Solving Markov Decision Processes

Sanjiban Choudhury

Markov Decision Process

A mathematical framework for modeling sequential decision making

What does it mean to solve a MDP?

Solving an MDP means finding a Policy

$$\pi: S_t \rightarrow a_t$$

A function that maps state (and time) to action

Policy: What action should I choose at any state?

What makes a policy optimal?

Which policy is better?

Policy π_1

Policy π_2

What makes a policy optimal?

$$\min_{\substack{\pi \text{ (Search over Policies)}}} \mathbb{E}_{a_t \sim \pi(s_t)} \left[\sum_{a_t \sim \pi(s_t)}^{1} c(s_t, a_t) \right]$$

$$\sum_{t=0}^{t} c(s_t, a_t)$$
(Sum over all costs)

(Sample a start state, then follow π till end of episode)

One last piece ...

Which of the two outcomes do you prefer?

Discount: Future rewards / costs matter less

At what discount value does it make sense to take \$50 today than \$1million in 1000 days?

What makes a policy optimal?

$$\min_{\substack{\pi \\ Policies)}} \mathbb{E}_{\substack{a_t \sim \pi(s_t) \\ s_{t+1} \sim \mathcal{T}(s_t, a_t)}} [\sum_{t=0}^{T-1} \gamma^t c(s_t, a_t)]$$
(Search over Policies)
$$\sum_{t=0}^{T-1} \gamma^t c(s_t, a_t)$$
(Discounted sum of costs)

(Sample a start state,

then follow π till end

of episode)

How do we solve a MDP?

Image courtesy Dan Klein

Let's start with how NOT to solve MDPs

What would brute force do?

$$\min_{\pi} \mathbb{E}_{a_t \sim \pi(s_t)} \left[\sum_{t=0}^{I-1} \gamma^t c(s_t, a_t) \right]$$

$$s_{t+1} \sim \mathcal{T}(s_t, a_t)$$

How much work would brute force have to do?

What would brute force do?

$$\min_{\boldsymbol{\pi}} \quad \mathbb{E} \left[\sum_{a_t \sim \pi(s_t)}^{T-1} \sum_{t=0}^{T-1} \gamma^t c(s_t, a_t) \right]$$

$$s_{t+1} \sim \mathcal{T}(s_t, a_t)$$

- 1. Iterate over all possible policies
- 2. For every policy, evaluate the cost
 - 3. Pick the best one

There are $(A^S)^T$ Policies!!!!

MDPs have a very special structure

Introducing the "Value" Function

Read this as: Value of a policy at a given state and time

Introducing the "Value" Function

Read this as: Value of a policy at a given state and time

$$V^{\pi}(s_t) = c_t + \gamma c_{t+1} + \gamma^2 c_{t+2} +$$

The Bellman Equation

$$V^{\pi}(s_t) = c(s_t, \pi(s_t)) + \gamma \mathbb{E}_{s_{t+1}} V^{\pi}(s_{t+1})$$

Value of current state

Cost

Value of future state

Why is this true?

Optimal policy

$$\pi^* = \underset{\pi}{\operatorname{arg min}} \mathbb{E}_{s_0} V^{\pi}(s_0)$$

Bellman Equation for the Optimal Policy

$$V^{\pi^*}(s_t) = \min_{a_t} \left[c(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1}} V^{\pi^*}(s_{t+1}) \right]$$

Optimal Value

Cost

Optimal Value of Next State

Why is this true?

We use V^* to denote optimal value

$$V^*(s_t) = \min_{a_t} \left[c(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1}} V^*(s_{t+1}) \right]$$

Optimal Value

Cost

Optimal Value of Next State

The Bellman Equation

$$V^*(s_t) = \min_{a_t} \left[c(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1}} V^*(s_{t+1}) \right]$$

Activity!

Value Iteration

Setup

$$\langle S, A, C, \mathcal{I} \rangle$$

- Two absorbing states:
 Goal and Swamp
 (can never leave)
- c(s) = 0 at the goal, c(s) = 1 everywhere else
- Transitions deterministic
- Time horizon T = 30
- Discount $\gamma = 1$

What is the optimal value at T-1?

$$V^*(s_{T-1}) = \min_{a} c(s_{T-1}, a) \qquad \pi^*(s_{T-1}) = \arg\min_{a} c(s_{T-1}, a)$$

What is the optimal value at T-2?

$$V^*(s_{T-2}) = \min_{a} [c(s_{T-2}, a) + V^*(s_{T-1})] \qquad \pi^*(s_{T-2}) = \arg\min_{a} [c(s_{T-2}, a) + V^*(s_{T-1})]$$

