Controlling Robots via Large
Language Models

Sanjiban Choudhury

Lornell Bowers C1S
Computer Science

Today is the last day.

Have we learnt anything
useful at all?

Let's go back to
Episode #1

The Problem: Real world is complex!

. t “
i L e '
: .
= RN 'Ll
_ ”PJ . ; 3)

W O\ I

/Object Detection,\

\e o Segmentation

:\;\;Xg‘rl ' 2] '
NERFs

High-level

I Task Planner]

Low-level

 Policies RLHF o
a MO deI- A ** / _ Y
\,ecx%\ based RL Offline \ec & LeC
" (Dreamer) L / RL 42> >im2Real yor
SRS S B S

/Object Detection,\

\e o Segmentation

:\;\;Xg‘rl ' 2] '
NERFs

Low-level

.. \ ¢
 Policies RLHF o
a MO deI- A ** / _ Y
\,ecx%\ based RL Offline \ec & LeC
" (Dreamer) L / RL 42> >im2Real jyor
SRS IS R S

Poll!

When poll is active respond at PollEv.com/sc2582

Send sc2582 to 22333

The Problem:

Many tasks are personal

Cooking is personal

IS personal

1zation

[A):.;).i_. .

MAAAAAARRAZ 2 oo Y

Home organ

Robots today are NOT personal

~

Choose option

1. Start
2. Clean
3. Stop

Engineers program behaviors Ship robot Frustrate users!

Cannot be flexibly re-programmed by everyday users

Can we implicitly program
robots via natural interactions?

Programming via natural interactions

Demonstrations,
Language

-~
4N

Feedback,
Interactive QA

Question: How do we translate between humans and robots?

\
~
\
o\
o

L

Large Language Models to the rescue!

D /
R ' . W
13
B
o
v
\
/ /)
’
h |
v

\
|
\
2
o

L

LARGE
— LANGUAGE
MODELS!

An Example

MOSAIC

A Modular System for Assistive and Interactive Cooking

R1 Subtasks
Stir

| am preparing vegetables for the soup. Can you pour some salt after stirring?

T

R1 Current Code

= stir(“pot’)

R2 Current Code

=) place(“table’)

R2 Subtasks
Fetch Salt

A Modular System
for Assistive and Interactive Cooking

Hey MOSAIC! It's so cold today! Can you suggest
some soup recipe’?

Chicken tomato soup would be a great choice for a cold day.
Let's start cooking!

No, | don't want chicken in it. How about mixed
vegetable soup? | got a bunch of vegetables.

If you are looking to use a bunch of vegetables and want a
delicious soup, the mixed vegetable soup from our recipe list
would be perfect! Let's get started on that!

Shall Alice pour salt into the pot and then stir it for you?
Shall Bob go get the soup base for you?

Think-Pair-Share!

Think (30 sec): What are some of the challenges to convert natural
language conversation to code that a robot can execute?

Pair: Find a partner

| am preparing vegetables for the soup. Can you pour some salt after stirring? | '
™ RI1 Subtasks R2 Subtasks |'

S h a re (45 SeC) Stir - Rl Current Code R2‘ Current Code - Fetch Salt

ao tol “pantrv)
{ = U

S e \ \ Aalll Ly

LN AN\ -0 NE ..

rm_ to(“pot”)

Partners exchange > stixCpor
ideas

go_TCo(Tapblie)
=) place(’table’’)

g
0

How things

.\ -

workea
pre-LLM

Two Fundamental Challenges

Two Fundamental Challenges

Challenge 1:
Ground natural language
in robot state

"Pick up the farthest red block on the lefi

(ﬂ' 4 \\ A

L, ! | v

25

Two Fundamental Challenges

Challenge 1 Challenge 2:
Ground natural language Planning actions to
in robot state solve a task

"Pick up the farthest red block on the lefi

Find “salt”

/

md pepper’

20

Two Fundamental Challenges

Challenge 1:
Ground natural language
in robot state

"Pick up the farthest red block on the lefi

2 h a

! | v

27

What is grounding? Why is it hard?

