Offline Reinforcement Learning

Sanjiban Choudhury

The story thus far ...

Decision-making

Perception

Models of humans

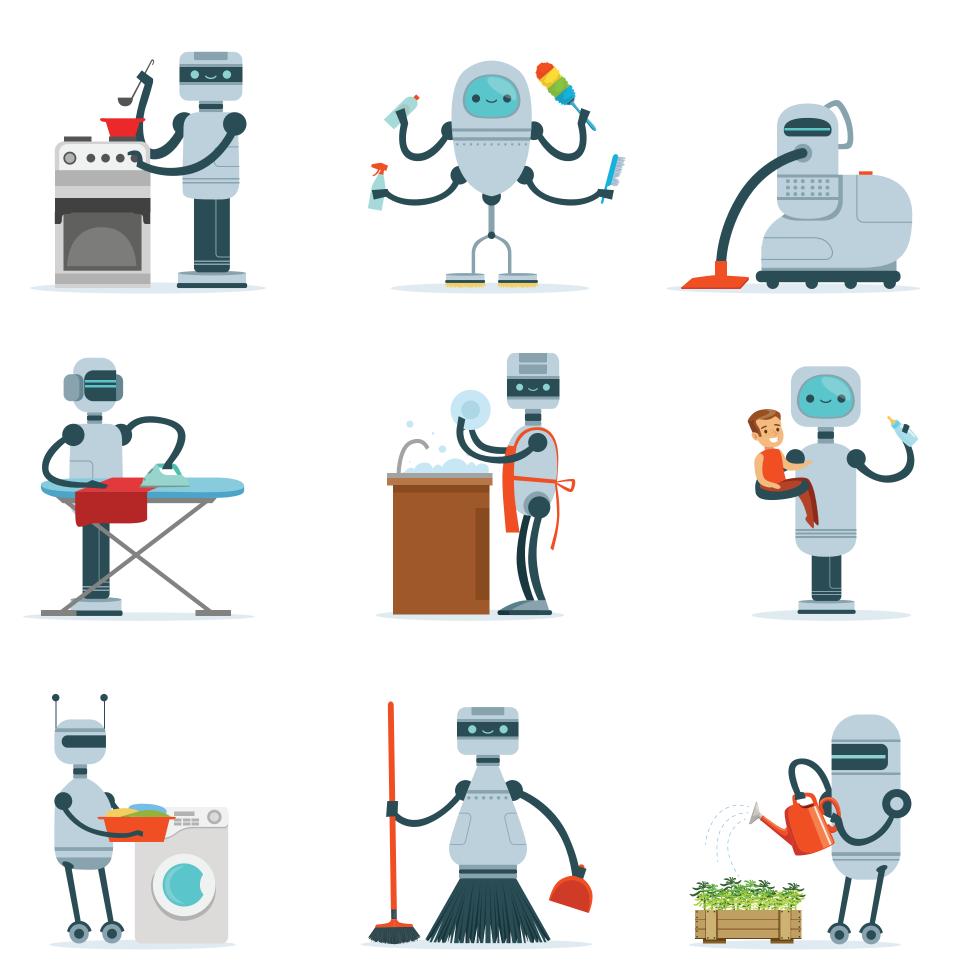
	Pra	ctical Robot Learning	9
Toda	y->	Offline RL	
		Sim-to-Real	

Today's class

- ☐ What is offline RL? Why do we need it for robots?
- Paradigm 1: Offline RL via Pessimism
 - Problem with Q-learning
 - Pessimism to the rescue
- Paradigm 2: RL via Supervised Learning
 - Return-conditioned Supervised Learning
 - Problem in Stochastic MDPs

Why do we need offline RL for robots?

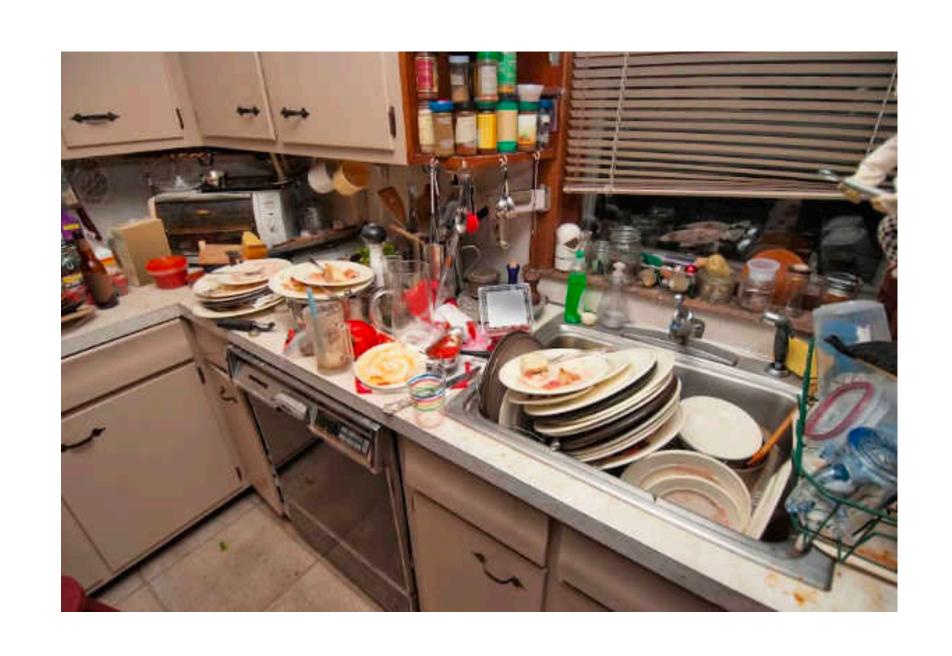
Robots today still only work in CLOSED world





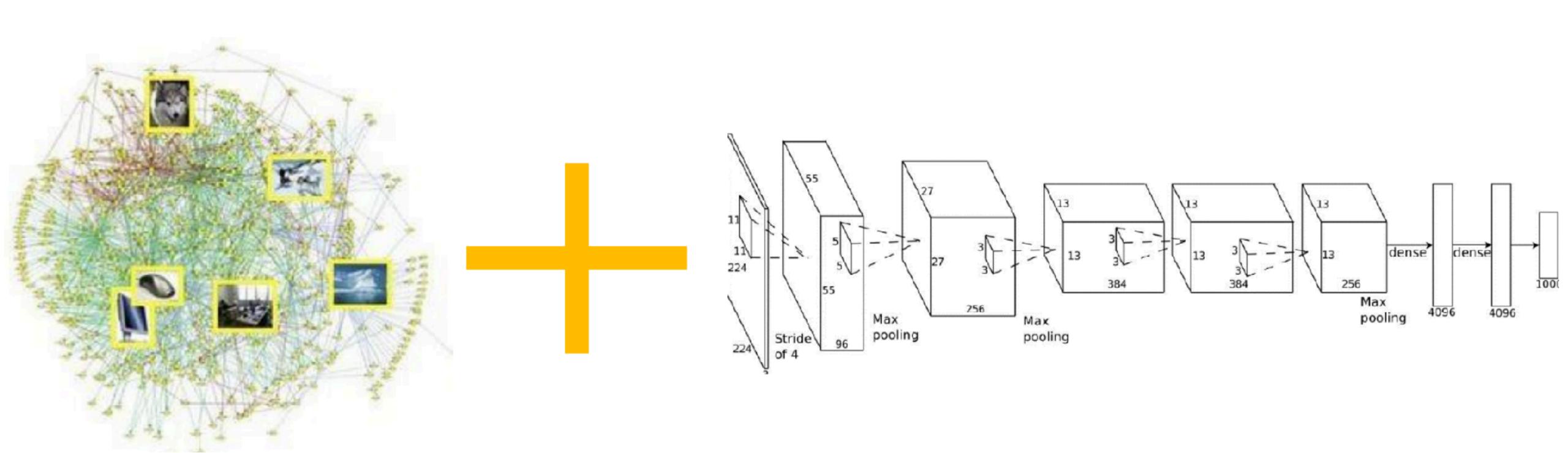
Reality

Generalize to variations of the OPEN world?



Why can't we do RL with robots in the real world?

Machine learning's answer!



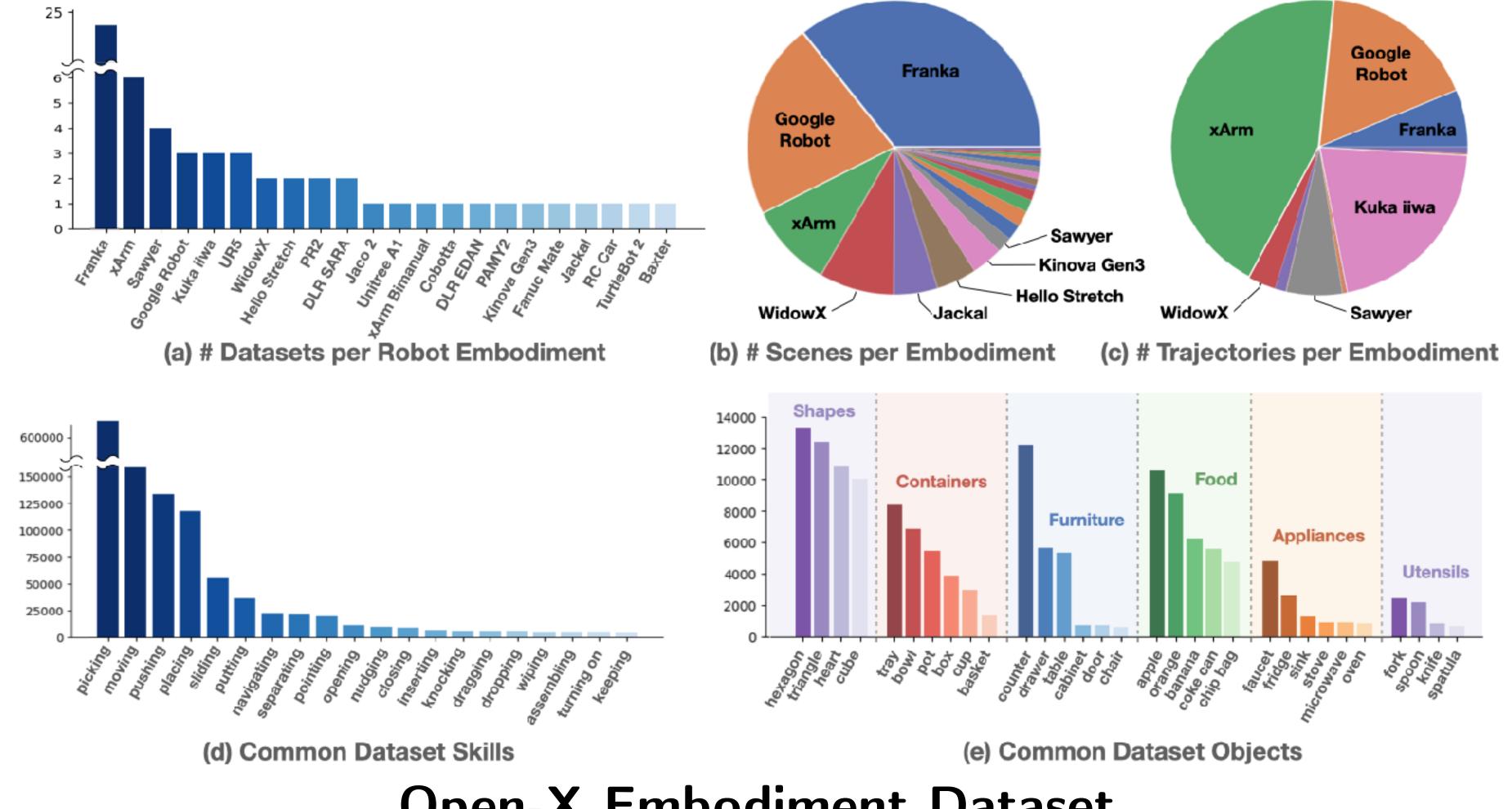
Big Data

Big Models

Credit: Sergey Levine "Offline RL lecture"

Efforts underway to scale up robotics data!

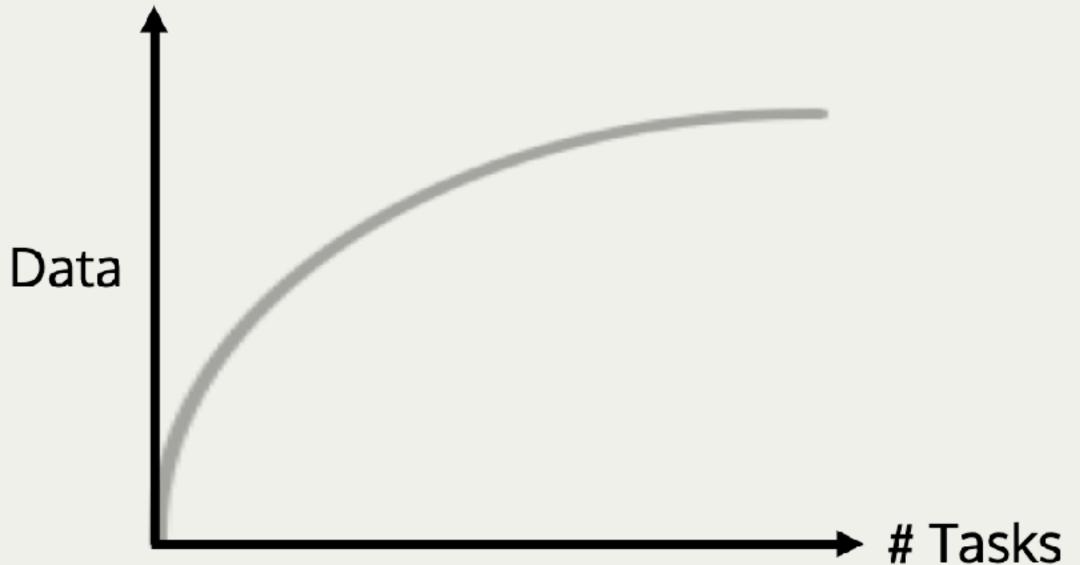
1M trajectories, 22 robots, 21 different institutions



Open-X Embodiment Dataset

Hope: Data grows logarithmically with tasks

On the quest for shared priors w/ machine learning



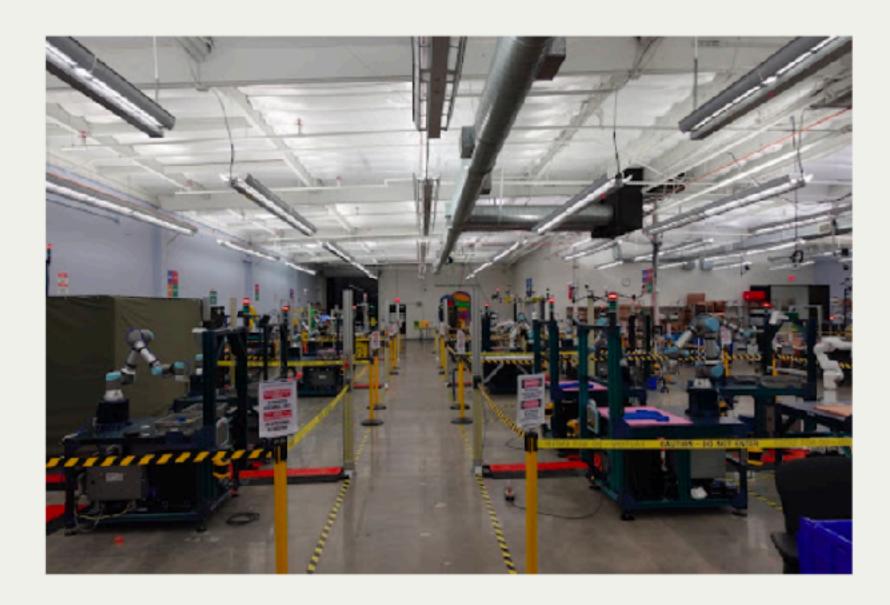
Interact with the physical world to learn bottom-up commonsense

