
Controlling Robots via Large
Language Models

Sanjiban Choudhury

1

Today is the last day.

Have we learnt anything
useful at all?

Let’s go back to
Episode #1

The Problem: Real world is complex!

4

5

?

6

Low-level
Policies

High-level
Task Planner

Perception State
st

Action
at

Object Detection,
Segmentation,

NERFs

Lec

#19,2
0!

Model-
based RL
(Dreamer)

Lec

#17,1
8! Offline

IL / RL
Lec

#23! Sim2Real
Lec

#24!

Foundational Algorithms Lec

#1-16
!

RLHF Lec

#21!

7

Low-level
Policies

High-level
Task Planner

Perception State
st

Action
at

Object Detection,
Segmentation,

NERFs

Lec

#19,2
0!

Model-
based RL
(Dreamer)

Lec

#17,1
8! Offline

IL / RL
Lec

#23! Sim2Real
Lec

#24!

Foundational Algorithms Lec

#1-16
!

RLHF Lec

#21!

TODAY!!

Poll!

8

The Problem:

Many tasks are personal

Cooking is personal

Home organization is personal

Robots today are NOT personal

Cannot be flexibly re-programmed by everyday users

Engineers program behaviors

Choose option
1. Start
2. Clean
3. Stop

Ship robot Frustrate users!

Can we implicitly program
robots via natural interactions?

Programming via natural interactions

Demonstrations,
Language

Feedback,
Interactive QA

Question: How do we translate between humans and robots?

?

Large Language Models to the rescue!

Large
Language

Models!

An Example

18

MOSAIC
A Modular System for Assistive and Interactive Cooking

19

20

Activity!

Think-Pair-Share!

22

Think (30 sec): What are some of the challenges to convert natural
language conversation to code that a robot can execute?

Pair: Find a partner

Share (45 sec):
Partners exchange
ideas

23

How things
worked

pre-LLM

Two Fundamental Challenges

24

Two Fundamental Challenges

25

Challenge 1:
Ground natural language

in robot state

Two Fundamental Challenges

26

Challenge 1:
Ground natural language

in robot state

Challenge 2:
Planning actions to

solve a task

Find “salt” Find “pepper”

Two Fundamental Challenges

27

Challenge 1:
Ground natural language

in robot state

Challenge 2:
Planning actions to

solve a task

Find “salt” Find “pepper”

What is grounding? Why is it hard?

28

29

Natural Language MDP

Grounding: Mapping language to robot’s internal state

“Pick up the farthest
red block” < S , A , R , 𝒯 >

30

Natural Language MDP

Grounding: Mapping language to robot’s internal state

< S , A , R , 𝒯 >“Pick up the farthest
red block”

obj1 obj2 obj3 obj4

on(‘obj1’,’table’)
on(‘obj2’,’table’)
on(‘obj3’,’table’)
on(‘obj4’,’table’)
left(‘obj2’,’obj1’)
left(‘obj3’,’obj2’)
left(‘obj4’,’obj3’)

...

31

Natural Language MDP

Grounding: Mapping language to robot’s internal state

< S , A , R , 𝒯 >“Pick up the farthest
red block”

obj1 obj2 obj3 obj4

R(in(obj4, hand)) = +1

32

“Pick up the farthest
red block”

obj1 obj2 obj3 obj4 R(in(obj4, hand)) = +1

How did we solve grounding?

Complex
graphical
models!

Train this on small, custom
robot datasets!

Misra et al. Tell me Dave: Context-sensitive grounding of natural language to manipulation instructions

33

1. Failure to generalize to different
human utterances

2. Failure to capture common sense

3. Failure to capture complex
instructions (while loops)

Why did this not scale?

Two Fundamental Challenges

34

Challenge 1:
Ground natural language

in robot state

Challenge 2:
Planning actions to

solve a task

Find “salt” Find “pepper”

What is task planning? Why is it hard?

35

Take the apple from the shelf and
put it on the table

What is task planning? Why is it hard?

