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Markov Decision Process

2

< S , A , C , 𝒯 >
A mathematical framework for modeling sequential decision making
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What does it mean to solve 
a MDP?



Solving an MDP means finding a Policy

Policy: What action should I choose at  
any state?

π : st → at
A function that maps 


state (and time) to action

Image courtesy Dan Klein



What makes a policy optimal?
Which policy is better?

Policy π1 Policy π2

C=100

C=-100

C=100

C=-100

Courtesy Dan Klein



What makes a policy optimal?

min
π

𝔼
at ∼ π(st)

st+1 ∼ 𝒯(st, at)

[
T−1

∑
t=0

c(st, at)]

(Sample a start state, 

then follow  till end


of episode)   
π

(Sum over all costs)
(Search over 


Policies)
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One last piece …



Which of the two outcomes do you prefer?

$50 today
$1 million


a 1000 days later 

Image courtesy Dan Klein



Discount: Future rewards / costs matter less

At what discount value does it make sense to take

$50 today than $1million in 1000 days?

Image courtesy Dan Klein



What makes a policy optimal?

min
π

𝔼
at ∼ π(st)

st+1 ∼ 𝒯(st, at)

[
T−1

∑
t=0

γtc(st, at)]

(Sample a start state, 

then follow  till end


of episode)   
π

(Discounted sum 

of costs)

(Search over 

Policies)



How do we solve a MDP?

Image courtesy Dan Klein
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Let’s start with how NOT 
to solve MDPs



What would brute force do?

min
π

𝔼
at ∼ π(st)

st+1 ∼ 𝒯(st, at)

[
T−1

∑
t=0

γtc(st, at)]

How much work would brute force have to do?



min
π

𝔼
at ∼ π(st)

st+1 ∼ 𝒯(st, at)

[
T−1

∑
t=0

γtc(st, at)]

1. Iterate over all possible policies 

What would brute force do?

2. For every policy, evaluate the cost

3. Pick the best one

There are




Policies!!!!
(AS)T
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MDPs have a very special 
structure



Introducing the “Value” Function

Vπ(st)
Read this as: Value of a policy at a given state and time



Vπ(st)
Read this as: Value of a policy at a given state and time

Vπ(st)

π st+1 π

= ct γct+1+ + γ2ct+2 +

st π

⋯

Introducing the “Value” Function



The Bellman Equation

Vπ(st) = c(st, π(st)) + γ𝔼st+1
Vπ(st+1)

Value of

current state 

Value of

future state 

Cost

Why is this true?



Optimal policy

π* = arg min
π

𝔼s0
Vπ(s0)



Bellman Equation for the Optimal Policy

Vπ*(st) = min
at

[c(st, at) + γ𝔼st+1
Vπ*(st+1))]

Optimal

Value

Optimal

Value of 


Next State

Cost

Why is this true?



We use  to denote optimal valueV*

V*(st) = min
at

[c(st, at) + γ𝔼st+1
V*(st+1))]

Optimal

Value

Optimal

Value of 


Next State

Cost



The Bellman Equation
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V*(st) = min
at

[c(st, at) + γ𝔼st+1
V*(st+1))]

Image courtesy Dan Klein



Activity!
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Value Iteration

Image courtesy Dan Klein



Setup
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Swamp
< S , A , C , 𝒯 >

• Two absorbing states: 
Goal and Swamp  
(can never leave)


• c(s) = 0 at the goal, 
c(s) = 1 everywhere else 


• Transitions deterministic

• Time horizon T = 30

• Discount γ = 1



What is the optimal value at T-1?

26

π*(sT−1) = arg min
a

c(sT−1, a)V*(sT−1) = min
a

c(sT−1, a)



What is the optimal value at T-2?
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V*(sT−2) = min
a

[c(sT−2, a) + V*(sT−1)] π*(sT−2) = arg min
a

[c(sT−2, a) + V*(sT−1)]



Dynamic Programming all the way!
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π*(st) = arg min
a

[c(st), a) + V*(st+1)]V*(st) = min
a

[c(st, a) + V*(st+1)]
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Value Iteration

Initialize value function at last time-step

for  t = T − 2,…,0

Compute value function at time-step t

V*(s, t) = min
a [c(s, a) + γ∑

s′￼

𝒯(s′￼|s, a)V*(s′￼, t + 1)]

V*(s, T − 1) = min
a

c(s, a)



Quiz!



Computational complexity of value iteration



Why is the optimal policy a function of time?
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Pulling the goalie 
when you 


are losing and have 
seconds left ..
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What happens when horizon is infinity?



What happens when horizon is infinity?

∞

Vπ*(st) = min
at

[c(st, at) + γ𝔼st+1
Vπ*(st+1))]



Value Function Converges! (For )γ < 1

∞

V*(s) = min
a

[c(s, a) + γ𝔼s′￼∼𝒯(s,a)V*(s)]

The Same!
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Infinite Horizon Value Iteration

Initialize with some value function V*(s)

Update values

V*(s) = min
a [c(s, a) + γ∑

s′￼

𝒯(s′￼|s, a)V*(s′￼)]

Repeat forever



Policy Iteration

Image courtesy Dan Klein



Which converges faster: value or policy?
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Values Policy
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Policy converges faster 

than the value

Can we iterate over policies?



Policy Iteration
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Repeat forever

Evaluate policy

Improve policy

Init with some policy  π

Vπ(s) = c(s, π(s)) + γ𝔼s′￼∼𝒯(s,a)Vπ(s′￼)]

π+(s) = arg min
a

c(s, a) + γ𝔼s′￼∼𝒯(s,a)Vπ(s′￼)]
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Init with some policy  π



Iteration 1
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Vπ(s) = c(s, π(s)) + γ𝔼s′￼∼𝒯(s,a)Vπ(s′￼)] π+(s) = arg min
a

c(s, a) + γ𝔼s′￼∼𝒯(s,a)Vπ(s′￼)]



Policy Iteration
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Vπ(s) = c(s, π(s)) + γ𝔼s′￼∼𝒯(s,a)Vπ(s′￼)] π+(s) = arg min
a

c(s, a) + γ𝔼s′￼∼𝒯(s,a)Vπ(s′￼)]



How do we evaluate policy?
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Vπ(s) = c(s, π(s)) + γ𝔼s′￼∼𝒯(s,a)Vπ(s′￼)]

Idea 1: Start with an initial guess, and update (like value iteration) 

Vi+1(s) = c(s, π(s)) + γ𝔼s′￼∼𝒯(s,a)Vi(s′￼)]

Idea 2: It’s a linear set of equations (no max)! Solve for Eigen values

⃗Vπ = ⃗cπ + γ𝒯π ⃗Vπ ⃗Vπ = (1 − 𝒯π)−1 ⃗cπ



Value Iteration vs Policy Iteration



The Bellman Equation
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Vπ*(st) = min
at

[c(st, at) + γ𝔼st+1
Vπ*(st+1))]

Image courtesy Dan Klein
Image courtesy Dan Klein
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tl;dr