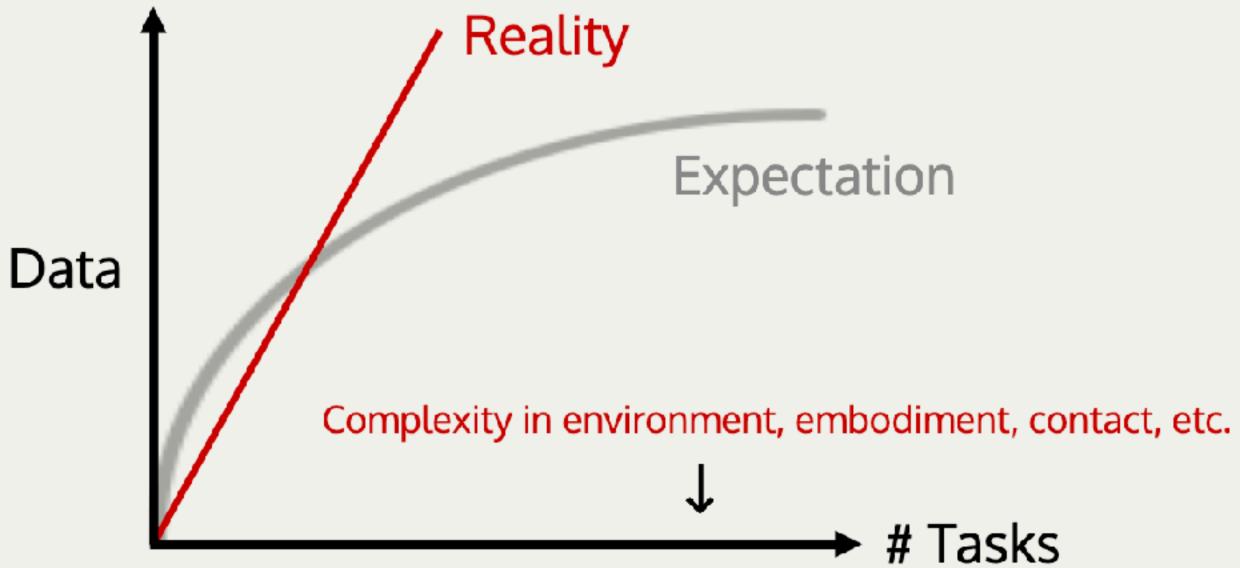
1

i.e. "how the world works"

Reality: Data grows linearly with tasks

On the quest for shared priors w/ machine learning





Interact with the **physical** world to learn bottom-up commonsense

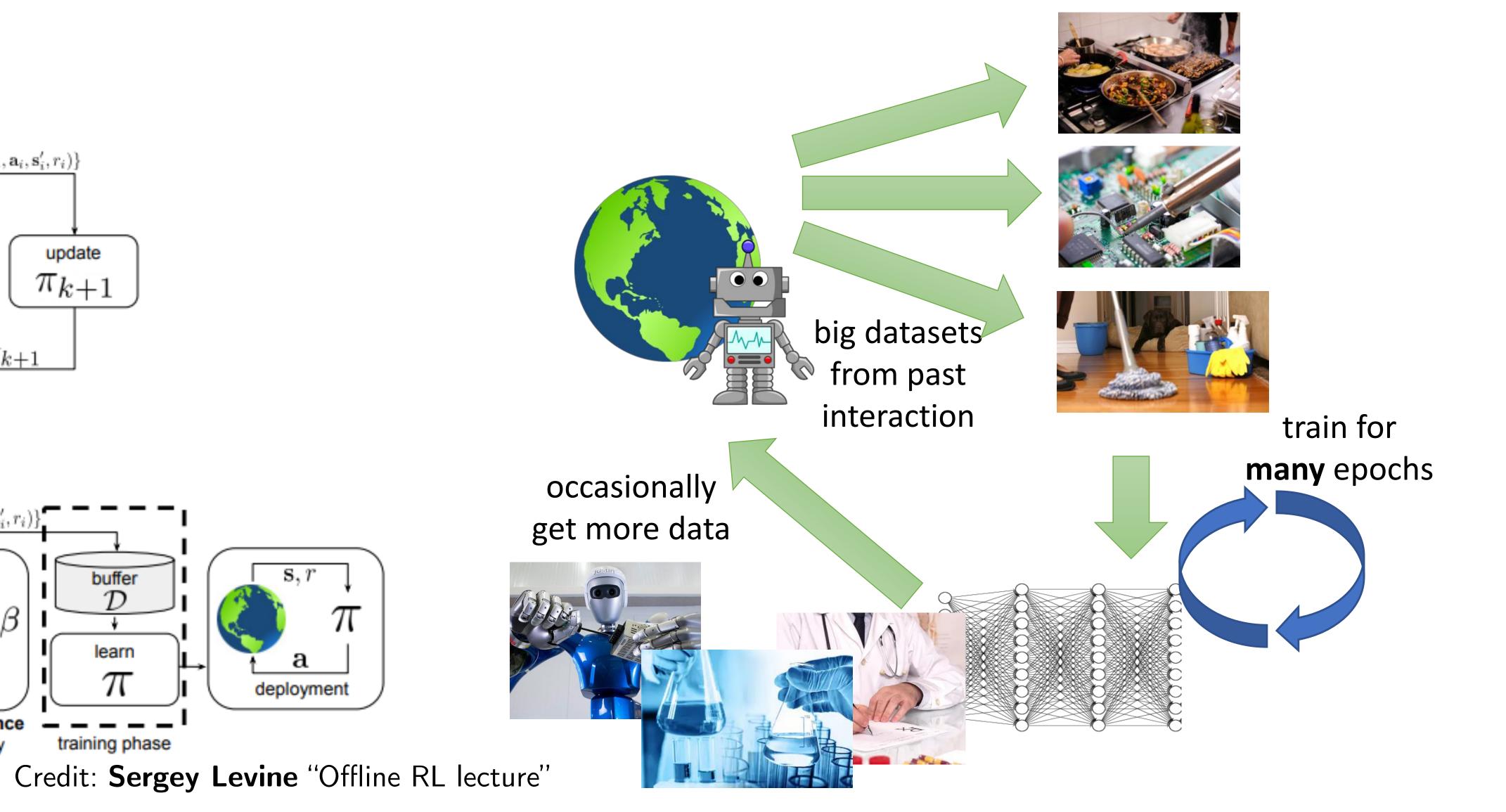
i.e. "how the world works"

Credit: Andy Zeng

But for today, let's pretend we can collect a ton of data that "covers" tasks we care about

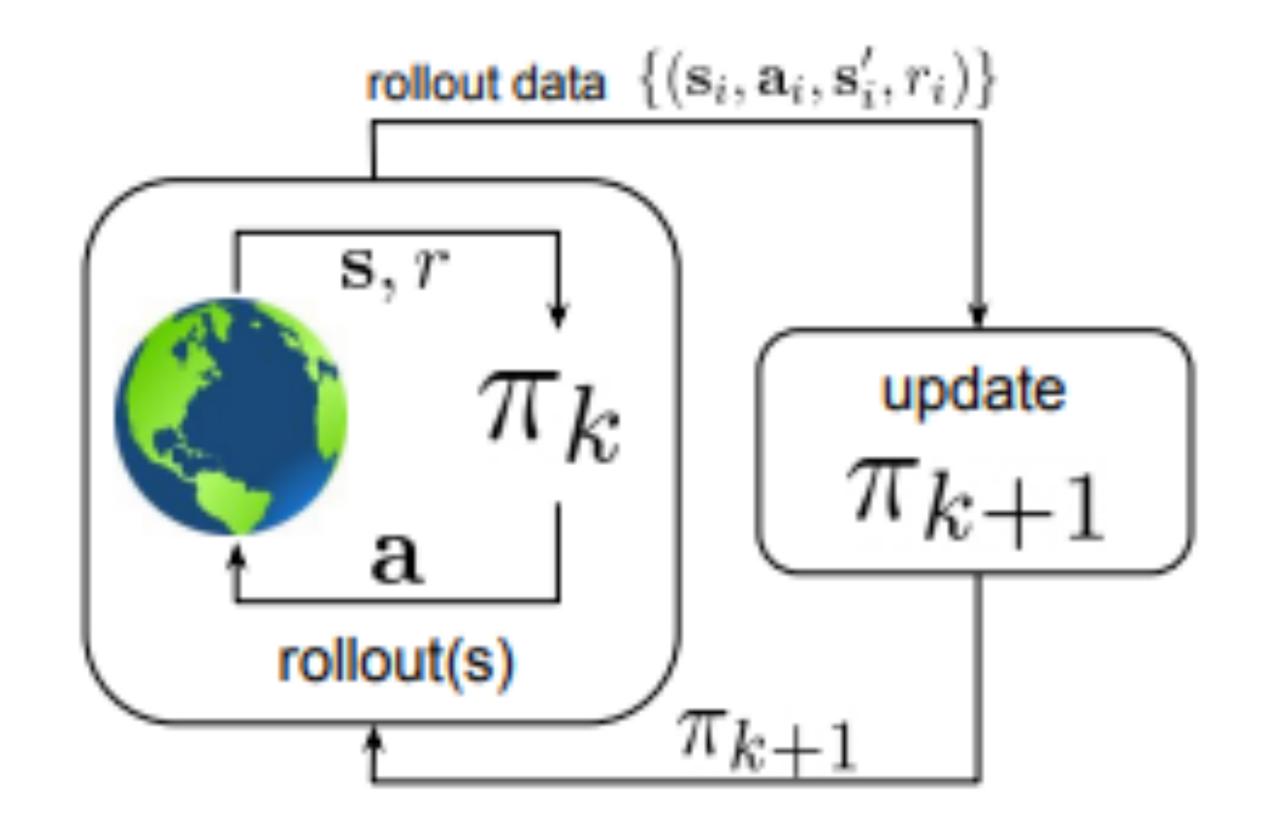
How can we learn optimal from large data collected by any policy?

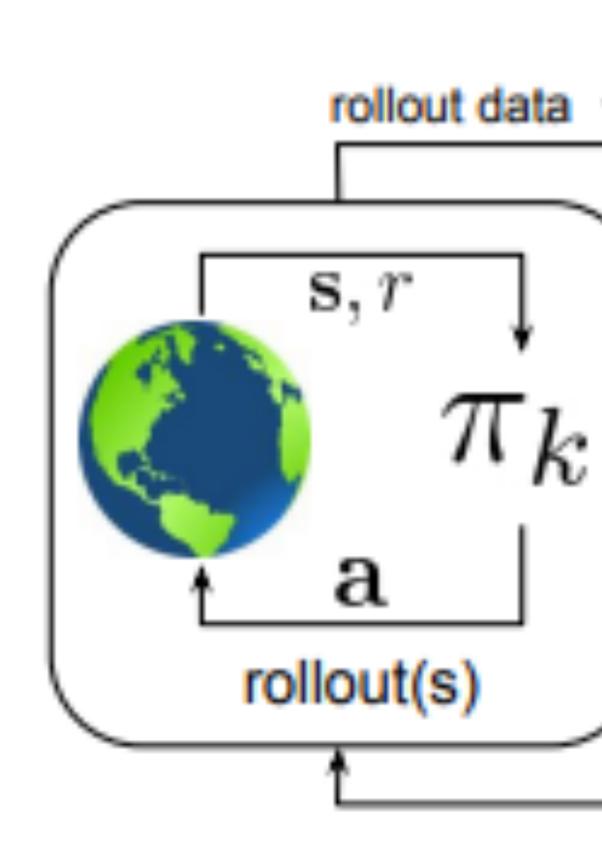
Goal: Offline Reinforcement Learning



Different paradigms of RL

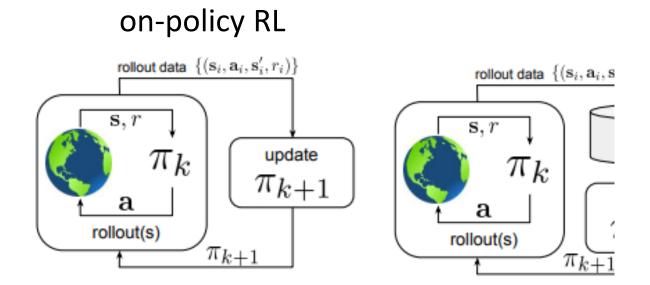
on-policy RL



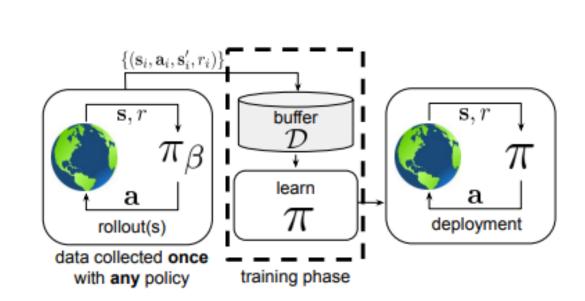


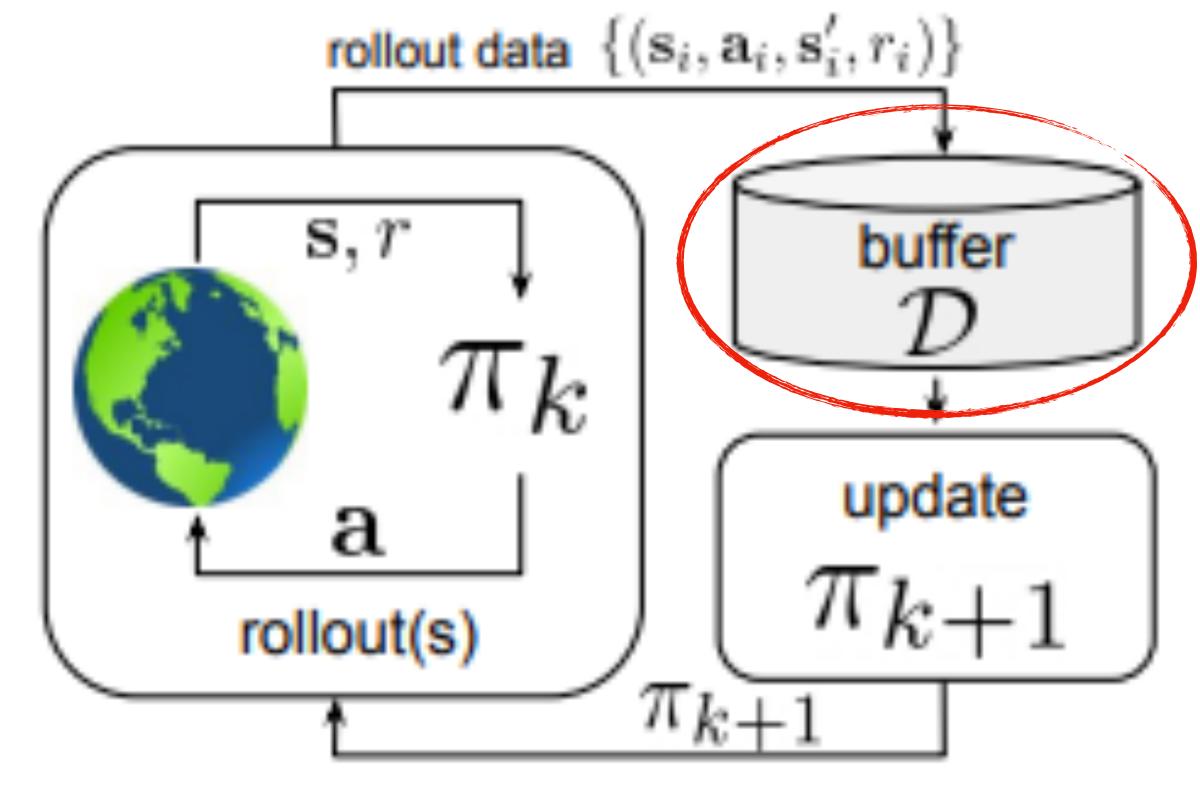
Credit: Sergey Levine "Offline RL lecture"