"Pick up the farthest red block on the left

1 Rt
| W,
R N o

z

28

Grounding: Mapping language to robot's internal state

MDP

Natural Language

"Pick up the farthest

a7
red block” <5,A,R,J >

29

Grounding: Mapping language to robot's internal state

Natural Language

"Pick up the farthest
red block”

@
objl

obj2

obj3

obj4

MDP

Cr
R, T >
on(‘objl1’,’'table’)
on(‘obj2’, "table’)
on(‘obj3’, 'table’)
on(‘obj4’,'table’)
left(‘obj2’,’0bj1’")
left(‘obj3’,’'0obj2")
left(‘obj4’,'0obj3’")

30

Grounding: Mapping language to robot's internal state

MDP

Natural Language

"Pick up the farthest
red block”

R(in(obj4, hand)) = +1

@
objl obj2 o0bj3 obj4

31

How did we solve grounding?’

| | "Pick up the farthest
Train this on small, custom od block”

robot datasets!

Complex
graphical
models!
3]
objl1 obj2 obj3 obj4 R(in(obj4, hand)) = +1

Misra et al. Tell me Dave: Context-sensitive grounding of natural language to manipulation instructions

32

Why did this not scale?

"Pick up the farthest red block on the left

("“\ A
| .
' ! l J !

Failure to generalize to different
human utterances

Failure to capture common sense

Failure to capture complex
instructions (while loops)

33

Two Fundamental Challenges

Challenge 2:

Planning actions to
solve a task

Find “salt” Find “pepper”

/

34

What is task planning? Why is it hard?

shelf Take the apple from the shelf and

ap- put it on the table

robot

table

35

What is task planning? Why is it hard?

shelf Take the apple from the shelf and

a6 - put it on the table

1. Move to the shelf
robot 2. Pick up the apple
. 3. Move back to the table

- 4. Place the apple

table

36

What is task planning? Why is it hard?

(At robot table)
(At apple shelf)
(HandEmpty robot)

l Move (table, shelf)

(At robot shelf)
(At apple shelf)
(HandEmpty robot)

37

What is task planning? Why is it hard?

(At robot table)
(At apple shelf)
(HandEmpty robot)

l Move (table, shelf)

(At robot shelf)
(At apple shelf)
(HandEmpty robot)

Pick (apple, shely \MOVG (shelf, table)

(At robot table)
(At robot shelf) (At apple shelf)

(Holding robot apple) (HandEmpty robot)

table

38

What is task planning? Why is it hard?

(At robot table)
(At apple shelf)
(HandEmpty robot)

l Move (table, shelf)

(At robot shelf)
(At apple shelf)
(HandEmpty robot)

Pick (apple, sbel:/ \‘Move(shelf, table)

(At robot table)
(At robot shelf) (At apple shelf)

(Holding robot apple) (HandEmpty robot)
table
Move (shelf, table) Place (apple, shelf)
(At robot table) (At robot shelf)
(Holding robot apple) (At apple shelf)

(HandEmpty robot)

39

What is task planning? Why is it hard?

shelf

(At robot table)
(At apple shelf)
(HandEmpty robot)

l Move (table, shelf)

(At robot shelf)
(At apple shelf)
(HandEmpty robot)

Pick (apple, shelV \Move (shelf, table)

(At robot table)
(At robot shelf) (At apple shelf)

(Holding robot apple) (HandEmpty robot)
table
Move (shelf, table) Place (apple, shelf)
(At robot table) (At robot shelf)
(Holding robot apple) (At apple shelf)

(HandEmpty robot)
Place (apple, table)
Move (table, shelf)

(At robot table)

(At apple table) (Ag robot shelf)
(Handé:;ty robot) (Holding robot apple)

40

What is task planning? Why is it

shelf

(At robot table)
(At apple shelf)
(HandEmpty robot)

l Move (table, shelf)

(At robot shelf)
(At apple shelf)
(HandEmpty robot)

Pick (apple, shel:/ \Move(shelf, table)

(At robot table)
(At robot shelf) (At apple shelf)

(Holding robot apple) (HandEmpty robot)
table
Move (shelf, table) Place (apple, shelf)
(At robot table) (At robot shelf)
(Holding robot apple) (At apple shelf)
(HandEmpty robot)
Place (apple, table)

| (At robot table) |
goal (At apple table) | (At robot shelf)

state! | (HandEmpty robot) | (Holding robot apple)
! I

hard?

