CS478 Machine Learning
Spring 2000
Assignment 1
Due electronically by Tuesday, February 22, 11a.m.

Problem Set Portion (30 pts)

1. Exercise 1.2, in Mitchell (5 pts).
2. Exercise 2.2, in Mitchell (10 pts).

3. Exercise 2.4, in Mitchell (15 pts). You don’t need to turn in the hypotheses drawn on the
diagram.

Programming Portion (70 pts)

Implement the ID3 decision tree algorithm as described in Sections 3.1-3.4 of the Mitchell text.
You may use C, C++, Java, Lisp, or Scheme to implement ID3. If you would like to use any
other language, contact Prof. Cardie for approval first.! Your system only needs to handle binary
classification tasks (i.e. each instance will belong to one of two classes). However, your system must
be able to handle multi-valued attributes. The attribute names will be specified at the beginning of
the training file, but you will need to determine the possible values for each attribute dynamically
by reading the training instances. (You can assume that all possible values are represented in the
training data and that there are no missing values in the training or test data.) It may be easiest
to treat each attribute value as a string. You do not need to implement pruning or deal with
continuous-valued inputs, etc.

You may assume that each data file will contain no more than 1000 instances, the instance
representations will use no more than 200 attributes, and each attribute will have no more than
20 possible values. When building a decision tree, if you reach a leaf node but still have examples
that belong to different classes, then choose the most frequent class (among the instances at the
leaf node). If you reach a leaf node in the decision tree and have no examples left or the examples
are equally split among multiple classes, then choose the class that’s most frequent in the entire
training set.

Your program should prompt the user for a training file and a test file or allow both to be
specified in the command line invocation of your program. This is important because we will be
running your program on additional data sets for grading purposes! There should be no graphical
user interface (GUI) of any kind.

You will need to turn in a Trace File showing the performance of your decision tree program
on various training and test sets.

GENERATING A TRACE FILE

1. Build a decision tree using the training instances and print the first four levels of the decision
tree in a depth-first fashion. For each node, print the attribute name associated with the
node. For each branch, print the attribute value associated with the branch. For each leaf
node, print the classification of the instances at that node followed by the number of instances.
The exact format that you should use is illustrated on the next page with an example. For

'For C and C++ prorammers, we encourage the use of gec, the GNU compiler. For Java programmers, we
encourage the use of SUN’s JDK 1.2.

simplicity, in this example we assumed that there are exactly two instances at each mammal
leaf node and three instances at each notmammal leaf node. Of course, in a real decision tree
the number of instances at each leaf node can be highly variable!

Sample decision tree:

DOMESTIC
yes/ \no
/ \
mammal \
LEGS
/ I\
two/ four| \eight
/ I\
/ | \
notmammal TAIL notmammal
/ \
yes / \ no
/ \

mammal notmammal
Sample trace for the decision tree above:

LEVEL1: DOMESTIC

BRANCH: yes
LEVEL2: mammal (2)
BRANCH: no

LEVEL2: LEGS
BRANCH: two

LEVEL3: notmammal (3)
BRANCH: four
LEVEL3: TAIL

BRANCH: yes
LEVEL4: mammal (2)
BRANCH: no

LEVEL4: notmammal (3)
BRANCH: eight
LEVEL3: notmammal (3)

. Use the learned decision tree to classify the training instances. Print the accuracy of the
tree. (In this case, the tree has been trained and tested on the same data set.) The accuracy
should be computed as the percentage of examples that were correctly classified. For example,
if 86 of 90 examples are classified correctly, then the accuracy of the decision tree would be
95.6%.

Accuracy on training set (90 instances): 95.6%

3. Use the learned decision tree to classify the test instances. Print the accuracy of the tree.
(In this case, the decision tree has been trained and tested on different data sets.)

Accuracy on test set (10 instances): 60.0%

GRADING CRITERIA
The programming portion of this assignment will be graded on both correctness (50 points) and
documentation (20 points).

Correctness

50 points will be based on the correctness of your decision tree program and the trace output.
We will likely run your program on a new data set to test your code, so we encourage you to do
the same!

Documentation

20 points will be based on the documentation accompanying your source code. We expect
each source file to contain a paragraph or two at the beginning to describe the contents of that
file. The main program file should describe the functionality of the program: the type of input it
expects, the type of output it produces, and the function that it performs. The data structures
used in the program must also be clearly described. The code should be modular. This implies
that functions (procedures, methods) should be SHORT. Each function (procedure, method) should
also be documented, and in-line comments should explain any code that is unusual or potentially
confusing. With your source code, please include a README file that gives us instructions for
running your program.

FiLEs To TurnN IN

1. The source code and executable(s) for the decision tree program. Include all files that go
with it, such as .h files. If you are using C or C++, please include a Makefile. The extension
of the source files should indicate the programming language in which the code was written
(e.g. dtree.c or dtree.scheme).

2. The README file.

3. A trace of your dtree program on the two data sets listed below. The data sets can be
downloaded from the CS478 web page.

(a) tictactoe.train
tictactoe.test

(b) mushroom.train
mushroom.test

Trace files should be named with a “.trace” extension.

4. Your answers to the problem set. The answers to the questions may be turned in as an ASCII
text file (assignl.txt), a postscript file (assignl.ps), or a pdf file (assignl.pdf). Other file
formats will not be accepted.

ELECTRONIC SUBMISSION

All of the files for this assignment should be submitted electronically as a single zip archive or
tar file. Electronic submission is done through an interface available at the CS478 home page. Any
additional instructions for electronic submission will be posted there.

DArA FIiLE FORMAT

The data files will have the following format. The file will begin with the keyword “attributes”
followed by the list of attribute names and then the keyword “instances” followed by a list of
instances. Each instance will consist of a name, a list of attribute values, and a classification, i.e.
a class value.
The following is a sample data file. This sample file lists six attributes and eight instances.
.

Each instance has a name (e.g. “dog”), six values for each of the attributes respectively (e.g. “no
no four yes yes no”), and the correct classification for that instance (e.g. “mammal”).

attributes feathers fins legs tail domestic aquatic
instances

dog no no four yes yes no mammal

cat no no four yes yes no mammal

sparrow yes no two yes no no notmammal

elephant no no four yes no no mammal

mouse no no four yes no no mammal

dolphin no no zero yes no yes mammal

spider no no eight no no no notmammal

WOorm no no zero no no no notmammal

The training and test files will both have the same format. But note that the classifications
are included for different purposes. During training, the classifications are essential to build the
decision tree. During testing, the classifications should be used only to determine whether the
decision tree correctly classified each instance or not.