Different paradigms of RL

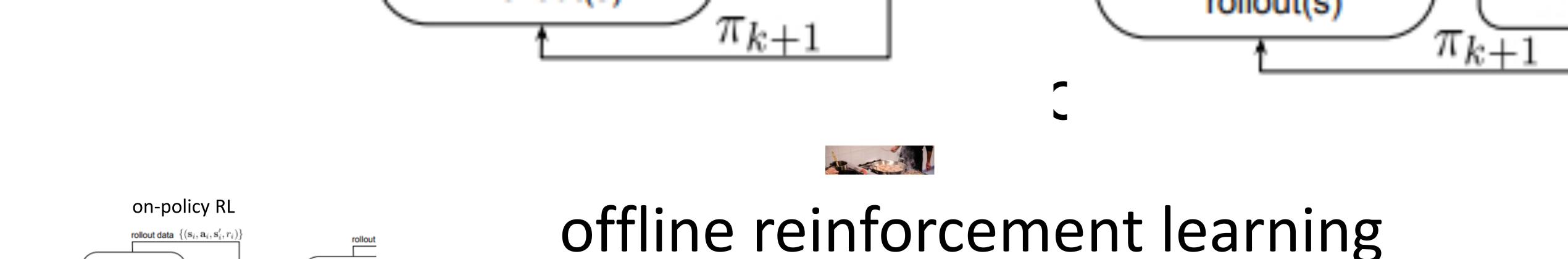


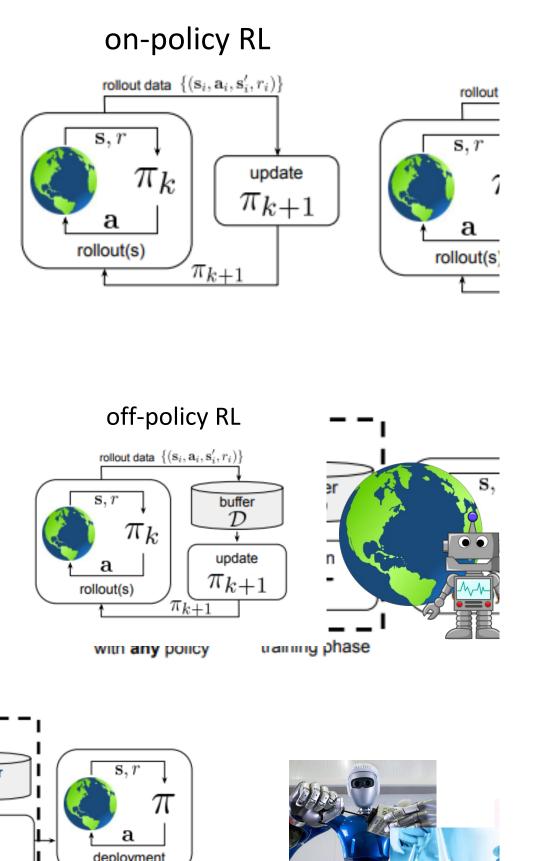
off-policy RL



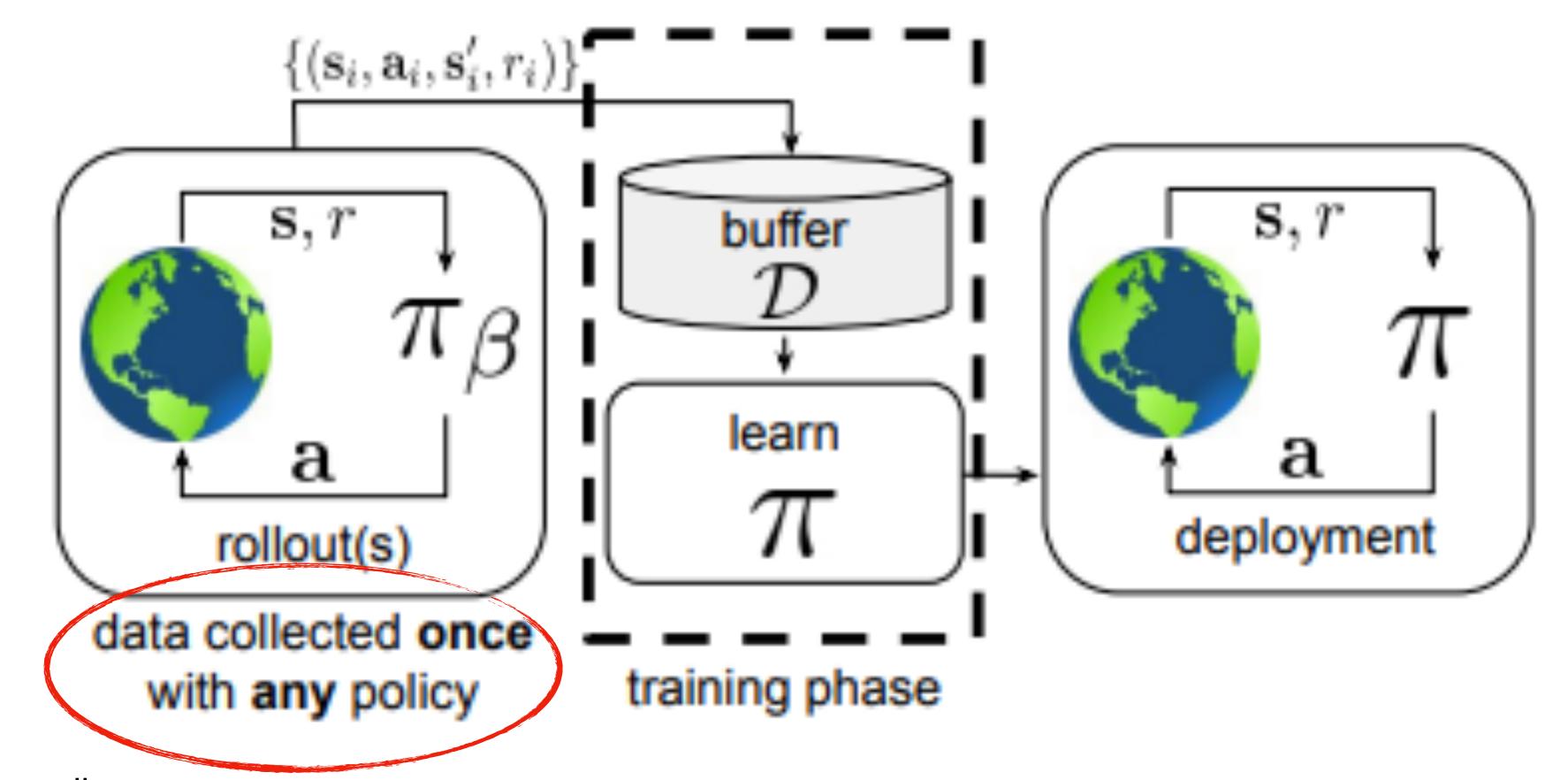


Credit: **Sergey Levine** "Offline RL lecture"





offline reinforcement learning



Offline RL enables robots to learn: from pre-collected datasets without real-time interaction, enabling safer training and leveraging diverse experiences.

Today's class

What is offline RL? Why do we need it for robots?

(Enables safer training, leverages diverse experience)

- Paradigm 1: Offline RL via Pessimism
 - Problem with Q-learning
 - Pessimism to the rescue

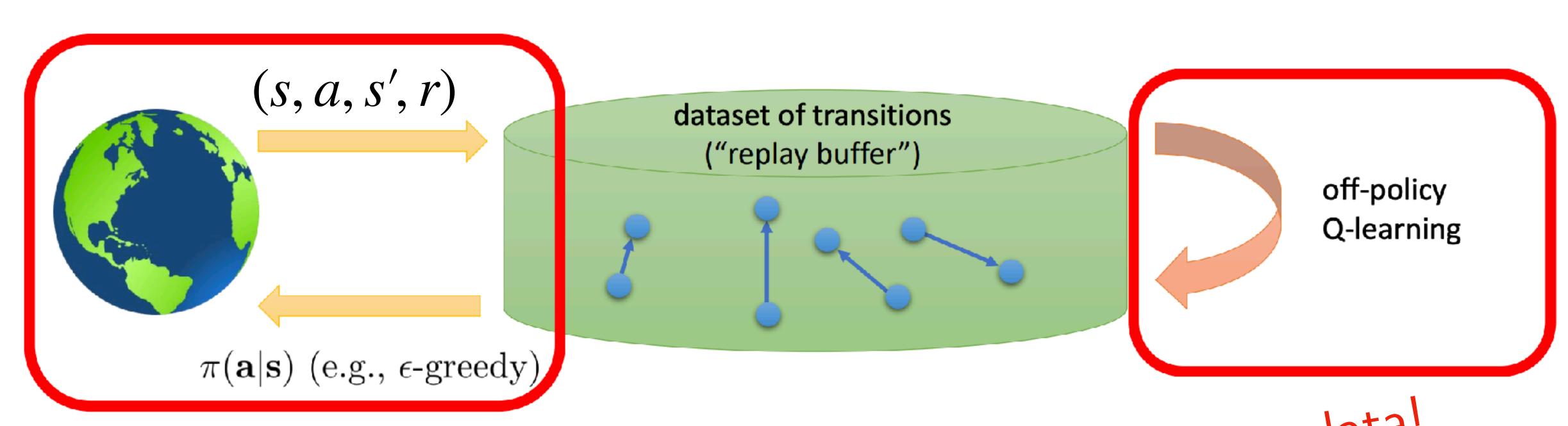
- Paradigm 2: RL via Supervised Learning
 - Return-conditioned Supervised Learning
 - Problem in Stochastic MDPs

Let's begin with a simple "offline" RL algorithm

We have already covered a fundamental algorithm in class that can learn from offline data.

What is it?

Q-learning



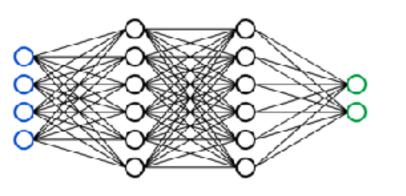
For every (s_t, a_t, r_t, s_{t+1})

Can learn from any data!

$$Q^*(s_t, a_t) = Q^*(s_t, a_t) + \alpha(r(s_t, a_t) + \gamma \max_{a'} Q^*(s_{t+1}, a') - Q^*(s_t, a_t))$$

Fitted Q-Iteration

Fitted Q-iteration



Given $\{s_i, a_i, r_i, s_i'\}_{i=1}^{N}$

Init
$$Q_{\theta}(s, a) \leftarrow 0$$

return Q_{θ}

while not converged do

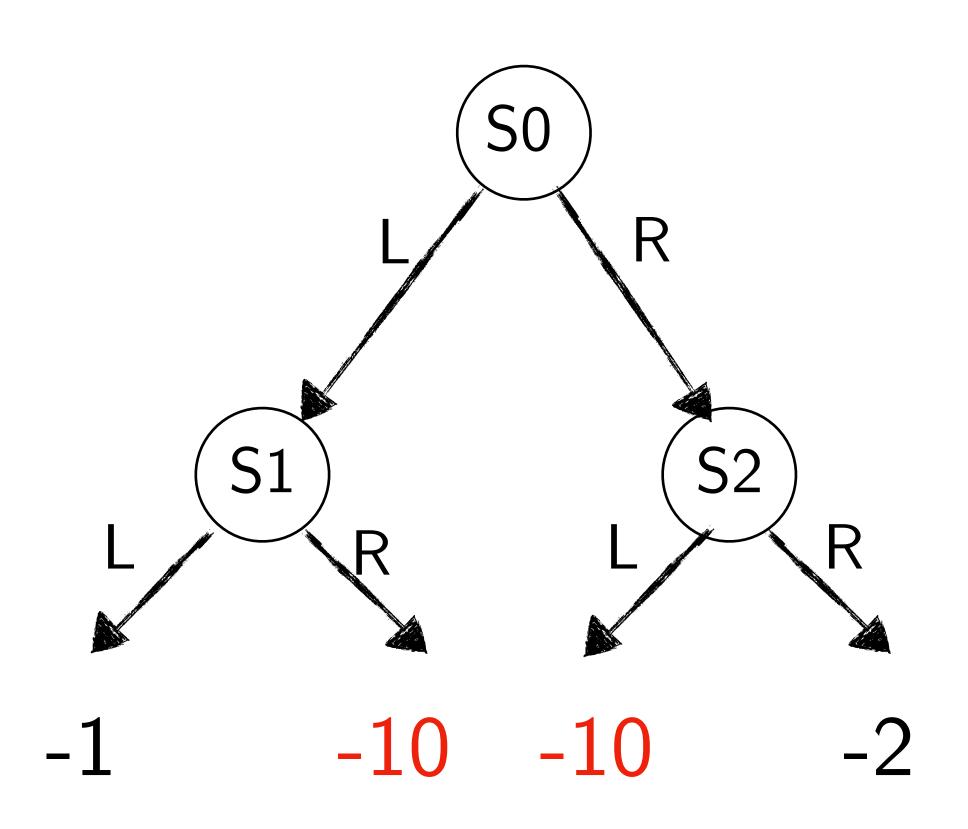
$$\begin{aligned} D &\leftarrow \varnothing \\ \textbf{for } i \in 1, ..., N & \textit{Use old copy of } Q \\ & \text{input} \leftarrow \{s_i, a_i\} & \textit{to set target} \\ & \text{target} \leftarrow r_i + \gamma \max_{a'} Q_{\theta}(s_i', a') \\ & D \leftarrow D \cup \{\text{input, target}\} \\ & Q_{\theta} \leftarrow \textbf{Train}(D) \end{aligned}$$

Training is a regression problem

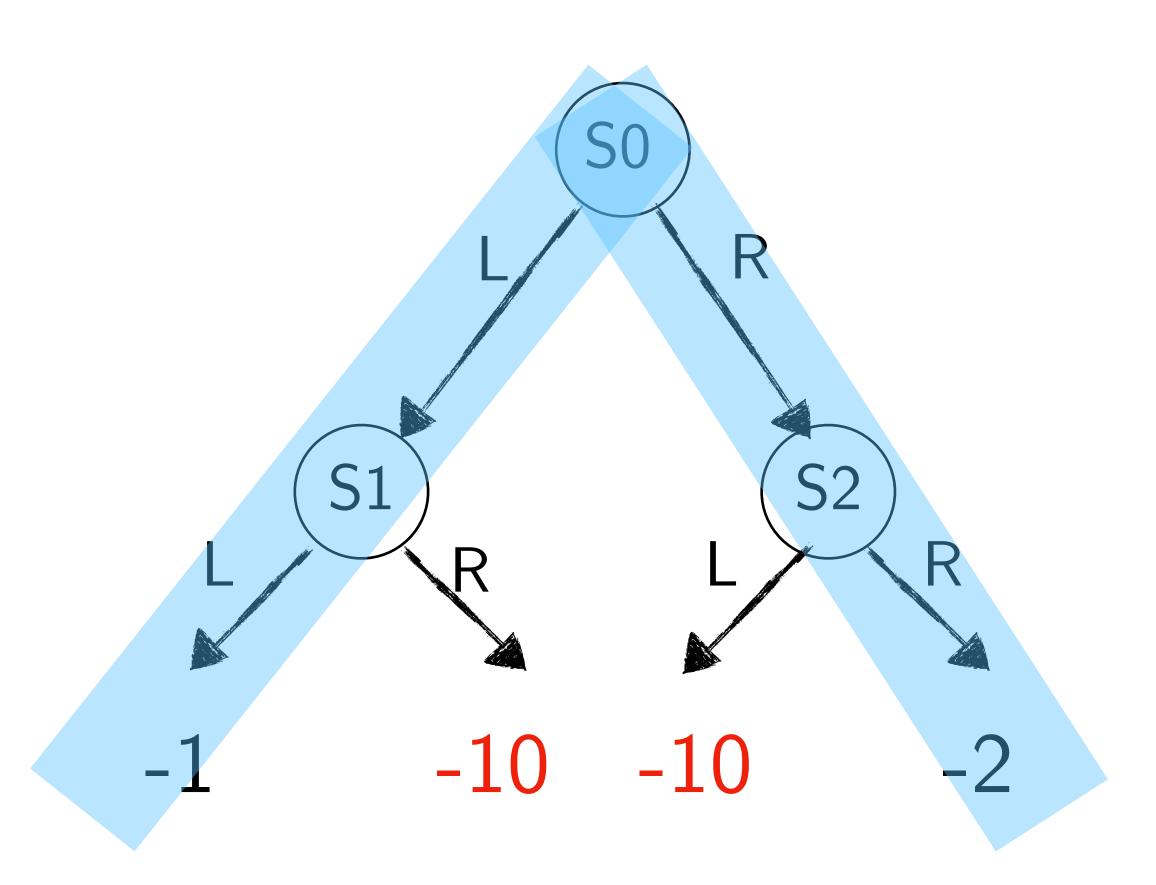
$$\mathcal{E}(\theta) = \sum_{i=1}^{N} (Q_{\theta}(s_i, a_i) - target)^2$$

Activity!