41

What is task planning? Why is it hard?

(At robot shelf)
(At apple shelf)
(At banana shelf)

(HandEmpty robot)

Move (shelf, table) Pick (banana, shelf)
Move (shelf, Pick (apple,
desk) / \ shelf)
(At robot table) (At robot desk) (At robot shelf) (At robot shelf)
(At apple shelf) (At apple shelf) (At banana shelf) (At apple shelf)
(At banana shelf) (At banana shelf) (Holding robot apple) (Holding robot banana)
(HandEmpty robot) (HandEmpty robot)

42

How did we solve it?

Good old fashioned search!

| ots of heuristics to make it real time

Why did it not scale?

Combinatorially large search tree

Had no notion of common sense

43

Two Fundamental Challenges

Challenge 1 Challenge 2:
Ground natural language Planning actions to
in robot state solve a task

"Pick up the farthest red block on the lefi

Find “salt”

/

md pepper’

44

Episode

A NE W HQW

Many recent papers on LLM+4Task Planning

SayCan [Ichter et al.’22] Code-As-Policies [Liang et al.’22]

- B e s r e 1 o o Large
e e &8 Share Language
i : Model

<+—--- GStack the blocks on the empty bowl.

ept APls
Control APIs

block_names = detect_objects("blocks")
bowl_names = detect_obijects("bowls")
for bowl_name in bowl_names:
if is_empty(bowl_name): —
empty_bowl = bowl_name
break e
objs_to_stack = [empty_bowl]|+ block_names .
stack_objects(objs_to_stack)‘

@0t the 10bot to help yith 2

l Policy Code

~lov 20U theow i IWay an

‘“i5ﬁ: e~ .:\\\ : {hz“"”' def is_empty(name):
User input: | spilled my coke on the ot l((bj))
. n_objs = len(obj_names
tab Ie, how would you throw it daway f°2b§@i2 ;@;’%ﬁgﬂg‘;ﬁi']}’: 404 & A

Also ProgPrompt [Singh et al. '22], InnerMonologue [Huang et al.’22], Socratic [Zeng et al.’22], TidyBot [Wu et al'23],
CLARIFY [Skreta et al.’23], Text2Motion [Lin et al. 23], ...

Can LLMs directly
predict robot action?

Do As | Can, Not As | Say:

Grounding Language in Robotic Affordances

Michael Ahn* Anthony Brohan* Noah Brown* Yevgen Chebotar” Omar Cortes” Byron David* Chelsea Finn”
Chuyuan Fu” Keerthana Gopalakrishnan® Karol Hausman* Alex Herzog* Daniel Ho” Jasmine Hsu* Julian Ibarz*
Brian Ichter” Alex Irpan® Eric Jang” Rosario Jauregui Ruano”® Kyle Jeffrey™* Sally Jesmonth* Nikhil Joshi*
Ryan Julian® Dmitry Kalashnikov” Yuheng Kuang® Kuang-Huei Lee* Sergey Levine® Yao Lu* Linda Luu* Carolina Parada*
Peter Pastor” Jornell Quiambao® Kanishka Rao* Jarek Rettinghouse* Diego Reyes” Pierre Sermanet” Nicolas Sievers®

Clayton Tan* Alexander Toshev” Vincent Vanhoucke® Fei Xia* Ted Xiao* Peng Xu* Sichun Xu” Mengyuan Yan* Andy Zeng*

g Robotics at Google . Everyday Robots
[E—

48

Language x Affordance

Combined Score

pick up the coke can

1.00

put down the coke can

0.01

bring it to you

- 'ml . f ' 0.00

go to the trash can

| spilled my coke on the table, how would you
throw it away and bring me something to help clean? 0.00
Robot: | would: 1. find a coke can, 2. find a sponge

0.00

So ... we just ask an
LLM to tell us what to
do?

No! LLMs can say anything ..

| spilled my drink, can you help?

GPT3

FLAN

You could try using a
vacuum cleaner.

Do you want me to find
a cleaner?

I'm sorry, | didn't mean
to spill it.

