals

Find-S:
e Initialize h to the most specific hypothesis
LUNAN= NI A=l L, A=,
e For each positive training instance

— Remove from A any literal that is not satisfied by z

e Output hypothesis h.

How many mistakes before converging to correct h?
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Mistake Bounds: Halving Algorithm

Consider the Halving Algorithm:

e Learn concept using version space Candidate-Elimination

algorithm

e (Classify new instances by majority vote of version space

members

How many mistakes before converging to correct h?

e ... in worst case?

e ... in best case?
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Optimal Mistake Bounds
Let M4(C) be the max number of mistakes made by algorithm A
to learn concepts in C'. (maximum over all possible ¢ € C, and
all possible training sequences)

My(C) = IgeangA(c)

Definition: Let C be an arbitrary non-empty concept class. The
optimal mistake bound for C, denoted Opt(C), is the
minimum over all possible learning algorithms A of M4 (C).

Opt(C) = min My (C)

B A€learning algorithms
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Weighted Majority Algorithm

e generalization of the HALVING algorithm

e makes predictions by taking a weighted vote among a pool of

prediction algorithms

e learns by altering the weight associated with each prediction

algorithm
e accomodates inconsistent training data

e can bound the number of mistakes made
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Tom’s slide goes here. Table 7.1.
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Relative Mistake Bound for Weighted Majority

Let D be any sequence of training examples.

Let A be any set of n prediction algorithms.

Let k£ be the minimum number of mistakes made by any

algorithm in A for the training sequence D.

Then the number of mistakes of D made by the
WEIGHTED-MAJORITY algorithm using 8 = 1/2 is at most

2.4(k + loga n)

Slide CS478-11

Empirical Support for Multiplicative Update Algorithms

Calendar scheduling

Given: Description of an event to be scheduled

Predict: Event’s location, duration, start time, day of week.

Features:

type of event

name of the seminar

position of attendees

are attendees in the user’s group

names of the attendees in alphabetical order
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Example

req-event-type meeting) req-seminar-type nil)

sponsor-attendees no-value)  (department-attendees cs)
position-attendees faculty) group-attendees? no)
group-name no-value) lunchtime? no)

number-of-person 1)

( (

( (

( (

(req-course-name nil) (department-speakers no-value)
( (

(single-person? yes) (

(

req-location dh4301c)

1685 examples
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Features of the Learning Task

o “Target concept” changes with time.

e Set of possible values for each feature may not be known.
Baseline system: Calendar ApPrentice System

e decision-tree based learning method
e acquires rules sorted by observed performance
e system is run each night using the most recent 180 examples

e merges the new rules into the existing rule set
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Weighted Majority Implementation
Assumption: Some small set of features will be enough to construct a

good predictor.

1. For each pair of features, create one “expert” (prediction
algorithm) that examines only those two features and makes
predictions based on their values.

2. Weight update has 5 =1/2
3. Each expert performs a simple table lookup.

e Given a pair of values for its two features, look at the last k
times that the pair of values occurred and predict the outcome
that occurred most often out of those k. (k = 5)

e If the pair of values has never occurred before, predict the most

common class value seen so far.
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Weighted Majority Extension

Speedup strategy:

Discard experts if their weights drop too low.

Allows algorithm to speed up as it learns more.

Danger if too aggressive in discarding experts.

e Found that for a wide range of thresholds, one can achieve

both a significant speedup and negligible loss in performance.