36

Take the apple from the shelf and
put it on the table

1. Move to the shelf
2. Pick up the apple
3. Move back to the table
4. Place the apple

What is task planning? Why is it hard?

37

What is task planning? Why is it hard?

38

What is task planning? Why is it hard?

39

What is task planning? Why is it hard?

40

41

What is task planning? Why is it hard?

42

What is task planning? Why is it hard?

How did we solve it?

43

Why did it not scale?

Good old fashioned search!

Lots of heuristics to make it real time

Combinatorially large search tree

Had no notion of common sense

Two Fundamental Challenges

44

Challenge 1:
Ground natural language

in robot state

Challenge 2:
Planning actions to

solve a task

Find “salt” Find “pepper”

Large Language MODELS

Many recent papers on LLM+Task Planning

SayCan [Ichter et al.’22] Code-As-Policies [Liang et al.’22]

Also ProgPrompt [Singh et al. ’22], InnerMonologue [Huang et al.’22], Socratic [Zeng et al.’22], TidyBot [Wu et al’23],
CLARIFY [Skreta et al.’23], Text2Motion [Lin et al. ’23], …

Can LLMs directly
predict robot action?

48

49

So … we just ask an
LLM to tell us what to

do?

51

No! LLMs can say anything ..

52

Idea: Constrain LLM by what the robot can do
(affordance)

53

The “SayCan” Approach

54

55

Can LLMs predict
robot code?

57

58

Different policy representations

59

Why choose code as a representation?

Interpretable

Verifiable

Composable

60

Simple code generation examples

61

How do we prompt LLMs to generate robot code?

62

1. Instructions

2. Import Hints

You are an AI assistant writing robot code given natural language
instructions. Please refer to the following API guidelines …

3. Few-shot Examples

Example: Using imported functions

63

Example: Using control flows

64

Example: Hierarchical Code Generation

65

Have the LLM recursively define functions!

66

Verifiably solve a number of tasks!

Can LLMs convert
demonstrations (non-language)

to code?

69

How can we teach robots personalized tasks?

Personalized
Tasks

Robot
Code

Language Narration:
 “Here’s how to make vegetable fried rice.

Heat up some water. While the water boils, keep
stirring vegetables. Pour rice.”

70

Personalized
Tasks

Robot
Code

Language Narration:
 “Here’s how to make vegetable fried rice.

Heat up some water. While the water boils, keep
stirring vegetables. Pour rice.”

Language alone is insufficient to communicate the task

Lacks specificity

Leaves out implicit preferences

(e.g. Heat up water how? Pour rice where?)

(e.g. Personal style of stirring?)

How can we teach robots personalized tasks?

71

Personalized
Tasks

Robot
Code

Language Narration:
 “Here’s how to make vegetable fried rice.

Heat up some water. While the water boils, keep
stirring vegetables. Pour rice.”

Demonstrations:

Demonstrations
convey dense

information on how
states change

over(‘kettle’,
‘left_pan’)

in(‘spatula’,
‘hand’)

over(‘rice’,
‘left_pan’)

How can we teach robots personalized tasks?

Robot
Code ?

Language:
 “Here’s how to make vegetable fried rice.

Heat up some water. While the water
boils, keep stirring vegetables. Pour rice.”

Demonstrations
(Sequence of states
represented as text)

s1 s2 s3

+

over(‘kettle’,
‘left_pan’)

in(‘spatula’,
‘hand’)

over(‘rice’,
‘left_pan’)

Large
Language

Models!

Challenges

Each demonstration
>= hundreds of

states.
Multiple such

demonstrations.

state_1

state_2

state_T

state_1

state_2

state_T

Challenge 1: Long-horizons

Challenge 2: Complex Task Code

Loops, checks, and
calls to custom robot

libraries ..

Directly going from demo to code is hard …

Make a burger.

...
State 5:
'robot' is not holding
'patty1'
'patty1' is at 'stove1'
...