51

ldea: Constrain LLM by what the robot can do
(affordance)

52

The “SayCan” Approach

Instruction Relevance with LLMs Combined Task Affordances with Value Functions
How would you put © Find an apple 00
an apple on the -30 Find a coke 0.6
table? -30 Find a sponge 0.6
4 Pick up the apple 0.2
| would: 1. ,
230 Pick up the coke 0.2
5 Place the apple 0.1
30 Place the coke 0.1 Value
L LM & -10 Go to the table 0.8 Functions
20 Go to the counter 0.8
[would: 1. Find an apple, 2. ¢

53

User input: Bring me a fruit flavoured drink without caffeine.

Robot: 1.

- Language x Affordance

find a grapefruit soda

find a lime soda

opl
find a redbull

0.00
find a 7up

0.00
go to the table

0.00

Can LLMs predict
robot code?

Code as Policies:
Language Model Programs for Embodied Control

Jacky Liang Wenlong Huang Fei Xia

Peng Xu Karol Hausman

6 Robotics at Google

Brian Ichter Pete Florence Andy Zeng

57

Different policy representations

Perception

Policy
,:; > ":.'.:'0
Task —> |O9K o 308 ’

Learn Robot Policies

Perception
Description

!

Planner

Large
— Language
Model

|

Description

Task
Description

Use LLMs to plan

Darcenti
Task Perception API

Description

|

Large
Language
Model

API

Qurs: Use LLMs to write
robot code

Interpretable

Verifiable

Composable

Why choose code as a representation?

Task Perception API

Description l
l Code
Large

Language —»
Model

g

Ours: Use LLMs to write
robot code

User

Large <+ --- Stack the blocks on the empty bowl. @
Language _ ol 4
Model APIs

Control APIs

............

l Policy Code

block_names = detect_objects("blocks")
bowl_names = detect_objects("bowls")
for bowl_name in bowl_names:
if is_empty(bowl_name): —
empty_bowl = bowl_name
break
objs_to_stack = [empty_bowl] |+ block_names
stack_objects(objs_to_stackl'

l def is_empty(name):

def stack_objects(obj_names):
n_objs = len(obj_names) it
for 1 in range(n_objs - 1): S
objO = obj_names[1 + 1]
obj1l = obj_names[1i]
nick _place(objo, obj1)

60

Simple code generation examples

move rightwards until you see the apple.
while not detect_object("apple”):
robot.set_velocity(x=0, y=0.1, z=0)

do 1t again but faster, to the left, and with a banana.
while not detect_object("”banana”):
robot.set_velocity(x=0, y=-0.2, z=0)

o1

How do we prompt LLMs to generate robot code?

1. Instructions

You are an Al assistant writing robot code given natural language
instructions. Please refer to the following APl guidelines ...

2. Import Hints

3. Few-shot Examples

62

Example: Using imported functions

objs = [’blue bowl’, ’red block’, ’red bowl’, ’blue block’]
move the red block a bit to the right.

target_pos = get_pos(’red block’) + [0.1, 0]
put_first_on_second(’red block’, target_pos)

put the blue block on the bowl with the same color.
put_first_on_second(’blue block’, ’blue bowl’)

63

Example: Using control flows

while the red block 1s to the left of the blue bowl, move 1t to the

right 5cm at a time.

while get_pos(’red block’)[0] < get_pos(’blue bowl’)[@]:
target_pos = get_pos(’red block’) + [0.05, @]
put_first_on_second(’red block’, target_pos)

o4

Example: Hierarchical Code Generation

define function: get_ ObJS blgger than_area_th(obj_names, bbox_area_th).

def*get ObJS blgger than_area thMObJ names, bbox_area th)

P —————— _ —_

return [name for name 1n obj_names
1f get_obj_bbox_area(name) > bbox_area_th]

Have the LLM recursively define functions!

define function: get_obj_bbox_area(obj_name).
def get_obj_bbox_area(obj_name):
x1, y1, x2, y2 = get_obj_bbox_xyxy(obj_name)
return (x2 - x1) * (y2 - y1)

65

Verifiably solve a number of tasks!

