DAgger: Taming Covariate Shift with No Regret

Sanjiban Choudhury

Behavior Cloning crashes into a wall

Train Test Mismatch

Training / Validation Loss

Test Loss

T - 1 $\sum \mathbb{E}_{s_t \sim d_t^{\pi^*}} [\ell(s_t, \pi(s_t))] \qquad O(\epsilon T)$ t = 0 $\boldsymbol{\epsilon}$

Demonstrations

Can we mathematically quantify how much worse BC is compared to the demonstrator?

First, let's define performance of a policy

T - 1 $J(\pi) = \mathop{\mathbb{E}}_{a_t \sim \pi(s_t)} \left[\sum_{t=0}^{t} c(s_t, a_t) \right]$ (Performance) $\sum_{s_{t+1} \sim \mathcal{T}(s_t, a_t)} \sum_{t=0}^{t=0} c(s_t, a_t)$

Second, let's define performance difference

We want to *minimize* the performance difference

 $J(\pi) - J(\pi^*)$

(Performance (Performance of my learner) of my demonstrator)

There exists an MDP where BC has a performance difference of $O(\epsilon T^2)$

Behavior cloning hits the worst case!

We are going to such a MDP right now, and you will see more in A1!

The demonstrator always takes a left

Assume the following cost function

$c(s,a) = \mathbb{I}(a \neq \pi^*(s))$ (0 if you agree with expert, 1 otherwise)

Assume the following cost function

Note that you never see what the expert prefers in other states

$c(s,a) = \mathbb{I}(a \neq \pi^*(s))$ (0 if you agree with expert, 1 otherwise)

Show that BC has a performance difference of $O(\epsilon T^2)$

$c(s,a) = \mathbb{I}(a \neq \pi^*(s))$ (0 if you agree with expert, 1 otherwise)

Proof

So, it seems BC is totally doomed ...

Environment	Expert	BC	
CartPole	500 ± 0	500 ± 0	
Acrobot	-71.7 ± 11.5	-78.4 ± 14.2	
MountainCar	-99.6 ± 10.9	-107.8 ± 16.4	
Hopper	3554 ± 216	3258 ± 396	
Walker2d	5496 ± 89	5349 ± 634	
HalfCheetah	4487 ± 164	4605 ± 143	
Ant	4186 ± 1081	3353 ± 1801	

[SCV+ arXiv '21]

But, BC works surprisingly often!!

[Rajeswaran et al. '17]

D4RL Human-Experts

[Florence et al. '21]

Deep Imitation Learning for Complex Manipulation Tasks from Virtual Reality Teleoperation

Tianhao Zhang^{*12}, Zoe McCarthy^{*1}, Owen Jow¹, Dennis Lee¹, Xi Chen¹², Ken Goldberg¹, Pieter Abbeel¹⁻⁴

Fig. 1: Virtual Reality teleoperation in action

But, BC works surprisingly often!!

On Bringing Robots Home Nur Muhammad (Mahi) Shafiullah*† Anant Rai* Haritheja Etukuru Yiqian Liu NYU NYU NYU NYU Ishan Misra Lerrel Pinto Soumith Chintala NYU Meta Meta

Collect 24 demos 5 minutes

 \rightarrow Demo

 \rightarrow Robot action

Fine-tune model 15 minutes

Deploy!

Drive ϵ to 0

When can we actually do this?

 $O(\epsilon T^2)$

The Realizable Setting

With infinite data and a realizable expert, can drive $\epsilon \rightarrow 0$

Non-realizable Expert π^{\star} Realizable Expert π^{\star} Policy Class

Realizable settings are easy ...

Why is the expert realizable here? (Easy)

Environment	Expert	BC	
CartPole	500 ± 0	500 ± 0	
Acrobot	-71.7 ± 11.5	-78.4 ± 14.2	
MountainCar	-99.6 ± 10.9	-107.8 ± 16.4	
Hopper	3554 ± 216	3258 ± 396	
Walker2d	5496 ± 89	5349 ± 634	
HalfCheetah	4487 ± 164	4605 ± 143	
Ant	4186 ± 1081	3353 ± 1801	

[SCV+ arXiv '21]

[Rajeswaran et al. '17]

D4RL Human-Experts

[Florence et al. '21]

Why is the expert realizable here? (Easy)

Deep Imitation Learning for Complex Manipulation Tasks from Virtual Reality Teleoperation

Tianhao Zhang^{*12}, Zoe McCarthy^{*1}, Owen Jow¹, Dennis Lee¹, Xi Chen¹², Ken Goldberg¹, Pieter Abbeel¹⁻⁴

Fig. 1: Virtual Reality teleoperation in action

On Bringing Robots Home

Nur Muhammad (Mahi) Shafiullah*†	Anant Rai*	Haritheja Etukuru	Yiqian Liu
NYU	NYU	NYU	NYU

Ishan Misra Meta

Soumith Chintala Meta

Lerrel Pinto NYU

Collect 24 demos 5 minutes

Demo

 \rightarrow Robot action

Fine-tune model 15 minutes

Deploy!

Non-realizable Expert!

What is the hard case where $\epsilon > 0$?

Poll

When poll is active respond at **PollEv.com/sc2582**

Give examples of a non-realizable expert

Hint: There are at least 3 categories!

Idea for a New Algorithm!

What if we just queried the expert for the best action on states the learner visits?

Interactive Behavior Cloning Initialize with a random policy π_1 # Can be BC

For i = 1, ..., N

$$\mathcal{D}_i = \{s_0, a_0, s_1, a_1, \dots\}$$
Also called a rollo

$$\mathcal{D}_i = \{s_0, \pi^*(s_0), s_1, \pi^*(s_1), \dots\}$$

Train a new learner on this dataset

 $\pi_{i+1} \leftarrow \mathsf{Train}(\mathscr{D}_i)$

Execute policy π_i in the real world and collect data

Query the expert for the optimal action on learner states

Does Interactive BC solve our Tree MDP?

Let's assume depth 2

Expert always take left

Assume every iteration $\pi_{i+1} \leftarrow \text{Train}(\mathcal{D}_i)$ we can drive down loss to ϵ

Let's walk through how interactive BC does!

Interactive BC is also $O(\epsilon T^2)!$

 $\pi_{i+1} \leftarrow \mathsf{Train}(\mathcal{D}_i)$

 π_{i+1} can have a totally different distribution than \mathscr{D}_i generated by π_i

Instead of throwing out the old dataset, what if we aggregated data over iterations?

Initialize with a random policy π_1 # Can be BC Initialize empty data buffer $\mathcal{D} \leftarrow \{\}$ For i = 1, ..., N $\mathcal{D}_i = \{s_0, a_0, s_1, a_1, \dots\}$ $\mathcal{D}_i = \{s_0, \pi^*(s_0), s_1, \pi^*(s_1), \dots\}$ Aggregate data $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_i$ Select the best policy in $\pi_{1:N+1}$

DAgger (Dataset Aggregation)

- Execute policy π_i in the real world and collect data # Also called a rollout
- Query the expert for the optimal action on learner states
- Train a new learner on this dataset $\pi_{i+1} \leftarrow \text{Train}(\mathcal{D})$

Why does DAgger work?

Theory of Online Learning explains why (Next Lecture!)