Dynamic Programming all the way!

$$V^*(s_t) = \min_{a} [c(s_t, a) + V^*(s_{t+1})]$$

$$\pi^*(s_t) = \arg\min_{a}[c(s_t), a) + V^*(s_{t+1})]$$

Value Iteration

Initialize value function at last time-step

$$V^*(s, T-1) = \min_{a} c(s, a)$$

for
$$t = T - 2, ..., 0$$

Compute value function at time-step t

$$V^{*}(s,t) = \min_{a} \left[c(s,a) + \gamma \sum_{s'} \mathcal{T}(s'|s,a) V^{*}(s',t+1) \right]$$

Quiz

Computational complexity of value iteration

Initialize value function at last time-step

$$V^*(s, T-1) = \min_a c(s, a)$$

for
$$t = T - 2,...,0$$

Compute value function at time-step t

$$V^{*}(s,t) = \min_{a} \left[c(s,a) + \gamma \sum_{s'} \mathcal{T}(s'|s,a) V^{*}(s',t+1) \right]$$

When poll is active respond at **PollEv.com/sc2582**

Why is the optimal policy a function of time?

Pulling the goalie when you are losing and have seconds left ...

What happens when horizon is infinity?

What happens when horizon is infinity?

$$V^{\pi^*}(s_t) = \min_{a_t} \left[c(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1}} V^{\pi^*}(s_{t+1}) \right]$$

Value Function Converges! (For $\gamma < 1$)

$$V^*(s) = \min_{\alpha} \left[c(s, \alpha) + \gamma \mathbb{E}_{s' \sim \mathcal{J}(s, \alpha)} V^*(s) \right]$$

Infinite Horizon Value Iteration

Initialize with some value function $V^*(s)$

Repeat forever

Update values

$$V^*(s) = \min_{a} \left[c(s, a) + \gamma \sum_{s'} \mathcal{T}(s'|s, a) V^*(s') \right]$$

Policy Iteration

Which converges faster: value or policy?

Values

Policy converges faster than the value

Can we iterate over policies?

Policy Iteration

Init with some policy π

Repeat forever

Evaluate policy

$$V^{\pi}(s) = c(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)} V^{\pi}(s')$$

Improve policy

$$\pi^{+}(s) = \arg\min_{a} c(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)} V^{\pi}(s')$$

Init with some policy π

Iteration 1

$$V^{\pi}(s) = c(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)} V^{\pi}(s')$$

$$\pi^{+}(s) = \arg\min_{\sigma} c(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)} V^{\pi}(s')$$

Policy Iteration

$$V^{\pi}(s) = c(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)} V^{\pi}(s')$$

$$\pi^{+}(s) = \arg\min_{\sigma} c(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)} V^{\pi}(s')$$

How do we evaluate policy?

$$V^{\pi}(s) = c(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim \mathcal{J}(s, a)} V^{\pi}(s')$$

Idea 1: Start with an initial guess, and update (like value iteration)

$$V^{i+1}(s) = c(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s,a)} V^{i}(s')$$

Idea 2: It's a linear set of equations (no max)! Solve for Eigen values

$$\overrightarrow{V^{\pi}} = \overrightarrow{c^{\pi}} + \gamma \mathcal{T}^{\pi} \overrightarrow{V^{\pi}} \qquad \longrightarrow \qquad \overrightarrow{V^{\pi}} = (1 - \mathcal{T}^{\pi})^{-1} \overrightarrow{c^{\pi}}$$

Value Iteration vs Policy Iteration

o Both value iteration and policy iteration compute the same thing (all optimal values)

o In value iteration:

- o Every iteration updates both the values and (implicitly) the policy
- o We don't track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

- We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
- o After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
- o The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

The Bellman Equation

$$V^{\pi^*}(s_t) = \min_{a_t} \left[c(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1}} V^{\pi^*}(s_{t+1}) \right]_{\text{Image courtesy Dan Klein}}$$

Image courtesy Dan Klein

tl,dr

Value Iteration

Initialize value function at last time-step

$$V^*(s, T-1) = \min_{a} c(s, a)$$

for
$$t = T - 2,...,0$$

Compute value function at time-step t

$$V^*(s,t) = \min_{a} \left[c(s,a) + \gamma \sum_{s'} \mathcal{T}(s'|s,a) V^*(s',t+1) \right]$$

Policy Iteration

Init with some policy π

Repeat forever

Evaluate policy

$$V^{\pi}(s) = c(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)} V^{\pi}(s')$$

Improve policy

$$\pi^+(s) = \arg\min_{a} c(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)} V^{\pi}(s')]$$