State 9:
'patty1' is cooked
...

State 12:
'robot' is not holding
'patty1'
'patty1' is on top of
‘bottom_bun1'
...

[Demonstration 1]

[Demonstration 2]
[Demonstration N]

Cook object at location
def cook_object_at_loc(obj,
loc):

if not is_holding(obj):
...

move_then_place(obj, loc)
cook_until_is_cooked(obj)

Move to a location and place
object
def move_then_place(obj, loc):
 curr_loc = get_curr_loc()
 if curr_loc != loc:
 move(curr_loc, loc)
 place(obj, place_location)
...
...
def main():

...
cook_object_at_loc(patty,
stove)
...
stack_objects(top_bun,
lettuce)

77

Demonstrations can be

rationalized by

a latent, compact

specification

(Like Reward Functions in IRL)

Make a burger.

...
State 5:
'robot' is not holding
'patty1'
'patty1' is at 'stove1'
...

State 9:
'patty1' is cooked
...

State 12:
'robot' is not holding
'patty1'
'patty1' is on top of
‘bottom_bun1'
...

[Demonstration 1]

[Demonstration 2]
[Demonstration N]

Cook object at location
def cook_object_at_loc(obj,
loc):

if not is_holding(obj):
...

move_then_place(obj, loc)
cook_until_is_cooked(obj)

Move to a location and place
object
def move_then_place(obj, loc):
 curr_loc = get_curr_loc()
 if curr_loc != loc:
 move(curr_loc, loc)
 place(obj, place_location)
...
...
def main():

...
cook_object_at_loc(patty,
stove)
...
stack_objects(top_bun,
lettuce)Every step along the chain

 is small and easy for LLM

Key Insight: Extended chain-of-thought

Specification

Demo2Code

Make a burger.

...
State 5:
'robot' is not holding
'patty1'
'patty1' is at 'stove1'
...

State 9:
'patty1' is cooked
...

State 12:
'robot' is not holding
'patty1'
'patty1' is on top of
‘bottom_bun1'
...

[Demonstration 1]

[Demonstration 2]
[Demonstration N]

Cook object at location
def cook_object_at_loc(obj,
loc):

if not is_holding(obj):
...

move_then_place(obj, loc)
cook_until_is_cooked(obj)

Move to a location and place
object
def move_then_place(obj, loc):
 curr_loc = get_curr_loc()
 if curr_loc != loc:
 move(curr_loc, loc)
 place(obj, place_location)
...
...
def main():

...
cook_object_at_loc(patty,
stove)
...
stack_objects(top_bun,
lettuce)

Demo2Code: Recursive Summarization and Expansion
Make a burger with one patty and one
lettuce.

Specifically:
…
Cook a patty at that stove.
…
Stack that top bun on that lettuce.

Stage 1
Recursive summarize
demo to specification

Stage 2
Recursive expand

specification to task code

Experiments

We made a new game: Robotouille!

82

Open-source game coming soon
on ioS / Android

Human runs a restaurant
with robot sous-chef

Fun way to learn how humans
plan and communicate tasks!

Demo2Code can generalize to new, complex environments

Make a burger.
…
Cut that lettuce at that cutting board.
…
Stack the lettuce on top of the bottom
bun.
…
Cook that patty at that stove.
…
Stack the patty on top of the lettuce.
…
Stack the top bun on top of the patty.

