Bayesian Learning

Bayesian learning algorithms use probability theory as
an approach to concept classification.

Bayesian classifiers generally produce probabilities for
(possibly multiple) class assignments, rather than a single
definite classification.

Provides practical learning algorithms: Naive Bayes learning,.
Provides useful conceptual framework.

Algorithms often computationally intractable.

Provides “gold standard” for evaluating other learning
algorithms.

To use Bayesian techniques, we often need to make

independence assumptions that often aren’t valid.
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Prior Probability and Random Variables

P(A) represents the prior or unconditional probability

that statement A is true, in the absence of other information.

A random variable represents different outcomes of an
“event”. Each random variable has a domain of possible
values 1 ...x,, which each have a probability. The
probabilities for all possible outcomes must sum to 1.

For example:

P(Disease=CAVITY) = 0.5
P(Disease=GUM_DISEASE) = 0.3
P(Disease=IMPACTED_TOOTH) = 0.1
P(Disease=ROOT_INFECTION) = 0.1
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Conditional Probability
P(A | B) represents the probability of A given that B is known

to be true. We call this a conditional or posterior probability.

P(A | B) = 1 is equivalent to B = A.

For example, suppose Rover rarely howls:

P(Rover_howls) = 0.01

But when there is a full moon, he always howls!
Then P(Rover_howls | full_-moon) = 1.0
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The Chain Rule

P(AA B)

PAIB) = ~5

We can rewrite this as: P(AA B) = P(A| B) x P(B)
which is called the chain rule because we can chain together

probabilities to compute the likelihood of conjunctions.

Example:

P(A) =.05
P(B|A)=0.6
P(C|ANB) =028

What is P(AANBAC)?
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Basic Formulas for Probabilities

e Product (or “Chain”) Rule: probability of a conjunction
of two events:
P(AANB)=P(AIB)P(B) = P(B|A)P(A)
e Sum Rule: probability of a disjunction of two events:
P(Av B)=P(A)+P(B) - P(AANB)
e Theorem of total probflibility: if events Ay, ..., A, are

mutually exclusive with Z P(A;) =1, then
i=1
P(B) =) P(B|A;)P(4))
i=1

Slide CS478-5

Bayes Rule

Simple form:

P(A| B) = PAEE

General form:

P(A| B, X) = P(Alﬁ)(ﬁggm,)()
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Bayes Theorem applied to machine learning

P(hD) = ZLWLR) (I;‘Z))I; (5

(h) = prior probability of hypothesis h
P(D) = prior probability of training data D
(h|D) = probability of h given D

(D|h) = probability of D given h
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Choosing Hypotheses

P(hD) = ZLWER) (133‘27? (5)

Generally want the most probable hypothesis given the training

data. Maximum a posteriori hypothesis hy;4p:

hayap = argmazyey P(h|D)

P(D|h)P(h)
P(D)

hayap = argmazyey P(D|h)P(h)

hyrap = argmazy, ey

If assume P(h;) = P(h;) then can further simplify. The
Maximum Likelihood hypothesis:

harr = argmazxy, ey P(D]h;)
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Example

Does patient have cancer or not?

A patient takes a lab test and the result comes back
positive. The test returns a correct positive result in
only 98% of the cases in which the disease is actually
present, and a correct negative result in only 97% of the
cases in which the disease is not present. Furthermore,

.008 of the entire population have this cancer.

P(cancer) = P(—cancer) =
P(+|cancer) = P(—|cancer) =
P(+|—cancer) = P(—|~cancer) =

Slide CS478-9

P(cancer) = .008 P(—cancer) = .992
P(+|cancer) = .98 P(—|cancer) = .02
P(+|-cancer) = .03 P(—|=cancer) = .97

harap = argmaz,cy P(D|h)P(h)
h; iS CANCER:

h; is "CANCER:

hyvap =
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Brute Force MAP Hypothesis Learner

e For each hypothesis h in H, calculate the posterior

probability:
P(D|h)P(h)

PHID) = =5

e Output the hypothesis hp;4p with the highest posterior
probability:

harap = argmazy,cg P(h|D)
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Relation to Concept Learning
Assume fixed set of instances (z1,...,zy,)
Assume D is the set of classifications D = (¢(x1),...,c(xm))

Choose P(D|h):

e P(D|h) =1 if h consistent with D
e P(D|h) = 0 otherwise

Choose P(h) to be uniform distribution

e P(h) = ﬁ for all A in H
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Choose P(D):

|H|
Then,
P(D|h)P(h)
P(h|D) = —————=
(H1D) = Z s
m if h is consistent with D
P(h|D) =

0 otherwise
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Characterizing Learning Algorithms by Equivalent MAP

Learners
Inductive system
Training examples D Candidate Output hypotheses
. Elimination >
Hypothesis space H Algorithm
—_—

Equivalent Bayesian inference system

Training examples D

Output hypotheses
Hypothesis space H >
— Brute force
MAP |earner
P(h) uniform
P(D|h) = 0if inconsistent,
= 1if consistent

i

/

Prior assumptions
made explicit
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Most Probable Classification of New Instances
So far we’ve sought the most probable hypothesis given the data
D (i.e., harap)
Given new instance x, what is its most probable classification?

harap(z) is not the most probable classification!