Consider the following MDP

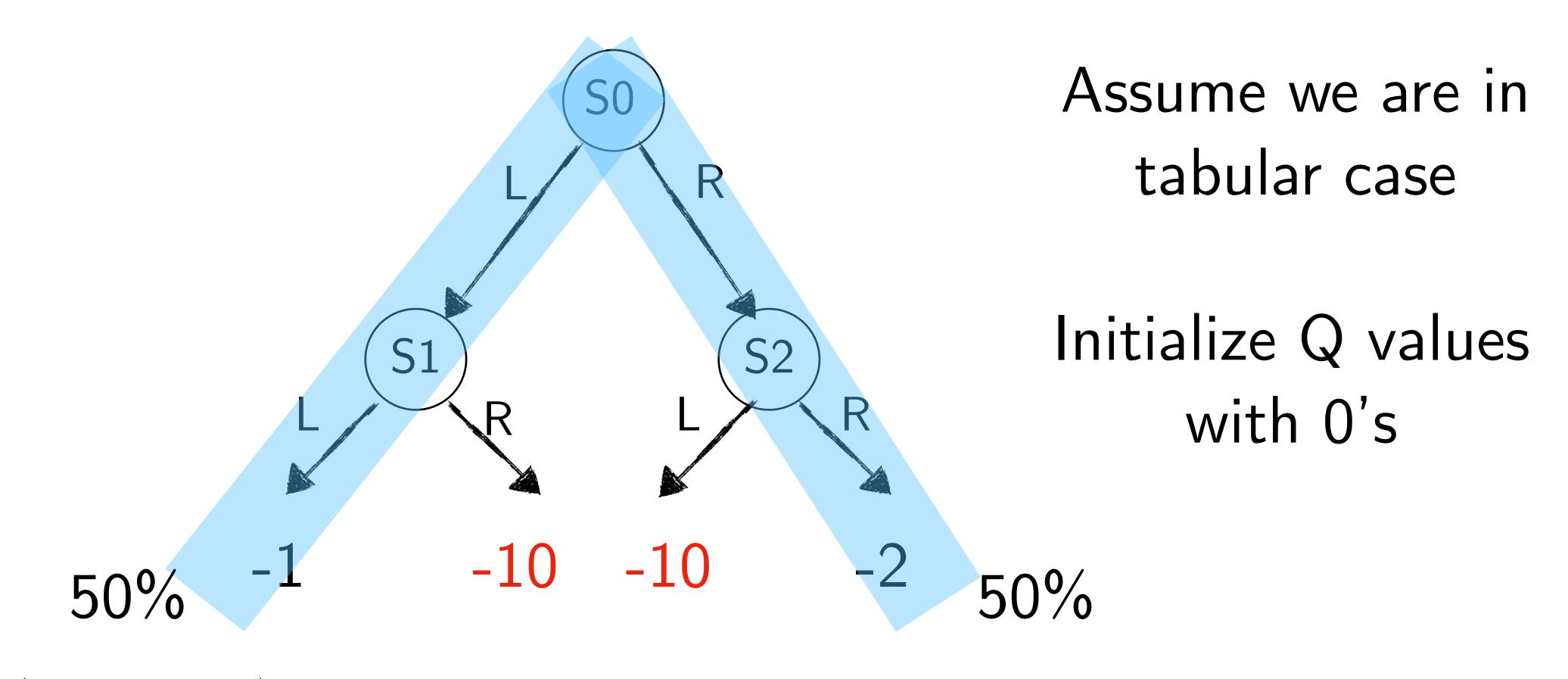


Let's say I collected some data from the MDP



50%

What policy would Q-learning pick?



For every
$$(s_t, a_t, r_t, s_{t+1})$$

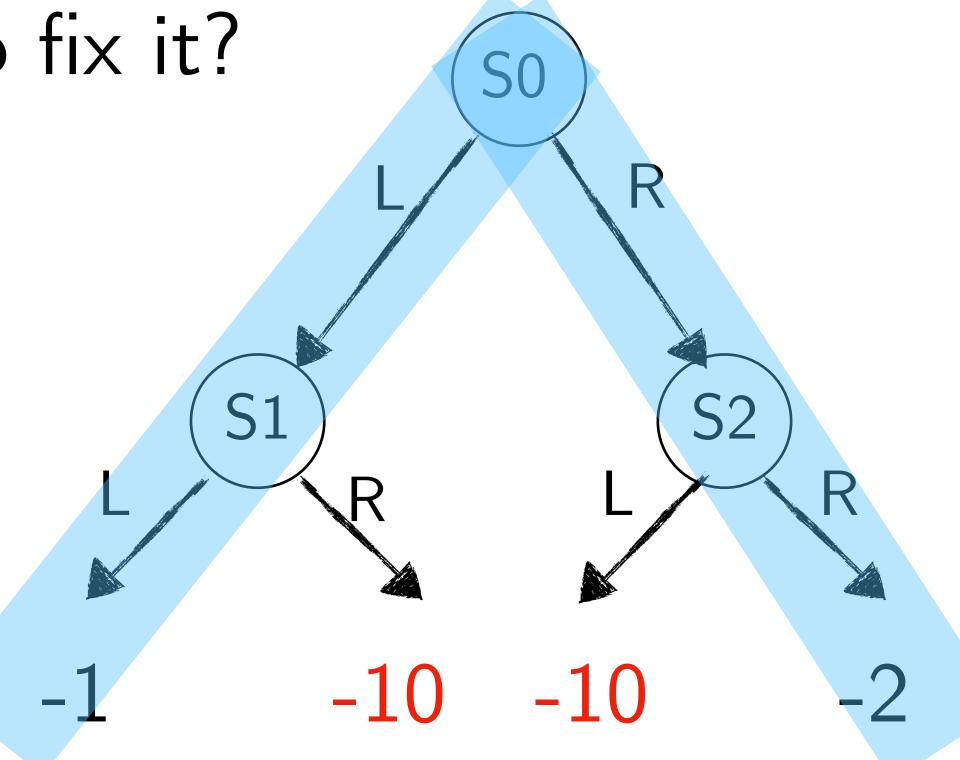
$$Q^*(s_t, a_t) = Q^*(s_t, a_t) + \alpha(r(s_t, a_t) + \gamma \max_{a'} Q^*(s_{t+1}, a') - Q^*(s_t, a_t))$$

Think-Pair-Share!

Think (30 sec): What policy would Q-learning pick in the tabular setting? Why? Ideas to fix it?

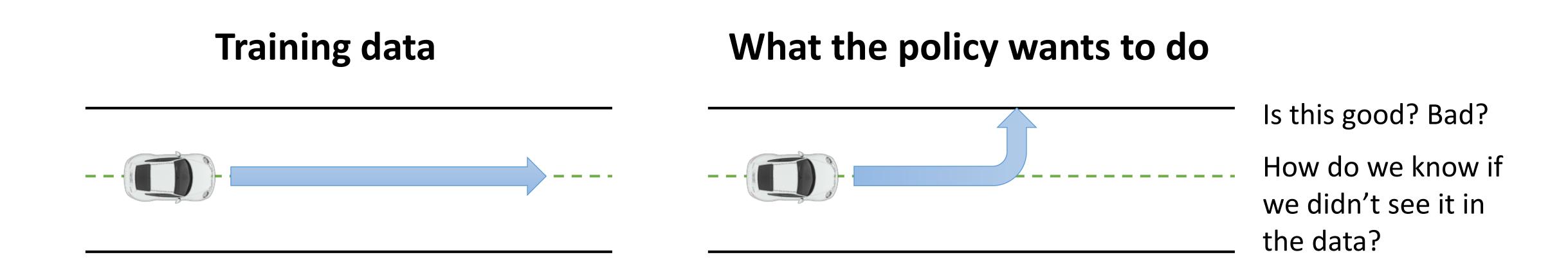
Pair: Find a partner

Share (45 sec): Partners exchange ideas



The Problem with Q-learning

Fundamental problem: counterfactual queries



Q-learning can be incorrectly optimistic about actions it has not see in the data

Today's class

What is offline RL? Why do we need it for robots?

(Enables safer training, leverages diverse experience)

- Paradigm 1: Offline RL via Pessimism
 - Problem with Q-learning (Incorrectly optimistic about unseen actions)
 - Pessimism to the rescue
- Paradigm 2: RL via Supervised Learning
 - Return-conditioned Supervised Learning
 - Problem in Stochastic MDPs

Pessimism

Pessimism as a policy constraint

Don't deviate too much from the data collecting policy

Pessimism as a policy constraint

Don't deviate too much from the data collecting policy

$$Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + E_{\mathbf{a}' \sim \pi_{\text{new}}}[Q(\mathbf{s}', \mathbf{a}')]$$

$$\pi_{\text{new}}(\mathbf{a}|\mathbf{s}) = \arg\max_{\pi} E_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})}[Q(\mathbf{s}, \mathbf{a})]$$

Typical Q-learning

Pessimism as a policy constraint

Don't deviate too much from the data collecting policy

$$Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + E_{\mathbf{a}' \sim \pi_{\text{new}}}[Q(\mathbf{s}', \mathbf{a}')]$$

$$\pi_{\text{new}}(\mathbf{a}|\mathbf{s}) = \arg\max_{\pi} E_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})}[Q(\mathbf{s}, \mathbf{a})] \text{ s.t. } D_{\text{KL}}(\pi || \pi_{\beta}) \leq \epsilon$$

Typical Q-learning

Add a constraint on policy

 $\pi_{eta}(\mathbf{a}|\mathbf{s})$

34

TD3+BC: Most simple and effective offline RL!

A Minimalist Approach to Offline Reinforcement Learning

Scott Fujimoto^{1,2} Shixiang Shane Gu²

¹Mila, McGill University

²Google Research, Brain Team

scott.fujimoto@mail.mcgill.ca

$$\pi = \operatorname*{argmax}_{\pi} \mathbb{E}_{(s,a) \sim \mathcal{D}}[Q(s,\pi(s))].$$

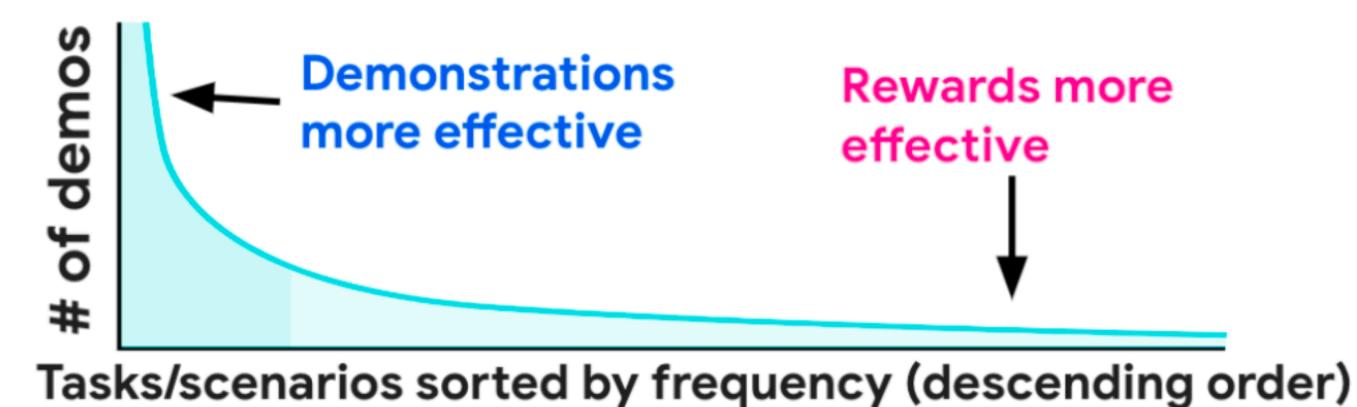
$$\pi = \operatorname*{argmax}_{\pi} \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[\lambda Q(s, \pi(s)) - (\pi(s) - a)^{2} \right],$$

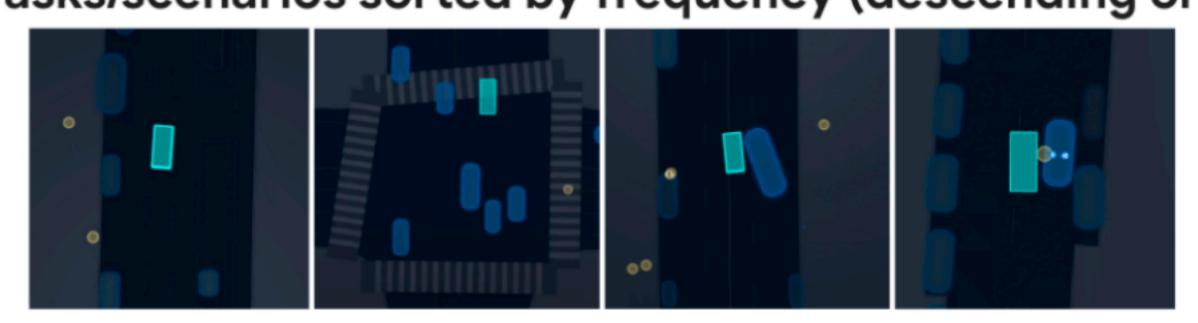
		BC	BRAC-p	AWAC	CQL	Fisher-BRC	TD3+BC
ando	HalfCheetah Hopper Walker2d	2.0 ± 0.1 9.5 ± 0.1 1.2 ± 0.2	23.5 11.1 0.8	2.2 9.6 5.1	21.7 ± 0.9 10.7 ± 0.1 2.7 ± 1.2	32.2 ± 2.2 11.4 ± 0.2 0.6 ± 0.6	10.2 ± 1.3 11.0 ± 0.1 1.4 ± 1.6
.≅	HalfCheetah Hopper Walker2d	36.6 ± 0.6 30.0 ± 0.5 11.4 ± 6.3	44.0 31.2 72.7	37.4 72.0 30.1	37.2 ± 0.3 44.2 ± 10.8 57.5 ± 8.3	41.3 ± 0.5 99.4 ± 0.4 79.5 ± 1.0	42.8 ± 0.3 99.5 ± 1.0 79.7 ± 1.8
lediu ?epla	HalfCheetah Hopper Walker2d	34.7 ± 1.8 19.7 ± 5.9 8.3 ± 1.5	45.6 0.7 -0.3	-	41.9 ± 1.1 28.6 ± 0.9 15.8 ± 2.6	43.3 ± 0.9 35.6 ± 2.5 42.6 ± 7.0	43.3 ± 0.5 31.4 ± 3.0 25.2 ± 5.1
Medium Expert	HalfCheetah Hopper Walker2d	67.6 ± 13.2 89.6 ± 27.6 12.0 ± 5.8	43.8 1.1 -0.3	36.8 80.9 42.7	27.1 ± 3.9 111.4 ± 1.2 68.1 ± 13.1	96.1 ±9.5 90.6 ±43.3 103.6 ±4.6	97.9 ± 4.4 112.2 ± 0.2 101.1 ± 9.3
Зхреі	HalfCheetah Hopper Walker2d	105.2 ± 1.7 111.5 ± 1.3 56.0 ± 24.9	3.8 6.6 -0.2	78.5 85.2 57.0	82.4 ±7.4 111.2 ±2.1 103.8 ±7.6	106.8 ± 3.0 112.3 ± 0.2 79.9 ± 32.4	105.7 ± 1.9 112.2 ± 0.2 105.7 ± 2.7
	Total	595.3 ±91.5	284.1	-	764.3 ± 61.5	974.6 ±108.3	979.3 ±33.4

Works on real self-driving problems!