Move the sky-colored block in between

Put the blocks in a horizontal line near the the red block and the second block from Arrange the blocks in a square around the
top the left middle Make the square bigger Move the red block 5cm to the bottom
Put the red block to the left of the Place the blocks in bowls with non- Put the blocks in a vertical line 20cm and
rightmost bowl| matching colors 10cm below the blue bowl Put the apple and the coke intheir corresponding bins
Wait until you see an egg and put it on the Draw a pyramid as a triangle on the

Move the fruits to the green plate and bottles to the blue plate green plate Draw a 5¢cm hexagon around the middle ground

Can LLMs convert
demonstrations (non-language)
to code?

Demo2Code: From Summarizing
Demonstrations to Synthesizing Code via
Extended Chain-of-Thought

NeurIPS 2023

Huaxiaoyue Wang, Gonzalo Gonzalez-Pumariega, Yash Sharma, Sanjiban Choudhury
Cornell University

How can we teach robots personalized tasks?

RECIPE |

Language Narration:

“Here's how to make vegetable fried rice.

Heat up some water. While the water boi/s keep
stirring vegetables. Pour rice.’

Personalized
Tasks

69

How can we teach robots personalized tasks?

RECIPE |

Language Narration:

“Here's how to make vegetable fried rice.
Heat up some water. While the water boils, keep
stirring vegetables. Pour rice.”

_-, o ‘ /'f
Personalized

Tasks

Language alone is insufficient to communicate the task

x I_aCkS SpeCIfICIty (e.g. Heat up water how? Pour rice where?)

X Leaves out implicit preferences (ee Personal style of sirring?)

70

How can we teach robots personalized tasks?

RECIPE L=

IE

Language Narration:

“Here's how to make vegetable fried rice.
Heat up some water. While the water boi/s keep
stirring vegetables. Pour rice.’

—

Robot
—————N eee 0 Code

|
Demonstrations:
|
G
‘ F ‘ l}(b - I -
&= p—— x“~‘ { ‘,—‘ ; '.-’ e A8
s . w b 22
. - r- L b p - R4 . e N
» ¢ | y - 1
. / 1
J - R ¥ “ - < 4

Personalized
Tasks

Demonstrations
convey dense
information on how
states change

over(‘kettle’, in(‘spatula’, over(‘rice’,
‘left pan’) ‘hand’) ‘left pan’) A

Language:
“Here's how to make vegetable fried rice.

Heat up some water. While the water
boils, keep stirring vegetables. Pour rice.”

+ LARGE | Robot
Demonstrations — | LANGUAGE — Code
MODELS!

—

(Sequence of states
represented as text)

over(‘kettle’, in(‘spatula’, over(‘rice’,
‘left pan’) ‘hand’) ‘left pan’)

Challenges

Challenge 1: Long-horizons

Each demonstration
>—=— hundreds of
states.

state 1 state 1

state_2 state_2 M U |t| p|e SUCh
demonstrations.

Challenge 2: Complex Task Code

def main():

Get a list of all the lettuces in the kitchen.

lettuces = get all obj names that match type('lettuce')

Get a list of all the bottom buns in the kitchen.

bottom buns = get all obj names that match type('bottom bun')
Get a list of all the patties in the kitchen.

patties = get all obj names that match type('patty')

Get a list of all the top buns in the kitchen.

top buns = get all obj names that match type('top bun')

Decide a lettuce to use.

lettuce to use = lettuces[0]

Get a list of all the available cutting boards in the kitchen.
cutting boards = get all location names that match type('cutting
Decide a cutting board to go to.

cutting board to cut at = cutting boards[0]

Cut that lettuce at that cutting board.

cut object at location(obj=lettuce to use, location=cutting boar

Decide a bottom bun to use.

bottom bun to use = bottom buns[0]

Stack the lettuce on top of the bottom bun.

objl should be the lettuce, obj2 should be the bottom bun.
stack objl on obj2(objl=lettuce to use, obj2=bottom bun to use)

Decide a patty to use.

patty to use = patties[0]

Get a list of all the available stoves in the kitchen.

stoves = get all location names that match type('stove')

Decide a stove to go to.

stove to cook at = stoves[0]

Cook that patty at that stove.

cook object at location(obj=patty to use, location=stove to cook

Stack the patty on top of the lettuce.
objl should be the patty, obj2 should be the lettuce.
stack objl on obj2(objl=patty to use, obj2=lettuce to use)

Decide a top bun to use.

top bun to use = top buns[0]

Stack the top bun on top of the patty.