Slide CS478-16




Winnow
Combines opinions of “specialists” that can abstain on any

example.

e Create one specialist for each pair of feature=value

conditions seen so far.

e Specialist wakes up to make a prediction if both conditions

are true.

e Predicts the most popular outcome out of the last £ =5

times it had a chance to predict.

e Global prediction is based on a wighted majority vote over

all predicting specialists.
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e When specialist 7 first appears, w; < 1 and abstains for this

example.
e Weight update strategy:

— If global prediction incorrect,
x w; = 1/2 w; for a; that predict incorrectly
* w; = 3/2 w; for a; that predict correctly
— If global prediction correct,

x w; = 1/2 w; for a; that predict incorrectly
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Experimental Results

Task | CAP  Winnow Winnow-big WM WDM-big
location | 0.64 0.75 0.76 0.70 0.74
duration | 0.63 0.71 0.74 0.64 0.73
start-time | 0.34 0.51 0.53 0.39 0.50
day-of-week | 0.50 0.57 0.57 0.56 0.56
AVERAGE | 0.53 0.63 0.65 0.57 0.63
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Comments

For the Weighted Majority algorithm, the weights answer the
question: “if you were only allowed to look at two features, which

two do you choose?”

When predicting location,

e best feature: number of people

e best pair: number of people + seminar type
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Winnow assigns weights to each possible rule of length 2,

indicating the extent to which that rule should be trusted:

e If there is a single attendee and he/she is from the ECE

department, then 30 minutes.

e If there is more than one attendee and they are research

programmers, the 60 minutes.

e If the attendees are faculty members and not from CMU,

then 60 minutes.
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Bagging Classifiers
Bagging = Bootstrap aggregating

e A learning(data) set L consists of data
{(Yn,x%n),n=1,...,N}. Each x,, is a feature vector; y, is a

class.

e Assume that we have some learning algorithm that can use L

to form a classifier p(x, L) that predicts y given x.

e Given a sequence of data sets {Lj} each with N independent
observations drawn from the same distribution as L, we can

form a sequence of predictors {¢(x, L)}
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Goal in bagging is to use the {Ly} to get a better predictor
than the single data set predictor ¢(x, L).

One obvious procedure is to replace ¢(x, L) by:

discrete y: the majority vote of the k ¢’s

numeric y: the average prediction of the k ¢’s
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Bagging Approximates Multiple Data Sets
Take repeated bootstrap samples {L(P)} from L and form {p(x, L(#))}.

Bootstrap sampling. Given set L containing N training examples, create
L? by drawing N examples at random with replacement from L.

Hypothesis: aggregating over bootstrap samples yields higher accuracy
than a single classifier.

Bagging:
e Create k bootstrap samples L1 ... LF.
e Train distinct classifier on each L.

e Classify new instance by majority vote / average.
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Experimental Method

Given sample S of labeled data, do 100 times and report average

1. Split S randomly into test set 7" (10%) and training set D
(90%).

2. Learn decision tree from D
e eg « error of tree on T

3. Repeat 50 times: Create bootstrap set D?, construct decision

tree using D.

e ep < error of majority vote using trees to classify 1’
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Results
Data Set es e Decrease
Waveform 290.1 19.3 34%
Heart 49 2.8 43%
Breast Cancer 5.9 3.7 3%
Ionosphere 112 79 29%
Diabetes 25.3  23.9 6%
Glass 30.4 23.6 22%
Soybean 86 6.8 21%
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How many bootstrap samples are enough

Number bootstrap samples Misclassification Rate

1 29.1
10 21.8
25 19.4
50 19.3
100 19.3
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When Will Bagging Improve Accuracy?
Depends on the stability of the base-level classifiers.

A learner is unstable if a small change to the training set causes a

large change in the output hypothesis.

e If small changes in L cause small changes in ¢ then ¢ ~ ¢p.

e [f small changes in L cause large changes in ¢ then there will

be an improvement in performance.
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Conclusion of Experiments

Bagging helps unstable procedures.

Bagging hurts the performance of stable procedures.

Neural nets, decision /regression trees, linear regression are

unstable.

e k-nn is stable.
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Bagging Nearest Neighbor Classifiers
No difference between egs and ep
Reason:

Probability than a particular instance will be in any one
Bootstrap replicate is .632

An instance x will have a different label predicted for it by the
aggregate method only if z’s nearest neighbor is missing from at

least half of bootstrap learning sets

The probability of this happening is P(number of heads in N
tosses is less than N/2) when the probability of a head is .632

Clearly as N grows this gets small.
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