Imitation Is Not Enough: Robustifying Imitation with Reinforcement Learning for Challenging Driving Scenarios

Yiren Lu¹, Justin Fu¹, George Tucker², Xinlei Pan¹, Eli Bronstein¹, Rebecca Roelofs², Benjamin Sapp¹, Brandyn White¹, Aleksandra Faust², Shimon Whiteson¹, Dragomir Anguelov¹, Sergey Levine^{2,3}

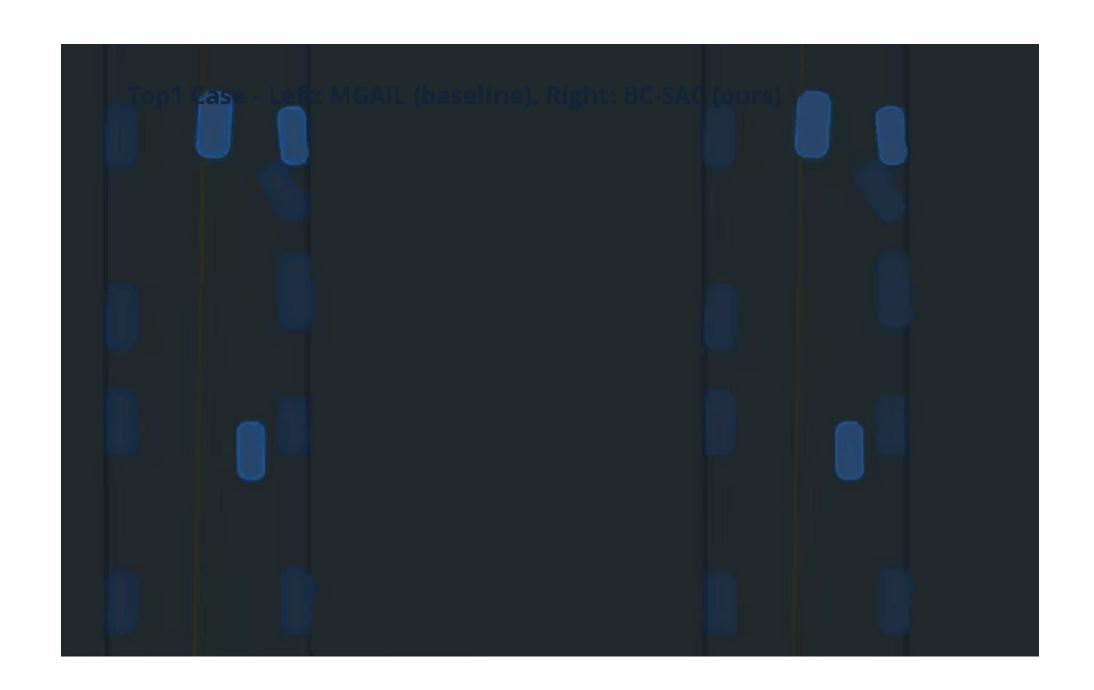




Works on real self-driving problems!

Imitation Is Not Enough: Robustifying Imitation with Reinforcement Learning for Challenging Driving Scenarios

Yiren Lu¹, Justin Fu¹, George Tucker², Xinlei Pan¹, Eli Bronstein¹, Rebecca Roelofs², Benjamin Sapp¹, Brandyn White¹, Aleksandra Faust², Shimon Whiteson¹, Dragomir Anguelov¹, Sergey Levine^{2,3}



Many more sophisticated offline RL methods

Conservative Q-Learning for Offline Reinforcement Learning

Aviral Kumar¹, Aurick Zhou¹, George Tucker², Sergey Levine^{1,2}

¹UC Berkeley, ²Google Research, Brain Team

aviralk@berkeley.edu

Instead of constraining policy, compute pessimistic Q values

Adversarially Trained Actor Critic for Offline Reinforcement Learning

Ching-An Cheng * 1 Tengyang Xie * 2 Nan Jiang 2 Alekh Agarwal 3

Optimize the best worst case performance

Today's class

What is offline RL? Why do we need it for robots?

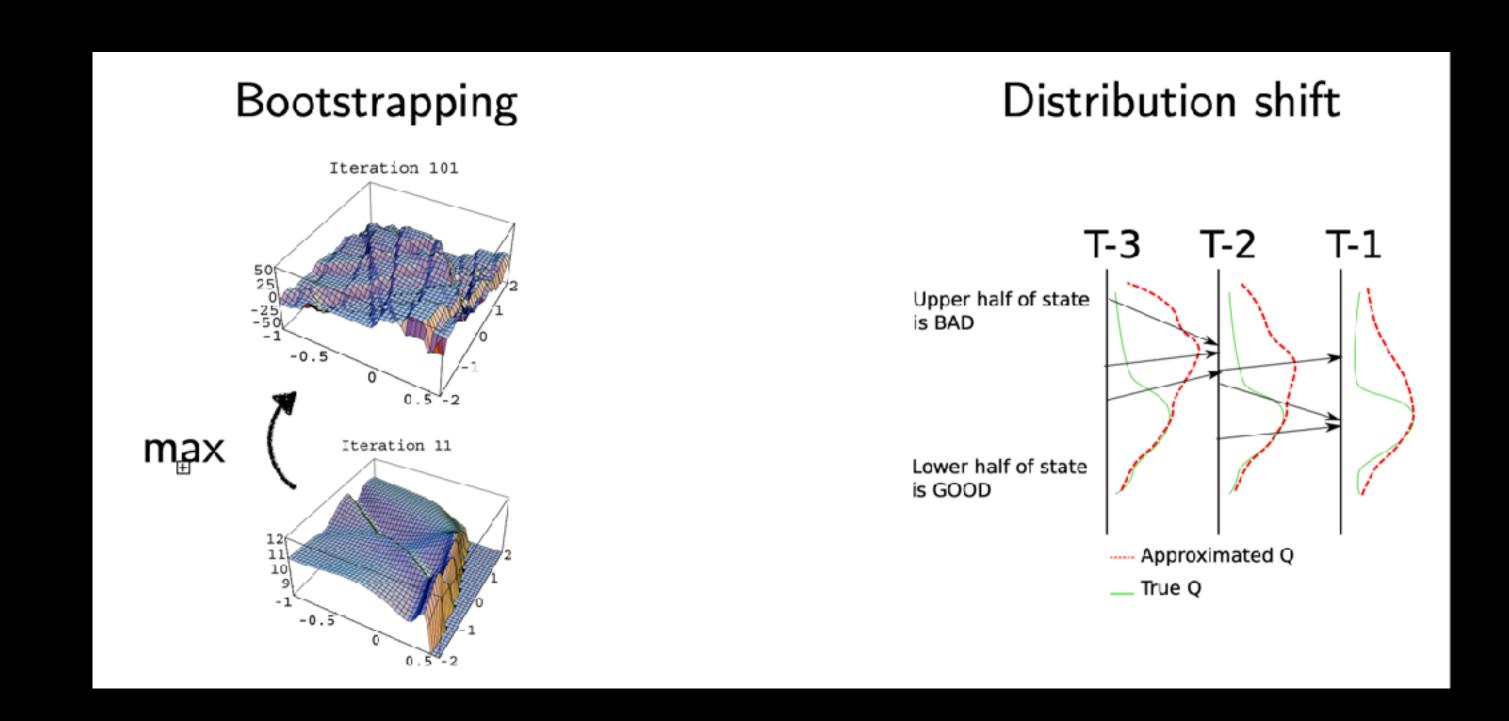
(Enables safer training, leverages diverse experience)

- Paradigm 1: Offline RL via Pessimism
 - Problem with Q-learning (Incorrectly optimistic about unseen actions)
 - Pessimism to the rescue (Constrain policy to not deviate from data)
- Paradigm 2: RL via Supervised Learning
 - Return-conditioned Supervised Learning
 - Problem in Stochastic MDPs

Reinforcement Learning is Hard ...

Many horror stories of RL!

Nightmares of Policy Optimization



Need many tricks to make Q-learning work in practice!

Rainbow: Combining Improvements in Deep Reinforcement Learning

Matteo Hessel	Joseph Modayil	Hado van Hasselt	Tom Schaul	Georg Ostrovski	
DeepMind	DeepMind	DeepMind	DeepMind	DeepMind	
Will Dabney	Dan Horgan	Bilal Piot	Mohammad Azar	David Silver	
DeepMind	DeepMind	DeepMind	DeepMind	DeepMind	