objl should be the top bun, obj2 should be the patty.
stack objl on obj2(objl=top bun to use, obj2=patty to use)

def cook object at location(obj, location):
To cook an object, the robot first needs to be holding obj
if not is holding(obj):
If the robot is not holding obj, there are 2 scenarios:

=
=

(1) if obj is in a stack ,unstack obj
(2) else, pick up obj.

if is in a stack(obj):

Because obj is in a stack, robot need to move then unstack the o
obj at bottom = get obj that is underneath(obj at top=obj)

move then unstack: first you move to the obj at bottom's locatio
move then unstack(obj to unstack=obj, obj at bottom=obj at bottom,

else:

move then pick: first you move to obj's location, then you pick
move then pick(obj=obj, pick location=get obj location(obj))

move then place: first you move to the location to cook at, then you pla
move then place(obj=obj, place location=location)

cook the object until it is cooked

cook until is cooked(obj=obj)

def stack objl on obj2(objl, obj2):
To stack objl on obj2, the robot needs to be holding objl
if not is holding(objl):
If the robot is not holding objl, there are 2 scenarios:

=
=

(1) if objl is in a stack ,unstack objl
(2) else, pick up objl.

if is in a stack(objl):

Because objl is in a stack, robot need to move then unstack the
obj at bottom = get obj that is underneath(obj at top=objl)

def

def

def

def

def

def

move then unstack(obj to unstack, obj at bottom, unstack location):

if get curr location() != unstack location:
move(get curr location(), unstack location)

unstack(obj to unstack, obj at bottom)

move then pick(obj, pick location):

if get curr location() != pick location:
move(get curr location(), pick location)

pick up(obj, pick location)

move then place(obj, place location):

if get curr_location() != place location:
move(get curr location(), place location)

place(obj, place location)

cook until is cooked(obj):

start cooking(obj)

while not is cooked(obj):
noop ()

move then stack(obj to stack, obj at bottom, stack location):
if get curr_location() != stack location:

move(get curr location(), stack location)
stack(obj to stack, obj at bottom)

cut until is cut(obj):
while not is cut(obj):
cut(obj)

move then unstack: first you move to the obj at bottom's location, then you unstack obj from obj at bottom

move then unstack(obj to unstack=objl, obj at bottom=obj at bottom, unstack location=get obj location(obj at bottom))
else:
move then pick: first you move to obj's location, then you pick obj up

move then pick(obj=objl, pick location=get obj location(objl))

determine the location of obj2 to stack on
obj2 location = get obj location(obj2)

move then stack: first you move to obj2's location, then you stack objl on obj2
move then stack(obj to stack=objl, obj at bottom=obj2, stack location=obj2 location)

def cut object at location(obj, location):

To cut an object, the robot first needs to be holding obj
if not is holding(obj):
If the robot is not holding obj, there are 2 scenarios:

=

(1) if obj is in a stack ,unstack obj

Loops, checks, and
calls to custom robot
libraries ..

Directly going from demo to code is hard ...

[Demonstration NJ

[Demonstration 2]

[Demonstration 1]

Make a burger.

State 5:
'robot' 1s not holding
'pattyl'
'pattyl' 1s at 'stovel'

State 9:
'pattyl' 1s cooked

State 12:

'robot' 1s not holding
'pattyl'

'pattyl' 1s on top of
‘bottom bunl'

Cook object at location
def cook object at loc(obj,
loc):

if not is _holding(obj):

move then place(obj, loc)
cook until is cooked(obj)

Move to a location and place
object
def move then place(obj, loc):
curr loc = get _curr loc()
if curr loc !'= loc:
move(curr_loc, 1loc)
place(obj, place location)

def main():

cook object at loc(patty,
stove)

stack objects(top bun,
lettuce)

Demonstrations can be
rationalized by
a latent, compact

specification

(Like Reward Functions in IRL)

’r’

Key Insight: Extended chain-of-thought

[Demonstration N]

[Demonstration 2]

[Demonstration 1]

Make a burger.

