Connectionist Models of Learning
Neural Networks

Characterized by:

e A large number of very simple neuronlike processing

elements.

e A large number of weighted connections between the

elements.
e Highly parallel, distributed control.

e An emphasis on learning internal representations

automatically.
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Why Neural Nets?

Solving problems under the constraints similar to those of the
brain may lead to solutions to Al problems that would otherwise
be overlooked.

e Individual neurons operate very slowly.

e Neurons are failure-prone devices.

e Neurons promote approximate matching.
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1. Threshold unit

2. Fire

Real Neurons

3. Excitatory and inhibitory connections
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Simulated Neurons

threshold

sum
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Using Feedforward Nets for Classification

Feedforward, layered, fully connected

Marsha
Acquaintance

Lisa
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Backpropagation Procedure

Initialize weights. Until performance is satisfactory™*,

1. Present all training instances. For each one,

(a) Calculate actual output. (forward pass)

(b) Compute the weight changes. (backward pass)
i. Calculate error at output nodes. Compute adjustment to
weights from hidden layer to output layer accordingly.
ii. Calculate error at hidden layer. Compute adjustment to
weights from initial layer to hidden layer accordingly.

2. Add up weight changes and change the weights.
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Learning Threshold Values
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Requires a Smooth Threshold Function

Because backpropagation updates all weights simultaneously,

stair-step threshold function won’t work.
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Adjusting the Weights

Make a large change to a weight, w, if the change leads to a large

reduction in the errors observed at the output nodes.

d = desired value at output nodes
o = actual value at output nodes

error = d — o
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Adjusting the Weights
Let change in w;_,; be proportional to
e the slope of the threshold function at j
e the output at node ¢
e degree of error at j (benefit)

- ﬂz =d, —o,
— Bj = 2k wj—kok(1 — ok) Bk

e learning rate r

Change to w;—; should be proportional to 0;0;(1 — 0)5;.
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The Backpropagation Procedure

Pick a rate parameter r.
Until performance is satisfactory,
For each training instance,

Compute the resulting output.

Compute = d, — o, for nodes in the output layer.

Compute 3 = >, wj_k ox(1 — o) for all other nodes.

Compute weight changes for all weights using

Awi_v' =T 04 Oj(l — Oj)ﬂj

Add up weight changes for all training instances, and change the
weights.
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Backpropagation Algorithm (Mitchell)
Initialize all weights to small random numbers. Until satisfied, do

For each training example, do
e Input the training example to the network and compute the

network outputs
e For each output unit &

6k — Ok(l — Ok)(tk — Ok)
e For each hidden unit A

on —on(l—on) > wnlk

keoutputs

e Update each network weight wj ;
Wi j = Wi j + Aw j

where Aw; ; = né;x; ;
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Gradient Descent
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Learning Hidden Layer Representations

Input Output
X )
'oiﬂ% Vg‘f:v O 10000000 — 10000000
‘iigv\\ /5K 01000000 — 01000000
I AR
O @, O 00100000 — 00100000
/T
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Slide CS478-14




Learning Hidden Layer Representations

Input
10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

L A

Hidden Values

.89
.01
.01
.99
.03
.22
.80
.60

.04
11
97
97
.05
.99
.01
.94

.08
.88
.27
.71
.02
.99
.98
.01

L A

Output
10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001
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Hidden Units

Hidden units are nodes that are situated between the input

nodes and the output nodes.

Hidden units allow a network to learn non-linear functions.

Hidden units allow the network to represent combinations of

the input features.

Given too many hidden units, a neural net will simply

memorize the input patterns.

Given too few hidden units, the network may not be able to

represent all of the necessary generalizations.
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When to Consider Neural Networks

Input is high-dimensional discrete or real-valued (e.g. raw

sensor input)

Output is discrete, real-valued, or a vector of values
Possibly noisy data

Form of target function is unknown

Human readability of result is unimportant
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More on Backpropagation

Gradient descent over entire network weight vector
Easily generalized to arbitrary directed graphs

Will find a local, not necessarily global error minimum
— In practice, often works well (can run multiple times)
Minimizes error over training examples

— Will it generalize well to subsequent examples?
Training can take thousands of iterations — slow!

Using network after training is very fast
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Expressive Capabilities of ANNs

Boolean functions:

e Every boolean function can be represented by network with
single hidden layer
e but might require exponential (in number of inputs) hidden

units

Continuous functions:

e Every bounded continuous function can be approximated
with arbitrarily small error, by network with one hidden
layer [Cybenko 1989; Hornik et al. 1989]

e Any function can be approximated to arbitrary accuracy by
a network with two hidden layers [Cybenko 1988].
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Momentum
Awij(t + 1) = n(Sin + a[wij(t) — U)Z'j(t — 1)}

e A momentum factor, o, makes the n*” weight change

th

partially dependent on the (n — 1)* weight change. « ranges

between 0 and 1.

e Momentum tends to keep the weight moving in the same

direction, thereby improving convergence.

e Tends to increase the step size in regions where the gradient

is unchanging, speeding convergence.

e Tends to avoid getting caught in small local minima and in

oscillations about local minima.
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How many training pairs are needed?

This is a difficult question and depends on the problem, the
training examples, and the network architecture. But a good rule
of thumb is:

where W=# weights; P=% training pairs; e=error rate

For example, for e = 0.1, a net with 80 weights will require 800
training patterns to be assured of getting 90% of the test patterns

correct (assuming it got 95% of the training patterns correct).
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How long should you train the net?

e The goal is to achieve a balance between correct responses
for the training patterns and correct responses for new
patterns. (That is, a balance between memorization and

generalization.)

e If you train the net for too long, then you run the risk of

overfitting,.

e In general, the network is trained until it reaches an

acceptable error rate (e.g., 95%).
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Overfitting in ANNs

Error versus weight updates (example 1)
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Overfitting in ANNs

Error versus weight updates (example 2)
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Implementing Backprop — Design Decisions

1. Choice of r
2. Network architecture

(a) How many hidden layers? how many hidden units per
layer?
(b) How should the units be connected? (Fully? Partial? Use

domain knowledge?)

3. Stopping criterion when should training stop?
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Recurrent Networks
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(c) Recurrent network
unfolded in time
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