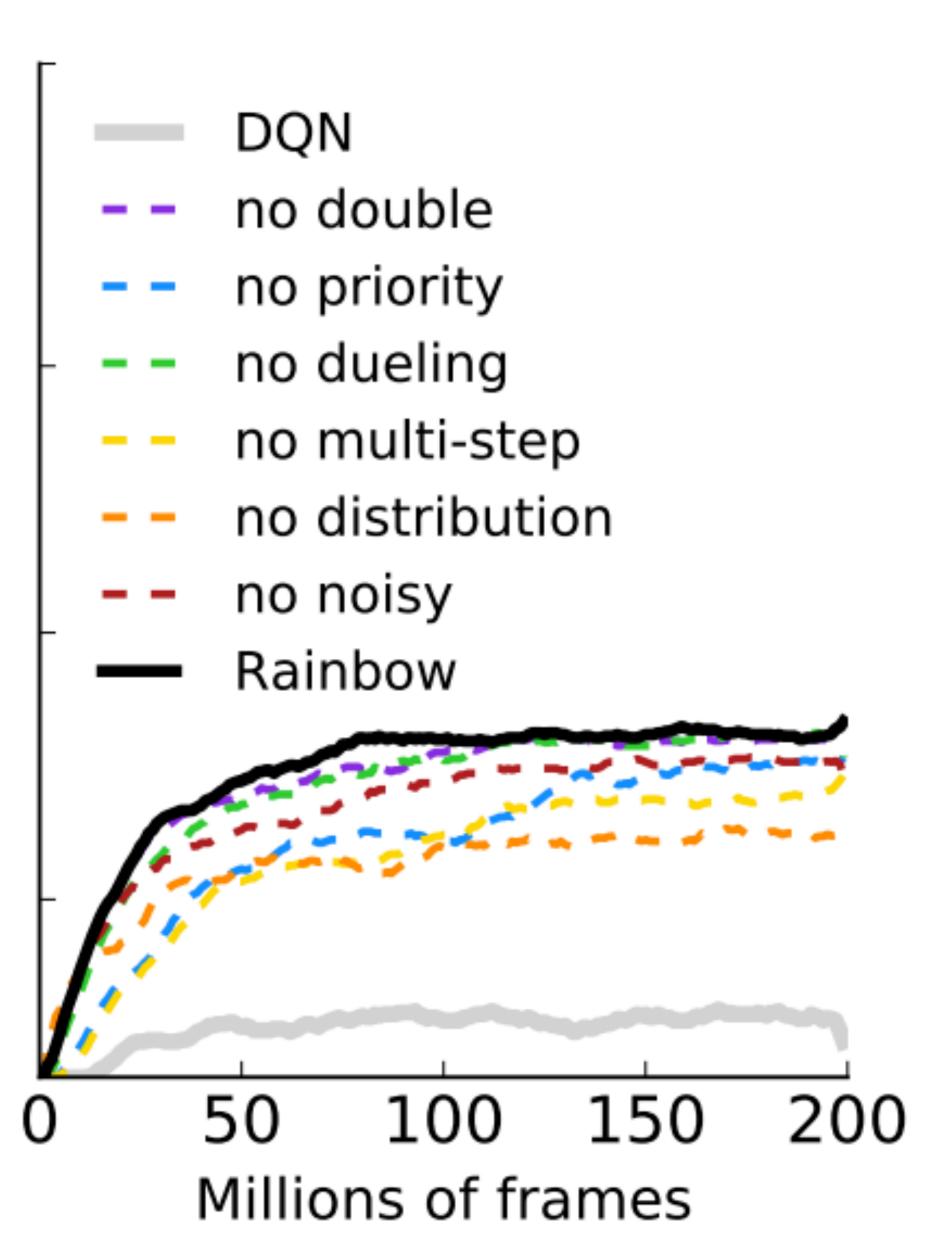
Double Q Learning

Prioritized Replay

Dueling Networks

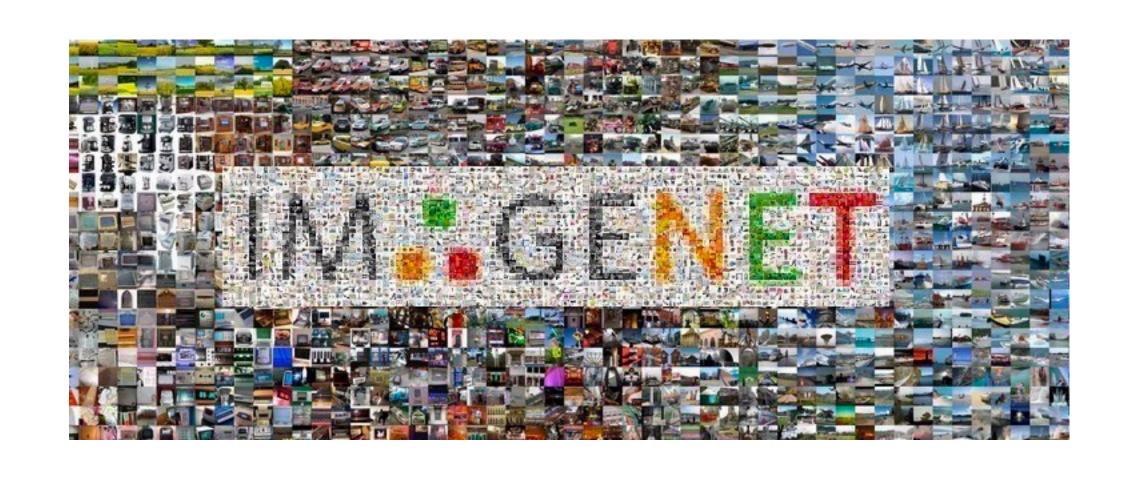
Multi-step Learning

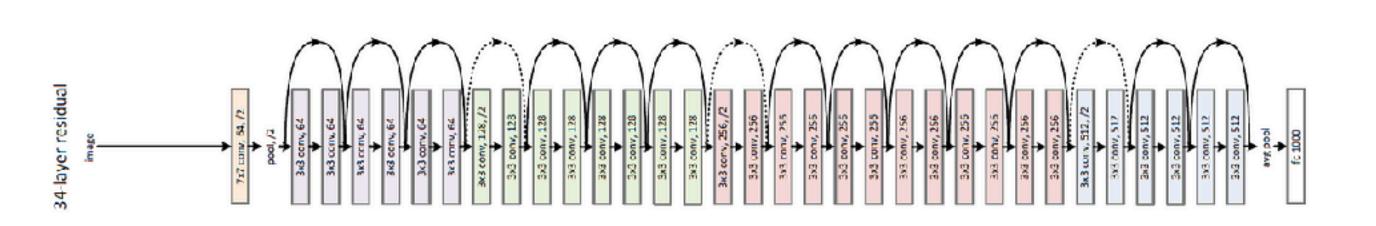
Distributional RL
Noisy Nets

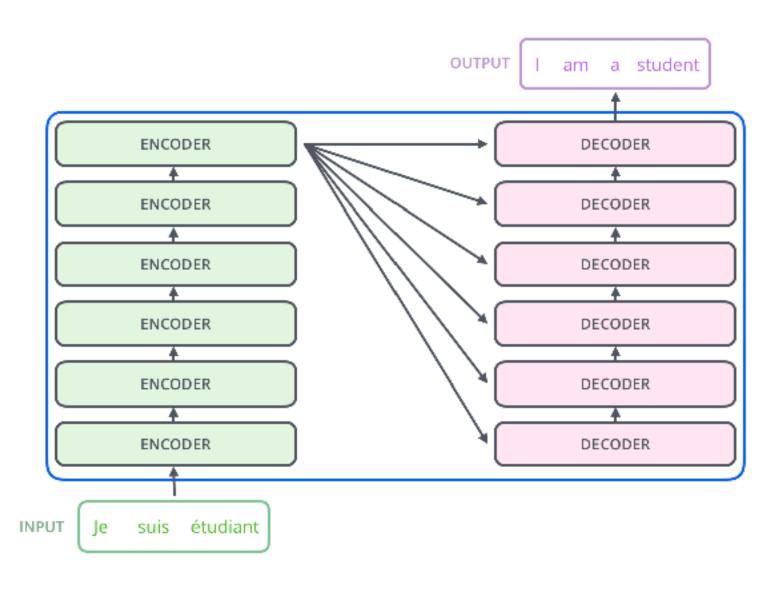


Can we just go back to good old supervised learning?

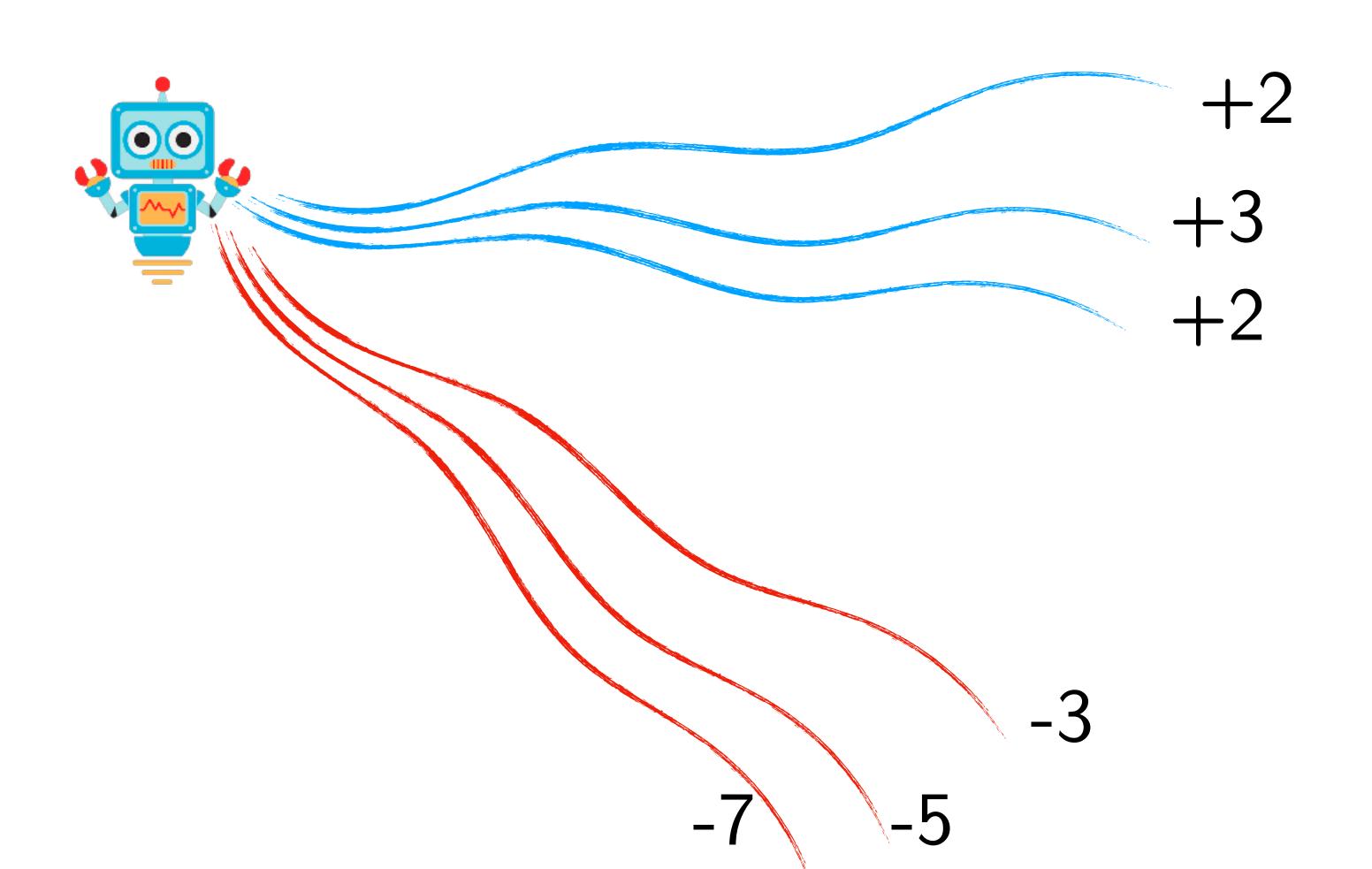
Supervised Learning success stories



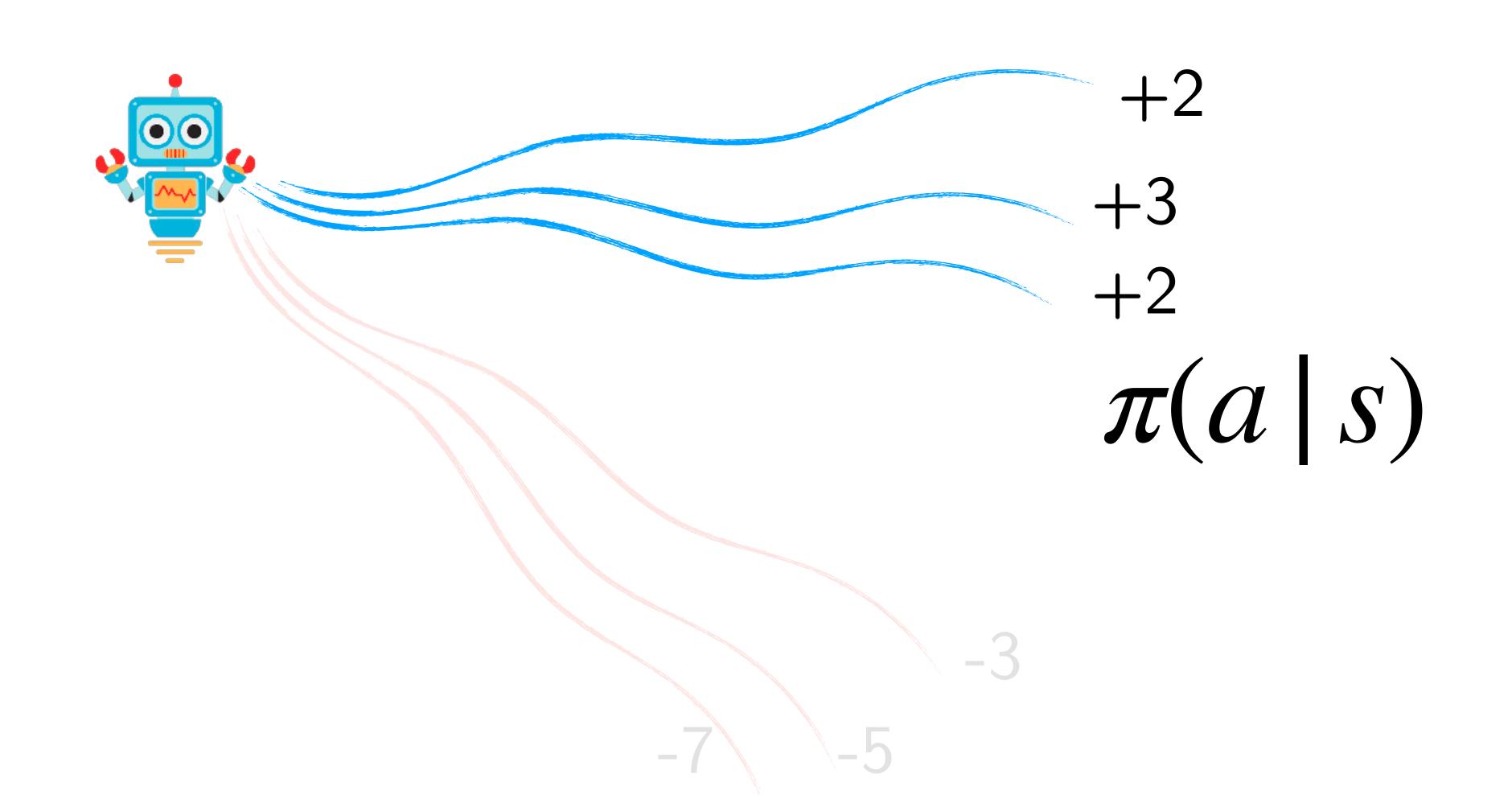




What if I did supervised learning (BC) here?



What if I did supervised learning (BC) only on the top % rollouts?



An embarrassingly simply algorithm: BC%

1. Collect offline dataset using whatever behavior policy

2. Get the top % trajectories based on returns

3. Do BC on just that!

Does this even work ?!?

A legit
Offline RL
Algo

Dataset	Environment	10%BC	25%BC	40%BC	100%BC	CQL
Medium	HalfCheetah	-42.9	43.0	43.1	43.1	44.4
Medium	Hopper	65.9	65.2	65.3	63.9	58.0
Medium	Walker	78.8	80.9	78.8	77.3	79.2
Medium	Reacher	51.0	48.9	58.2	58.4	26.0
Medium-Replay	HalfCheetah	40.8	40.9	41.1	4.3	46.2
Medium-Replay	Hopper	70.6	58.6	31.0	27.6	48.6
Medium-Replay	Walker	70.4	67.8	67.2	36.9	26.7
Medium-Replay	Reacher	33.1	16.2	10.7	5.4	19.0
Average		56.7	52.7	49.4	39.5	43.5
			· ·			

An embarrassingly simply algorithm: BC%

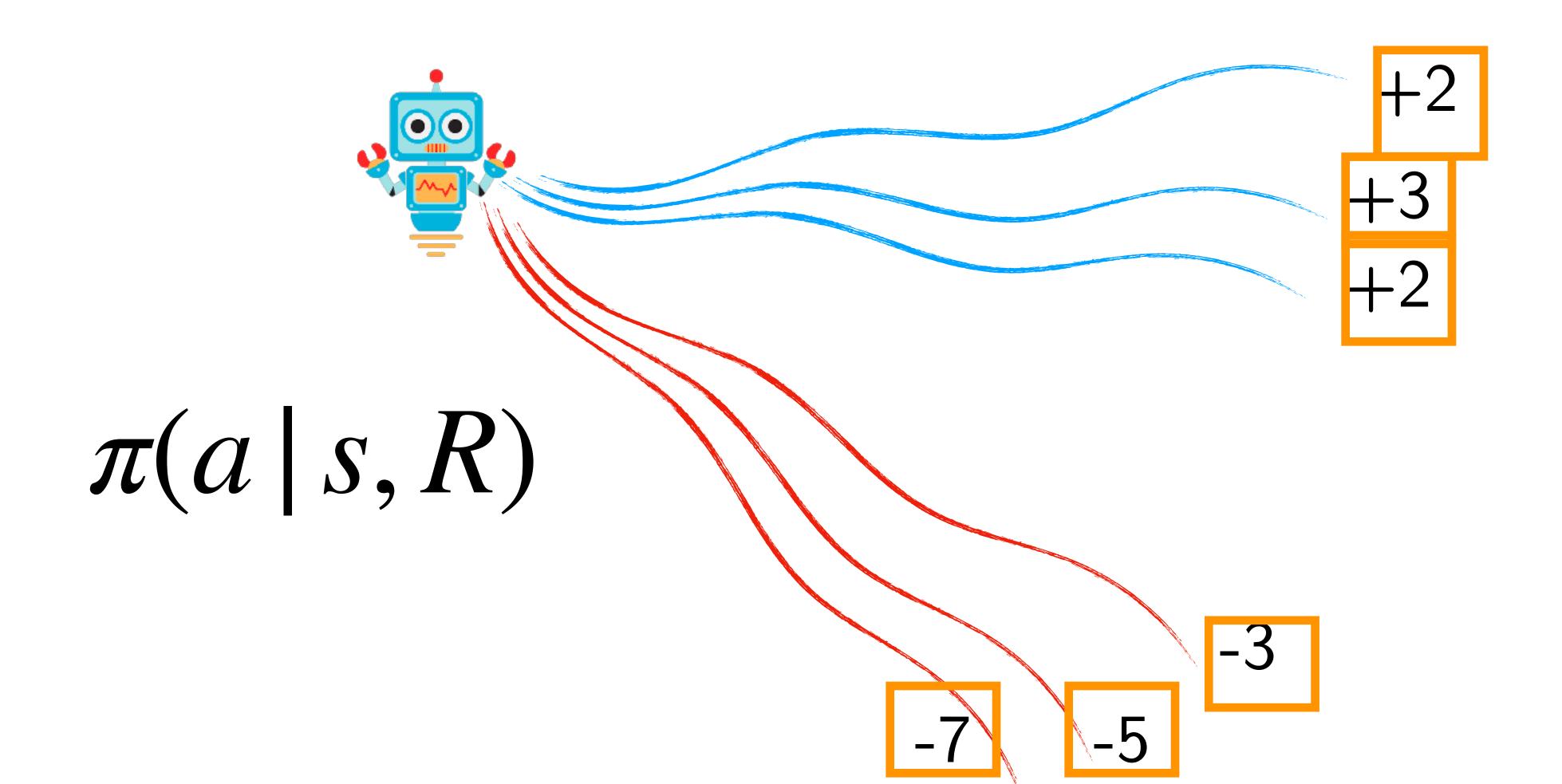
- 1. Collect offline dataset using whatever behavior policy
 - 2. Get the top % trajectories based on returns
 - 3. Do BC on just that!