State 5:
'robot' 1s not holding
'pattyl'
'pattyl' 1s at 'stovel'

State 9:
'pattyl' 1s cooked

State 12:

'robot' 1s not holding
'pattyl'

'pattyl' 1s on top of
‘bottom bunl'

Specification

Every step along the
is small and easy for LLM

chain

Cook object at location
def (obj,
loc):

if not is _holding(obj):

move then place(obj, loc)
cook until is cooked(obj)

Move to a location and place
object
def move then place(obj, loc):
curr loc = get _curr loc()
if curr loc != loc:
move(curr_loc, 1loc)
place(obj, place location)

def main():

(patty,
stove)

stack objects(top bun,
lettuce)

Demo2Code

Demo2Code: Recursive Summarization and Expansion

Make a burger with one patty and one

[Demonstration N]

[Demonstration 2]

[Demonstration 1]

Make a burger.

State 5:
'robot' 1s not holding
'pattyl'
'pattyl' 1s at 'stovel'

State 9:
'pattyl' 1s cooked

State 12:

'robot' 1s not holding
'pattyl'

'pattyl' 1s on top of
‘bottom bunl'

lettuce.

Specifically:

Cook a patty at that stove.

Stack that top bun on that lettuce.

Stage 1
Recursive summarize
demo to specification

Stage 2
Recursive expand
specification to task code

Cook object at location
def (obj,
loc):

if not is _holding(obj):

move then place(obj, loc)
cook until is cooked(obj)

Move to a location and place
object
def move then place(obj, loc):
curr loc = get _curr loc()
if curr loc != loc:
move(curr_loc, 1loc)
place(obj, place location)

def main():

(patty,
stove)

stack objects(top bun,
lettuce)

Experiments

We made a new game: Robotouille!

Open-source game coming soon
on ioS / Android

Human runs a restaurant
with robot sous-chef

Fun way to learn how humans
plan and communicate tasks!

82

Demo2Code can generalize to new, complex environments

Make a burger.

User provides a demonstration in a

simple environment

Make a burger.
Cut that lettuce at that cutting board.

Stack the lettuce on top of the bottom
bun.

Cook that patty at that stove.
Stack the patty on top of the lettuce.

Stack the top bun on top of the patty.

T — E—

def (Objl
loc):
if not is _holding(obj):

move then place(obj, loc)
cook until is cooked(obj)

def move then place(obj, loc):
curr_loc = get curr loc()
if curr loc !'= loc:
move(curr_loc, loc)
place(obj, place location)

def main():

cut_object _at loc(lettuce,
stove)

stack objects(lettuce,
bottom bun)

cook object _at loc(patty,
stove)

stack objects(top bun,
patty)

Demo2Code can generalize to new, complex environments

'N =

=
L]
i

def cook_object_at_loc(obj,
loc):
if not is_holding(obj):

move_then_place(obj, loc)
cook until is cooked(obj)

def move_ then_place(obj, loc):
curr_loc = get_curr_loc()
if curr loc != loc:
move(curr_ loc, loc)
place(obj, place_location)

def main():

cut_object_at_loc(lettuce,
stove)

stack_objects(lettuce,
bottom bun)

cook_object_at_loc(patty,
stove)

stack_objects(top_bun,
patty)

Demo2Code generates correct code that passes unit tests

Task Lang2Code[33] DemoNoLang2Code Demo2Code(ours) Horizon
Exec. Pass. BLEU. Exec. Pass. BLEU.] Exec. Pass. BLEU. | Length

Cook a patty 1.00 1.00 0.90 1.00 1.00 0.90 1.00 1.00 0.90 8.0

Cook two patties 0.80 0.80 0.92 0.80 0.80 0.92 0.80 0.80 0.92 16.0
Stack a top bun on top of a cut lettuce on top of a bottom bun 1.00 1.00 0.70 0.00 0.00 0.75 1.00 1.00 0.60 14.0
Cut a lettuce 1.00 1.00 0.87 0.00 0.00 0.76 1.00 1.00 0.87 7.0