Consider this hypothesis space:
P(h1|D) = .4, P(hao|D) = .3, P(hs|D)=".3

Given new instance x hi(x) =+, ho(z) = —, hs(x) = —

What’s the most probable classification of x?
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Bayes Optimal Classifier

argmaz, cc Z P(h;|D)P(cj|hs)

h,€H
E le:
TP p(h|D) =4, P(—|h) =0, P(+]hy)=1
P(ho|D) = .3, P(—|hs) =1, P(+]hs) =0
P(h3|D) = .3, P(—|h3) =1, P(+]h3)=0
P(hiD)P(+|h;) = .4
therefore h_gH (hi DYP(+[hi
> P(hi|D)P(~|hi) = .6and
h,€eH

arg max P(cjlhi)P(hi|D) = —
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Gibbs Classifier

Bayes optimal classifier provides best result, but can be

expensive if many hypotheses.

Gibbs algorithm:

1. Choose one hypothesis at random, according to P(h|D)

2. Use this to classify new instance

Surprising fact: Assume target concepts are drawn at random

from H according to priors on H. Then:

E[BTTOTGZ‘[)[)S] < 2E[€TTOTBayesOptimal]
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Naive Bayes Classifier

e One of the most practical learning methods, along with
decision trees, neural networks, nearest neighbor methods,

etc.
e Requires:

1. Moderate or large training set.
2. Attributes that describe instances should be conditionally

independent of the classification.

e Successful applications include diagnosis and text

classification.
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Naive Bayes Classifier

Assume target function f : X — C, where each instance x is

described by attributes (a1, as...ay).

Most probable value of f(z) is:

CMAP = ATgmat..cc P(cjlar,az ... an)

P(ay,as...a,lc;)P(c))
P(aj,az...ay,)

CMAP — argmaxcjec

CMAP = argmaz..cc P(ah az... an‘cj)P(cj)
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Naive Bayes Assumption

To make the problem tractable, we often need to make the

following independence assumption:

P(ay,as...a,|cj) = H P(ailc))
i

which allows us to define the Naive Bayes Classifier:

e = argmaz. e P(c;) HP(ai\cj)

2
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Naive Bayes Algorithm

Naive_Bayes_Learn(examples)

For each possible class c;

A

P(cj) < estimate P(c;)
For each attribute value a; of each attribute a

p(ai|cj) — estimate P(a;|c;)

Classify_New_Instance(x)

CNB = Argmaz..cc P(cj) H p(az‘|0j)
a; €T
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Naive Bayes: Example

Consider PlayTennis again, and new instance
(Outlk = sun, Temp = cool, Humid = high, Wind = strong)

Want to compute:

cNB = argmaz.;ecP(c;) HP(ai|cj)

)

P(y) P(sunly) P(coolly) P(highly) P(strongly) = .005
P(n) P(sun|n) P(cool|n) P(high|n) P(strongn) = .021

— CNB =T
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Naive Bayes: Subtleties
e (Conditional independence assumption is often violated
P(ay,as...aylcj) = HP(ai\cj)
i
...but it works surprisingly well anyway.

e Naive Bayes posteriors often unrealistically close to 1 or 0
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What if none of the training instances with class ¢; have

attribute value a;? Then
P(ai|cj) =0

so P(cj) Hp(ai|c]-) =0

Typical solution is m-estimate for P(a;|c;) < RetD where
n is number of training examples for which ¢ = ¢;

n. number of examples for which ¢ = ¢; and a = a;

p is prior estimate for P(a;|c;)

m is weight given to prior (i.e. # of “virtual” examples)
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Learning to Classify Text
Why?

e Learn which news articles are of interest

e Learn to classify web pages by topic

Naive Bayes is among most effective algorithms

What attributes shall we use to represent text documents??
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Learning to Classify Text
Target concept Interesting? : Document{+, —}
1. Represent each document by vector of words
e one attribute per word position in document

2. Learning: Use training examples to estimate

e P(+)
. P(-)
e P(doc|+)
e P(doc|—)
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Naive Bayes conditional independence assumption

length(doc)
P(doc|c;) = H P(a; = wi|cj)
i=1

where P(a; = wg|c;) is probability that word in position 7 is wy,

given c;

One more assumption: P(a; = wi|cj) = Play, = wg|cj), Vi,m
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LEARN_NAIVE_BAYES_TEXT(Ezamples, C')

1. collect all words and other tokens that occur in Examples
e Vocab + ALL DISTINCT WORDS AND OTHER TOKENS IN Fzamples