Challenge with BC%:

What happens as I vary % from small to high values?

Can we have a more principled approach?

Idea: Train a policy conditioned on the returns



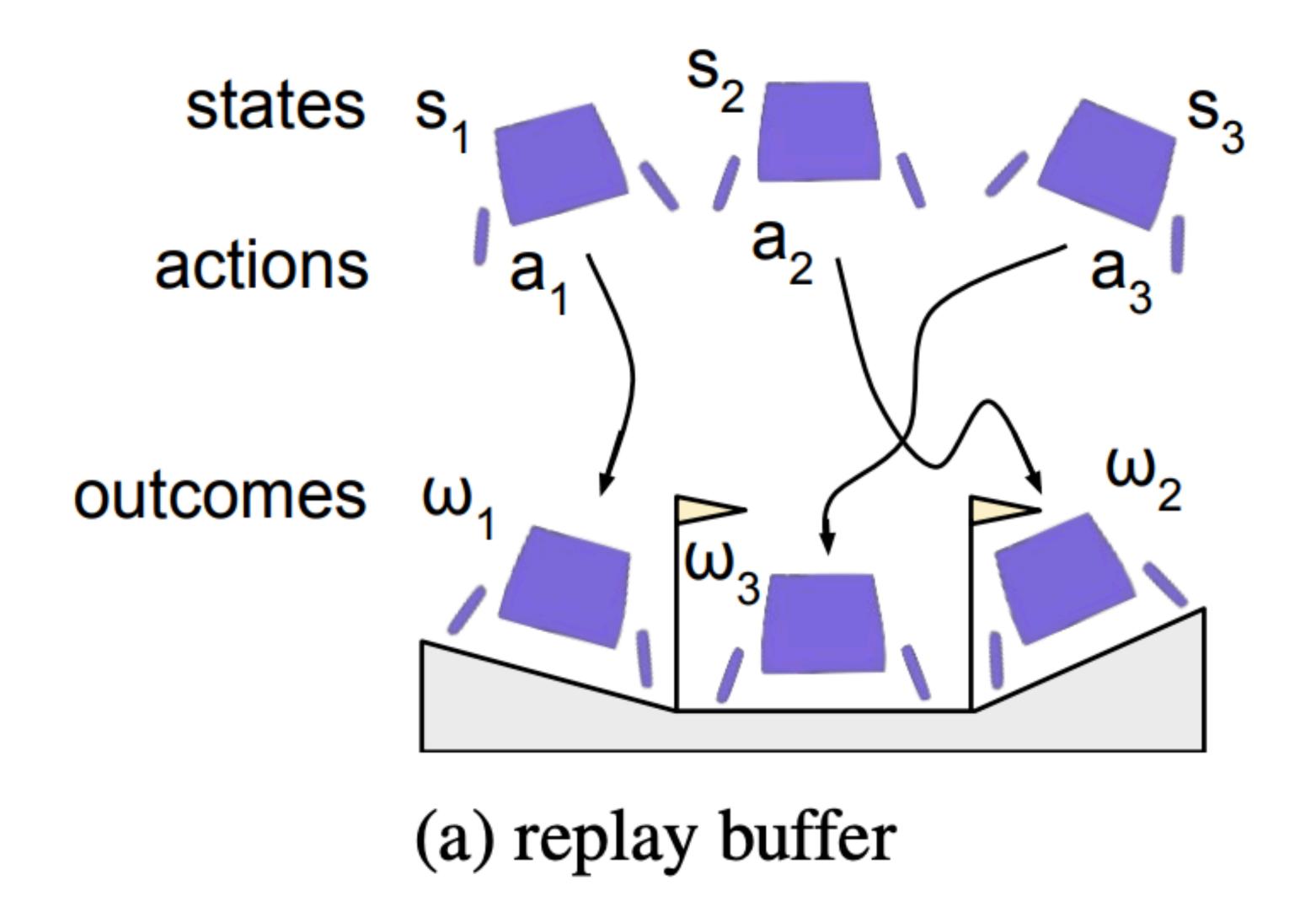
RVS: WHAT IS ESSENTIAL FOR OFFLINE RL VIA SUPERVISED LEARNING?

Scott Emmons¹, Benjamin Eysenbach², Ilya Kostrikov¹, Sergey Levine¹

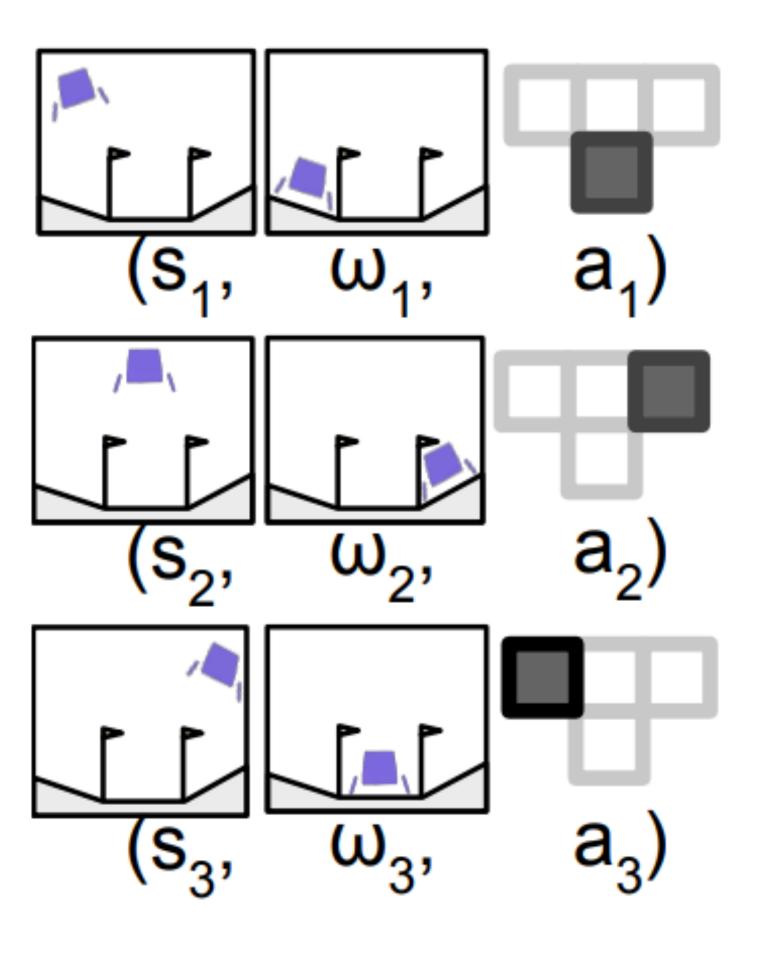
¹UC Berkeley, ²Carnegie Mellon University

emmons@berkeley.edu

The Idea

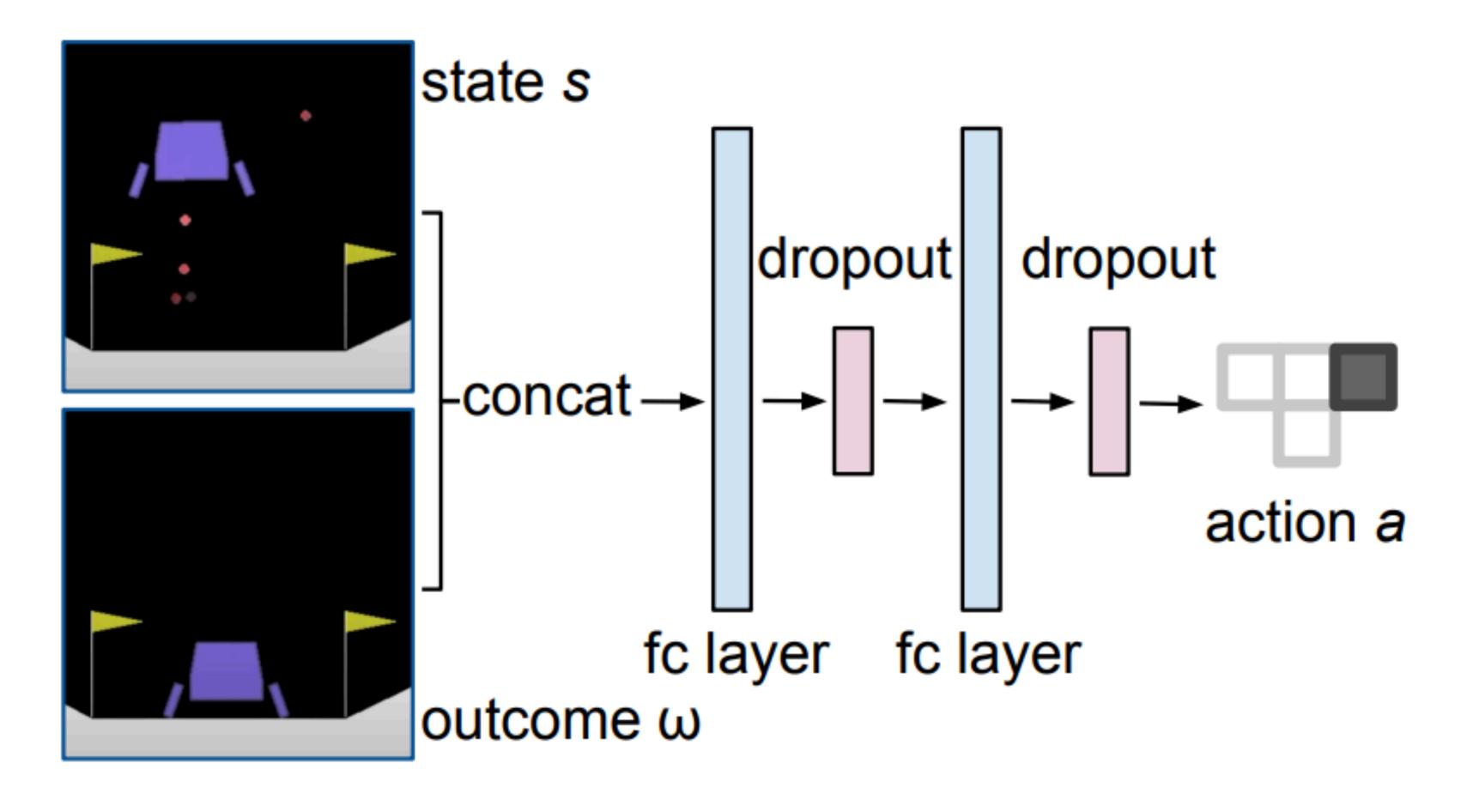


The Idea



(b) training dataset

The Idea



(c) network architecture

The Algorithm

For all trajectories:

For all timesteps in that trajectory:

For all achieved outcomes:

 \max_{θ}

$$\sum_{ au \in \mathcal{D}}$$

$$\sum_{1 \leq t \leq |\tau|}$$

$$\mathbb{E}_{\omega \sim f(\omega \mid \tau_{t:H})}[\log \pi_{\theta}(a_t \mid s_t, \omega)].$$

Algorithm 1 RvS-Learning

- 1: Input: Dataset of trajectories, $\mathcal{D} = \{\tau\}$
- 2: Initialize policy $\pi_{\theta}(a \mid s, \omega)$.
- 3: while not converged do
- 4: Randomly sample trajectories: $\tau \sim \mathcal{D}$.
- Sample time index for each trajetory, $t \sim [1, H]$, and sample a corresponding outcome: $\omega \sim f(\omega \mid \tau_{t:H})$.
- 6: Compute loss: $\mathcal{L}(\theta) \leftarrow \sum_{(s_t, a_t, \omega)} \log \pi_{\theta}(a_t \mid s_t, \omega)$
- 7: Update policy parameters: $\theta \leftarrow \theta + \eta \nabla_{\theta} \mathcal{L}(\theta)$
- 8: end while
- 9: **return** Conditional policy $\pi_{\theta}(a \mid s, \omega)$

What are some choices for "outcomes"?

Option 1: What is the future state the agent ended up at?

RvS-G (Goal conditioned)

Option 2: What is the total return that the agent got?

RvS-R (Return conditioned)

A very popular idea

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. **Decision transformer: Reinforcement learning via sequence modeling**

Felipe Codevilla, Matthias Muller, Antonio Lopez, Vladlen Koltun, and Alexey Dosovitskiy. **End-to-end driving** via conditional imitation learning

Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned imitation learning.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence modeling problem

Aviral Kumar, Xue Bin Peng, and Sergey Levine. Reward-conditioned policies

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression: Simple and scalable off-policy reinforcement learning

Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaskowski, and Jurgen Schmidhuber. " **Training agents using upside-down reinforcement learning**

Many popular algorithm, e.g. Decision Transformer

Today's class

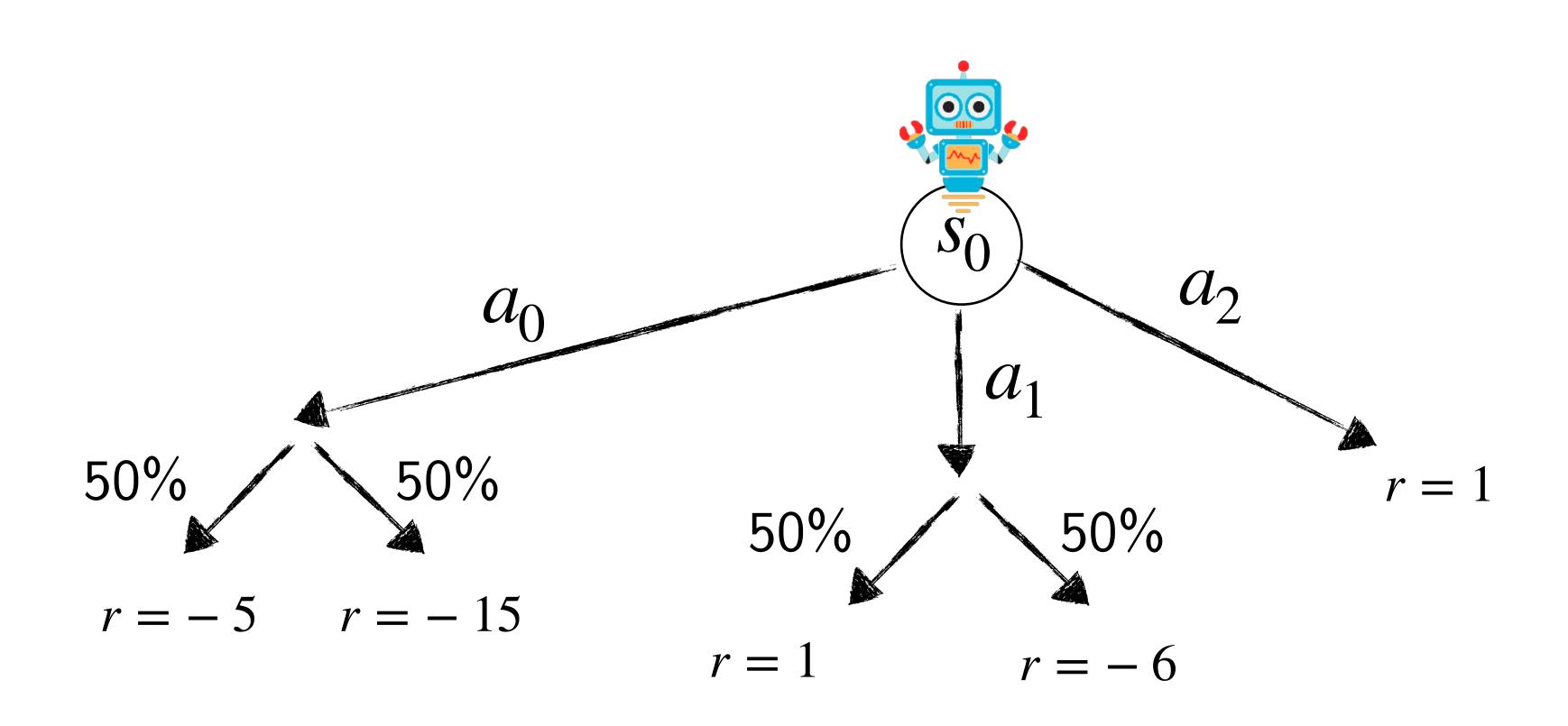
What is offline RL? Why do we need it for robots?

