Unsupervised Concept Induction

• The vast majority of research in ML has dealt with supervised tasks.

Given: attribute-value pairs that describe an object or observation

Predict: class value

• Flexible prediction:

Given: attribute-value pairs, but no knowledge of which are predictors and which are to be predicted

Predict: any feature from any others

Performance measure: ???

Slide CS478-1

Algorithms for Flexible Prediction

- Nearest-neighbor
- Transform supervised method:
 - Given k attributes, run the supervised algorithm k times, in each case with a different feature playing the role of the class attribute.
 - Produces k classifiers, each designed to predict one attribute as a function of the others.
- Neural network solutions
- Clustering

Learning Association Rules

basket data: each record consists of the transaction date and the items bought.

Goal: mine association rules from market basket data.

Sample rule: 98% of customers that purchase tires and auto accessories also get automotive services done.

Slide CS478-3

Definitions

Let $I = \{i_1, i_2, ..., i_m\}$ be a set of literals called *items*.

Let D be a set of transactions where each transaction $T \subseteq I$.

A transaction T contains X, a set of some items in I, if $X \subseteq T$.

An association rule is an implication of the form $X \Rightarrow Y$, where $X \subset I$, $Y \subset I$, and $X \cap Y = \emptyset$.

 $X \Rightarrow Y$ holds in D with confidence c if c% of transactions in D that contain X also contain Y.

 $X \Rightarrow Y$ holds in D with support s if s% of transactions in D contain $X \cup Y$.

Slide CS478-5

Learning Problem

Given a set of transactions D, the problem of mining association rules is to generate all association rules that have support and confidence greater than the user-specified minimum support (minsup) and minimum confidence (minconf).

High-Level Algorithm

- 1. Find all sets of items (*itemsets*) that have transaction support above *minsup*.
 - Itemsets with minimum support are called *large* itemsets.
 - All others are called *small* itemsets.
- 2. Use the large itemsets to generate the desired rules.
 - For every large itemset l, find all non-empty subsets of l.
 - For every such subset a, output a rule of the form $a \Rightarrow (l-a)$ if its confidence is at least *minconf*.

Slide CS478-7

Discovering Large Itemsets

- Make multiple passes over the data.
- Pass 1: count the support of individual items; determine which of them are *large*.
- Subsequent passes: Use the large itemsets from the previous pass to generate new potentially large itemsets, called *candidate* itemsets; count the actual support for these candidate itemsets and remove those below minsup.
- Continue until no new large itemsets are found.

An Algorithm for Discovering Large Itemsets

```
\begin{split} L_1 &= \{ \text{ large 1-itemsets } \}; \\ \text{for } (\mathbf{k}{=}2; \, L_{k-1} \neq \emptyset; \, \mathbf{k}{+}{+}) \text{ do} \\ C_k &= \text{ gen-new-candidates}(L_{k-1}); \\ \text{forall transactions } t \in D \text{ do} \\ C_t &= subset(C_k, t); \, //\text{candidates contained in } t \\ \text{forall candidates } c \in C_t \text{ do} \\ \text{c.count}{+}{+}; \\ L_k &= \{c \in C_k | \frac{c.count}{|D|} \geq minsup \} \\ \text{Return } (\bigcup_k L_k); \end{split}
```

Slide CS478-9

Generating New Candidates

```
GEN-NEW-CANDIDATES (L_{k-1})
```

Read each transaction t.

- -Determine which of the large itemsets in L_{k-1} are present in t.
- -Extend each such itemset l with all those large items that are present in t and occur later in the lexicographic ordering than any of the items in l.
- -Save these extensions in C.
- -Delete all itemsets $c \in C$ such that some (k-1)-subset of c is not in L_{k-1} .
- $-C_k = C_k \cup C.$

 $\operatorname{Return} C_k$.

Example

Assume $L_3=\{\{1,2,3\},\{1,2,4\},\{1,3,4\},\{1,3,5\},\{2,3,4\}\}.$ GEN-NEW-CANDIDATES (L_{k-1}) : in response to $t=\{1,2,3,4,5\}$, produces

Slide CS478-11