Cut two lettuces 0.80 0.80 0.92 0.00 0.00 0.72 0.80 0.80 0.92 14.0
Cook first then cut 1.00 1.00 0.88 1.00 1.00 0.88 1.00 1.00 0.88 14.0
Cut first then cook 1.00 1.00 0.88 0.00 0.00 0.82 1.00 1.00 0.88 15.0
Assemble two burgers one by one 0.00 0.00 0.34 1.00 1.00 0.77 1.00 1.00 0.76 15.0
Assemble two burgers in parallel 0.00 0.00 0.25 1.00 1.00 0.51 0.00 0.00 0.71 15.0
Make a cheese burger 1.00 0.00 0.24 1.00 1.00 0.69 1.00 1.00 0.69 18.0
Make a chicken burger 0.00 0.00 0.57 0.00 0.00 0.64 0.90 0.90 0.69 25.0
Make a burger stacking lettuce atop patty immediately 1.00 0.00 0.74 0.20 0.00 0.71 0.00 0.00 0.71 24.5
Make a burger stacking patty atop lettuce immediately 0.00 0.00 0.74 0.20 0.00 0.71 1.00 1.00 0.74 25.0
Make a burger stacking lettuce atop patty after preparation 1.00 0.00 0.67 0.10 0.00 0.65 0.00 0.00 0.66 26.5
Make a burger stacking patty atop lettuce after preparation 1.00 0.00 0.67 0.00 0.00 0.53 1.00 0.00 0.69 27.0
Make a lettuce tomato burger 0.00 0.00 0.13 1.00 1.00 0.85 1.00 0.00 0.66 34.0
Make two cheese burgers 0.00 0.00 0.63 1.00 1.00 0.68 1.00 1.00 0.68 38.0
Make two chicken burgers 0.00 0.00 0.52 0.00 0.00 0.63 1.00 0.00 0.56 50.0
Make two burgers stacking lettuce atop patty immediately 0.80 0.00 0.66 0.80 1.00 0.69 0.00 0.00 0.66 50.0
Make two burgers stacking patty atop lettuce immediately 0.80 0.00 0.67 1.00 0.00 0.48 1.00 1.00 0.73 50.0
Make two burgers stacking lettuce atop paity after preparation 0.80 0.00 0.66 0.60 0.00 0.66 0.80 0.00 0.67 54.0
Make two burgers stacking patty atop lettuce after preparation (.80 0.00 0.67 0.50 0.00 0.71 0.80 0.00 .68 54.0
Make two lettuce tomato burgers 1.00 0.00 0.55 0.00 0.00 0.70 1.00 1.00 0.84 70.0

Overall 0.64 0.29 0.64 049 0.38 0.71 0.79 0.59 0.74 28.8

[Damen et al '18]

EPIC-Kitchens Tasks

a
.
~ a

Pai® F il : - . e o o e o o
inhand("mezzaluna_1); in("mezzaluna_1", "sink_2°); soapy(peeler:potato_17)
isdirty('mezzaluna_1") inhand(peeler:potato_1");isdirty("peeler:potato_1-)

ison(‘tap_1’) “ | « ‘)“ " in("peeler:potato_1", "sink_2°);
inhand (" board:cutting_1");isdirty("'board:cutting_1")

objects = get_all_objects ()
for object 1in objects:
pick_up(object)
if check_if_dirty(object):
. | while check_if_dirty(object):
inhand(‘per.botato_f); . scrub (ObJ ect)
clean(peeler:potato_1") pl ace (ObJ ect , n S ink_ 2 ")
turn_on("tap_1")
for object 1in objects:
pick_up(object)
rinse(object)
place (object, "dryingrack_1")
turn_off ("tap_1")

e #Y
=

isoff(‘tap_1") in("peeler:potato_1", "dryingrack_1")

86

EPIC-Kitchens Dishwashing Tasks

P4-101 (7) P7-04 (17) P7-10 (6) P22-05 (23) P22-07 (30) P30-07 (11) P30-08 (16)

Pass. BLEU. Pass. BLEU. Pass. BLEU. Pass. BLEU. Pass. BLEU. Pass. BLEU. Pass. BLEU.

Lang2Code [33] 1.00 0.58 0.00 0.12 000 084 000 048 0.00 0.37 1.00 0.84 0.00 0.66
DemoNol.ang2Code), 00), 00 X000). OU).), 0(), 0 '), 0() U '), 00), OC

Demo2Code 1.00 0.33 0.00 0.19 1.00 0.63 1.00 043 1.00 0.66 1.00 0.58 0.00 0.24

[Damen et al "18]

.

Exciting coming years for robot learning!