2. calculate the required P(c;) and P(wg|c;j) probability terms
e FOR EACH TARGET VALUE ¢; IN C' DO

docs; < SUBSET OF Examples FOR WHICH THE TARGET
VALUE IS ¢;j

P(cj) < %

Text; < A SINGLE DOCUMENT CREATED BY CONCATENATING
ALL MEMBERS OF docs;

n TOTAL NUMBER OF WORDS IN Text; (COUNTING DUPLICATE
WORDS MULTIPLE TIMES)

FOR EACH WORD wy, IN Vocab

* Nj <— NUMBER OF TIMES WORD wjg OCCURS IN Temtj

ngp+1

* Plwkles) — iR
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CLASSIFY_NAIVE_BAYES_TEXT(Doc)

® positions < ALL WORD POSITIONS IN Doc THAT CONTAIN
TOKENS FOUND IN Vocab
e RETURN cyp, WHERE

cNB = argmaz.ccP(c)) H P(ailc))

i€Epositions
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Twenty NewsGroups

Given 1000 training documents from each group

Learn to classify new documents according to which newsgroup it came
from

comp.graphics misc.forsale
comp.os.ms-windows.misc rec.autos
comp.sys.ibm.pc.hardware rec.motorcycles
comp.sys.mac.hardware rec.sport.baseball
comp.windows.x rec.sport.hockey
alt.atheism sci.space
soc.religion.christian sci.crypt
talk.religion.misc sci.electronics
talk.politics.mideast sci.med
talk.politics.misc talk.politics.guns

Naive Bayes: 89% classification accuracy
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Article from rec.sport.hockey

Path: cantaloupe.srv.cs.cmu.edu!das-news.harvard.edu!ogicse!uwm.edu
From: xxx@yyy.zzz.edu (John Doe)

Subject: Re: This year’s biggest and worst (opiniom)...

Date: 5 Apr 93 09:53:39 GMT

I can only comment on the Kings, but the most
obvious candidate for pleasant surprise is Alex
Zhitnik. He came highly touted as a defensive
defenseman, but he’s clearly much more than that.
Great skater and hard shot (though wish he were
more accurate). In fact, he pretty much allowed
the Kings to trade away that huge defensive
liability Paul Coffey. Kelly Hrudey is only the
biggest disappointment if you thought he was any
good to begin with. But, at best, he’s only a
mediocre goaltender. A better choice would be
Tomas Sandstrom, though not through any fault of

his own, but because some thugs in Toronto decided
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Learning Curve for 20 Newsgroups

20News
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Figure 1: Accuracy vs. Training set size (1/3 withheld for test)
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Statistical Speech Recognition Model

What is the most likely sequence of words that the speech signal
represents?

P(words)P(signal|words)
P(signal)

P(words | signal) =

e P(words) is the language model. For example, “fat cat” is
more likely than “hat cat”.

e P(signal | words) is the acoustic model. For example,
“cat” is likely to be pronounced as ket.

e P(signal) is the likelihood of the speech signal.
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The Language Model

e Ideally, we’d like a complete model of the English language

to tell us the exact probability of a sentence.

e But there is no complete model of English. (Or any other
natural language.) You'd need to know the probability of
every sentence that could ever be uttered!

e A grammar should be helpful, but there is no complete
grammar for English and spoken language is notoriously

ungrammatical anyway.

e Statistical speech recognition systems approximate the
likelihood of sentences by collecting n-gram statistics of word

usage from large spoken language corpora.
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N-grams

e A unigram represents a single word. We estimate:

P(w) = frequency of w in corpus / number of words in corpus.

e A bigram represents a pair of sequential words. We
estimate:

P(ws | w1) = frequency of we following w1 | frequency of ws.

e A trigram represents a triple of sequential words. We
estimate:

P(ws | wi,wy) = frequency of ws following wi,wy / frequency of

wi,2.
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Unigram /Bigram Statistics
Word Unigram Previous words
count OF | IN|IS| ON|TO| FROM | THAT |WITH | LINE| VISION

THE 367 179|143 44| 44 | 65 35 30 17 0 0
ON 69 oO(0|1] 0|0 0 0 0 0 0
OF 281 0(0|2] 0|1 0 3 0 4 0
TO 212 00|19 0| O 0 0 0 0 1
IS 175 0O(0|0|] OO 0 13 0 1 3
A 153 36 |36(33] 23 | 21 14 3 15 0 0
THAT 124 0 (3|18 0 |1 0 0 0 0 0
WE 105 0O(0|0|] 1|0 0 12 0 0 0
LINE 17 1 0(0] O 1 0 0 0 0 0
VISION 13 3(0(0] 1|0 1 0 0 0 0
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The N-gram language model

Ideally, we’d like to compute:
P(w;..w,) = P(wy)P(ws | wi)P(ws | wyws)...P(wy, | wy...wy, 1)

But we rarely have the data necessary to compute those statistics
reliably. So we estimate by making independence assumptions and

using bigrams (or trigams).

The bigram model is:

P(wy...w,) = P(wy)P(ws | wy)P(ws | ws)...P(wy, | wy—1)

n
P(w;..w,) = H P(w; | wi—1)
i=1
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