Make a burger.
def cook_object_at_loc(obj,
loc):

if not is_holding(obj):
...

move_then_place(obj, loc)
cook_until_is_cooked(obj)

def move_then_place(obj, loc):
curr_loc = get_curr_loc()
if curr_loc != loc:

 move(curr_loc, loc)
place(obj, place_location)

def main():
...
cut_object_at_loc(lettuce,
stove)
...
stack_objects(lettuce,
bottom_bun)
...
cook_object_at_loc(patty,
stove)
...
stack_objects(top_bun,
patty)

User provides a demonstration in a
simple environment

Demo2Code can generalize to new, complex environments

def cook_object_at_loc(obj,
loc):
 if not is_holding(obj):
 ...
 move_then_place(obj, loc)
 cook_until_is_cooked(obj)

def move_then_place(obj, loc):
 curr_loc = get_curr_loc()
 if curr_loc != loc:
 move(curr_loc, loc)
 place(obj, place_location)

def main():
 ...
 cut_object_at_loc(lettuce,
 stove)
 ...
 stack_objects(lettuce,
 bottom_bun)
 ...
 cook_object_at_loc(patty,
 stove)
 ...
 stack_objects(top_bun,
 patty)

Demo2Code generates correct code that passes unit tests

86

soapy(`mezzaluna_1`) in(`mezzaluna_1`, `sink_2`); 
inhand(`peeler:potato_1`);isdirty(`peeler:potato_1`)

inhand(`mezzaluna_1`); 
isdirty(`mezzaluna_1`)

soapy(`peeler:potato_1`)

soapy(`board:cutting_1`) in(`peeler:potato_1`, `sink_2`); 
inhand(`board:cutting_1`);isdirty(`board:cutting_1`)

ison(`tap_1`)

isoff(`tap_1`)

clean(`board:cutting_1`)

in(`board:cutting_1`, `dryingrack_1`) inhand(`mezzaluna_1`);clean(`mezzaluna_1`) in(`mezzaluna_1`, `dryingrack_1`)

in(`peeler:potato_1`, `dryingrack_1`)

inhand(`peeler:potato_1`); 
clean(`peeler:potato_1`)

EPIC-Kitchens Tasks
Wash objects in sink. All clean objects must be placed in drying rack.
Specifically -
Get a list of all objects to wash
For each object in all objects:

Bring object from sink_1 to sink_2
Scrub object
Place object in sink_2

For each object in all objects:
Rinse object
Place object in dryingrack_1

Turn off tap_1

Here, the LLM captures that the objects are scrubbed first, placed in sink_2, then rinsed one by one
after, the chain of thought reasoning also shows this. The LLM is also able to generalize despite the
change in order of scrubbing and rinsing dishes.

Code Output:
say("Washing the objects by user 22's preferences")
objects = get_all_objects ()
for object in objects:

pick_up(object)
if check_if_dirty(object):

while check_if_dirty(object):
scrub(object)

place(object , "sink_2")
turn_on("tap_1")
for object in objects:

pick_up(object)
rinse(object)
place(object , "dryingrack_1")

turn_off("tap_1")
say("Done washing the objects by user 22's preferences")

D Chain-of-thought Ablation Experiment

This experiment studies the effect of the chain-of-thought’s length (in stage 1 recursive summarization)
on the LLM’s performance. We found:

• It is helpful to guide the LLM to take small recursive steps when summarizing demonstrations
(especially for tasks with long demonstrations).

• The LLM performs the worst if it is asked to directly generate code from demonstrations.

D.1 Experiment Detail

We defined 3 ablation models listed below from the shortest chain-of-thought length to the
longest chain length. In addition, because the tabletop’s Demo2Code pipeline is different from
Robotouille’s pipeline, we also describe how these pipelines are adapted to each ablation model:

• No-Cot: Tabletop and Robotouille has exactly the same process of prompting the LLM
ONCE to generate code given the language model and the demonstrations.

• 1-Step
– Tabletop: First, the LLM receives all the demonstrations concatenated together as

input to generate the specification without any intermediate reasoning. Next, the LLM
generates the code given the specification.

– Robotouille: First, the LLM receives all the demonstrations concatenated together
as input to generate the specification. It can have intermediate reasoning because the
tasks are much more complex. Next, the LLM generates the high-level code given the
specification and recursively expands the code by defining all helper functions.

• 2-Steps

31

[Damen et al ’18]

EPIC-Kitchens Dishwashing Tasks

[Damen et al ’18]

88

Exciting coming years for robot learning!