(Enables safer training, leverages diverse experience)

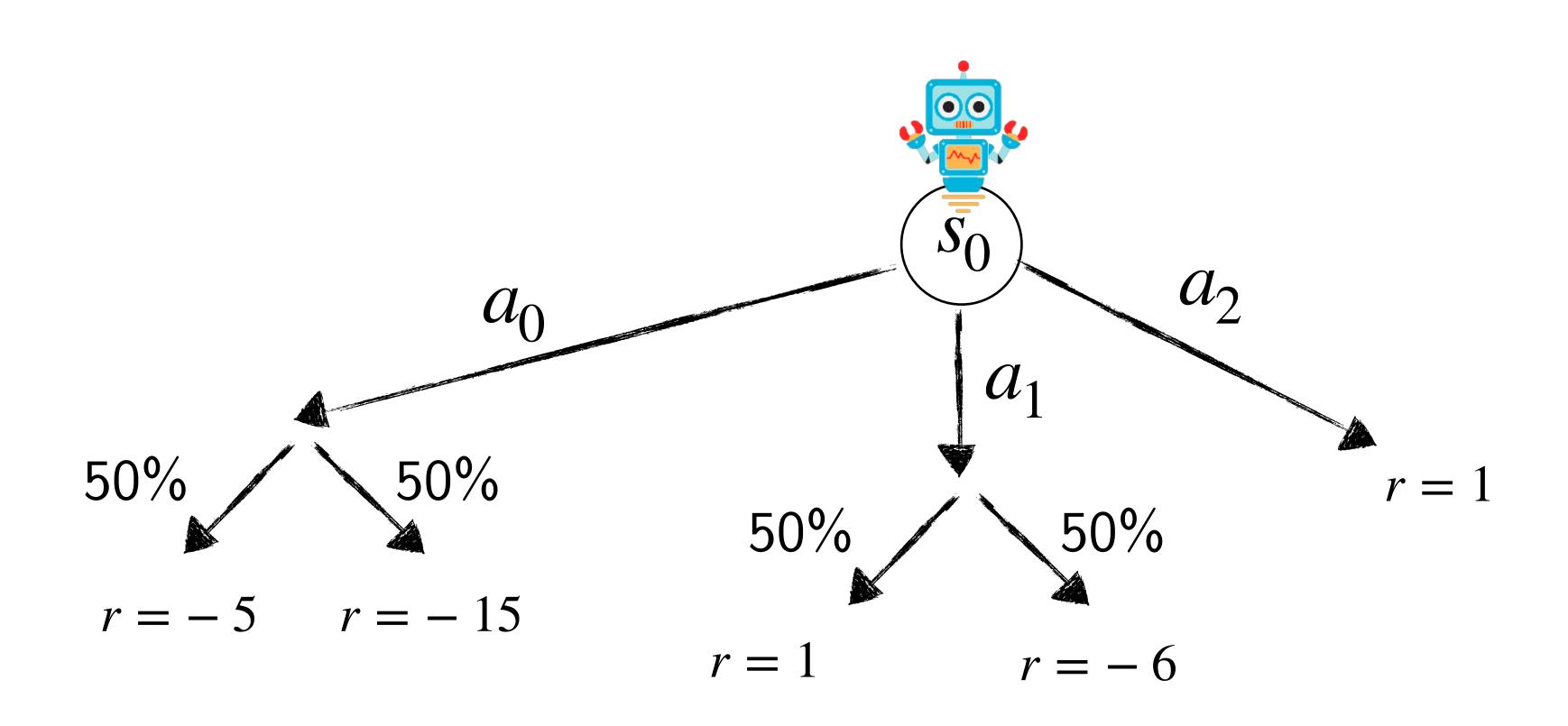
- Paradigm 1: Offline RL via Pessimism
 - Problem with Q-learning (Incorrectly optimistic about unseen actions)
 - Pessimism to the rescue (Constrain policy to not deviate from data)
- Paradigm 2: RL via Supervised Learning
 - Market Return-conditioned Supervised Learning
 - Problem in Stochastic MDPs

Activity!

Consider the following MDP



Consider the following MDP



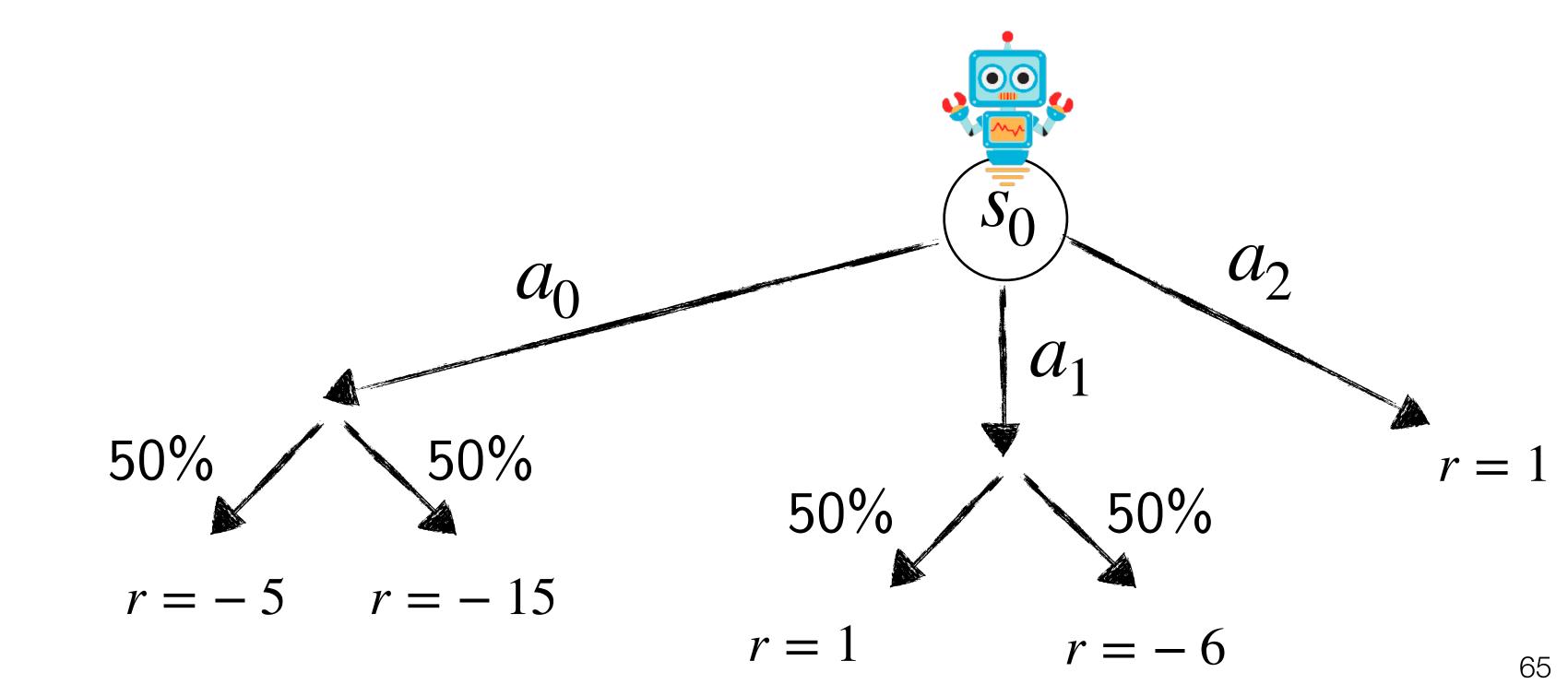
What is the optimal action? What will Decision Transformer play?

Think-Pair-Share!

Think (30 sec): What is the optimal action? What would decision transformers play?

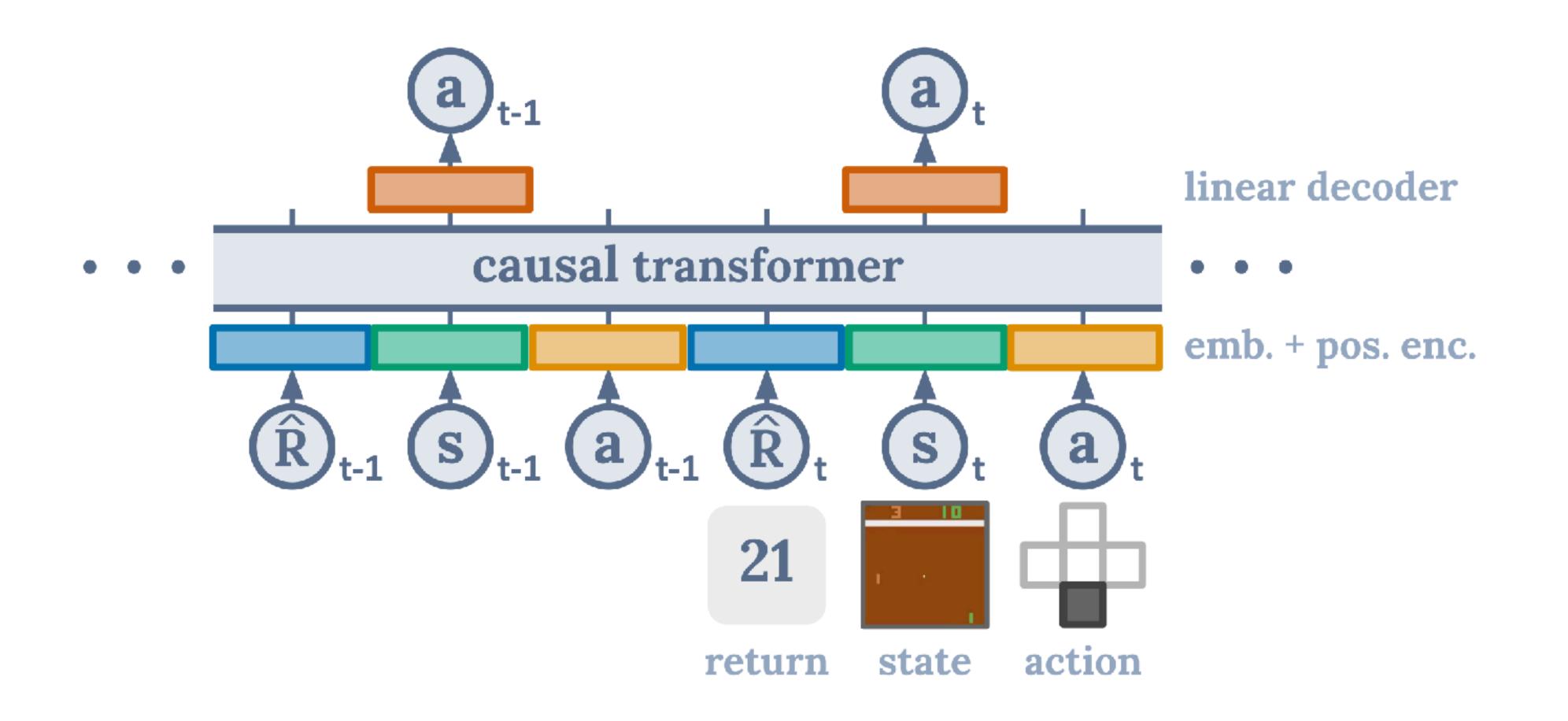
Pair: Find a partner

Share (45 sec):
Partners exchange ideas



$$\hat{s}_0$$
 a_0 r_0 s_1 a_1 r_1 $\hat{R} = \sum_{t=0}^{T-1} r_t$

$$\hat{R}_0 = \sum_{t=0}^{T-1} r_t \qquad \qquad \hat{R}_1 = \sum_{t=1}^{T-1} r_t$$



Introducing Decision Transformers on Hugging Face

Test Time

Start at initial state s_0

Specify the desired target return R_0

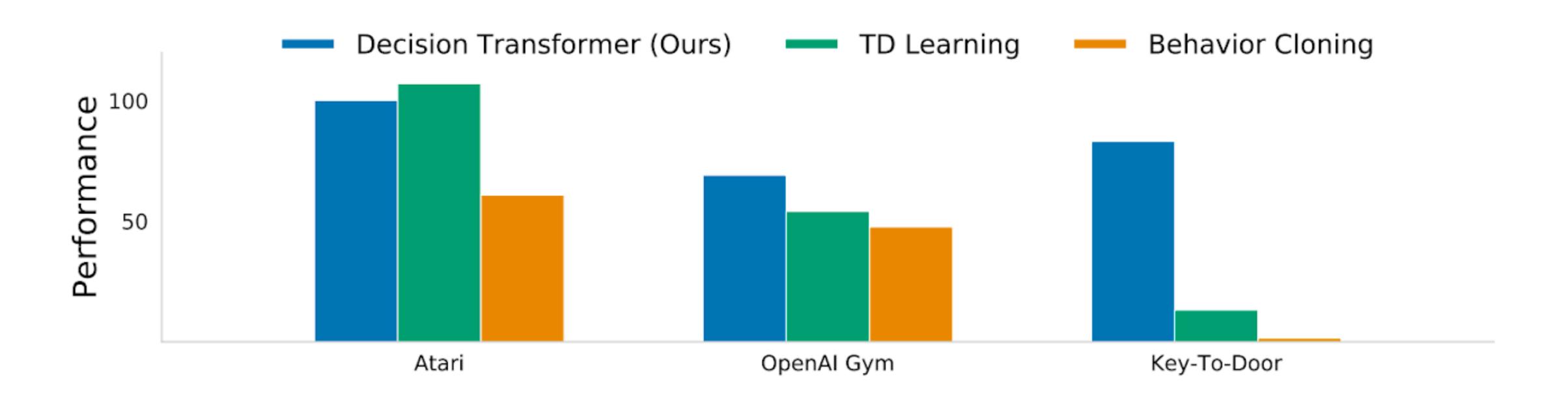
 $a_0 = \operatorname{Transformer}(R_0, s_0)$

Execute action, observe reward and next state (r_0, s_1)

Decrement the target return $R_1 = R_0 - r_0$

 $a_1 = \text{Transformer}(R_0, s_0, a_0, R_1, s_1)$

Seems to work!



Seems to work!

Game	DT (Ours)	CQL	QR-DQN	REM	BC
Breakout	267.5 ± 97.5	211.1	17.1	8.9	138.9 ± 61.7
Qbert	15.4 ± 11.4	104.2	0.0	0.0	17.3 ± 14.7
Pong	106.1 ± 8.1	111.9	18.0	0.5	85.2 ± 20.0
Seaquest	2.5 ± 0.4	1.7	0.4	0.7	2.1 ± 0.3

Atari

Today's class

What is offline RL? Why do we need it for robots?

(Enables safer training, leverages diverse experience)

- Paradigm 1: Offline RL via Pessimism
 - Problem with Q-learning (Incorrectly optimistic about unseen actions)
 - Pessimism to the rescue (Constrain policy to not deviate from data)
- Paradigm 2: RL via Supervised Learning
 - Return-conditioned Supervised Learning
 - Problem in Stochastic MDPs