Partially Observable Markov Decision Processes

Sanjiban Choudhury

Uncertainty

Types of Aleatoric uncertainty

(Inherent randomness that cannot be explained away)

Types of uncertainty

Epistemic uncertainty

(Uncertainty can be reduced through observations)

Uncertain about state

Epistemic Uncertainty

Uncertain about transitions

Markov Decision Process

A mathematical framework for modeling sequential decision making

Partially Observable Markov Decision Process

A mathematical framework for modeling sequential decision making

State is not observable!

Partially Observable Markov Decision Process

A mathematical framework for modeling sequential decision making

How do we solve such MDPs ??

The Tiger Problem

8

The Tiger Problem

There are two doors, one with a pot of gold, one with a tiger

You don't know where the tiger is

You can either open door left, open door right, or listen

- Reward for gold = +10, tiger = -100, listen = -1
- Listen tells you with 0.85 prob which door the tiger is in

Let's solve this on the board

Partially Observable Markov Decision Process

Observations

11

12

14

Convert MDP over states to MDP over *belief*

Belief State

Probability over states given history of actions and b_{i} observations

history of actions and $b_t = P(s_t | o_t, a_{t-1}, ..., a_1, o_1, a_0)$

17

 $b_{t+1} = P(s_{t+1} | o_{t+1}, a_t, \dots, a_1, o_1, a_0)$

 $b_{t+1} = P(s_{t+1} | o_{t+1}, a_t, \dots, a_1, o_1, a_0)$

(Bayes Rule) $\propto P(o_{t+1} | s_{t+1}) P(s_{t+1} | a_t, o_t, \dots, a_1, o_1, a_0)$

 $b_{t+1} = P(s_{t+1} | o_{t+1}, a_t, \dots, a_1, o_1, a_0)$

(Bayes Rule) $\propto P(o_{t+1} | s_{t+1}) P(s_{t+1} | a_t, o_t, \dots, a_1, o_1, a_0)$

(Transition Function) $\propto P(o_{t+1} | s_{t+1}) \sum P(s_{t+1} | s_t, a_t) P(s_t | o_t, a_{t-1}, ...)$ S_{t}

 $b_{t+1} = P(s_{t+1} | o_{t+1}, a_t, \dots, a_1, o_1, a_0)$

(Bayes Rule) $\propto P(o_{t+1} | s_{t+1}) P(s_{t+1} | a_t, o_t, \dots, a_1, o_1, a_0)$

(Transition Function) $\propto P(o_{t+1} | s_{t+1}) \sum P(s_{t+1} | s_t, a_t) P(s_t | o_t, a_{t-1}, ...)$ S_{t}

 $\propto P(o_{t+1} | s_{t+1}) \sum P(s_{t+1} | s_t, a_t) b_t$

 S_{t}

$b_{t+1} \propto P(o_{t+1} | s_{t+1}) \sum P(s_{t+1} | s_t, a_t) \quad b_t$ S_{t} Old Transition New Observation Belief Prob

Belief

Prob

The "Transition Function" of Belief

The "Cost Function" in Belief Space

Belief Cost is simply the expected cost under my current belief

S

Belief Markov Decision Process

The "Value" Function $V\pi(b_{t})$

Read this as: Value of a policy at a given belief and time

The Bellman Equation in Belief Space

$V^{*}(b_{t}) = \min_{a_{t}} \left[c(b_{t}, a_{t}) + \gamma \mathbb{E}_{b_{t+1}} V^{*}(b_{t+1}) \right]$

Optimal Value

Cost

Optimal Value of Next State

Are we done?

Seems like everything we learned so far can be "ifted" to belief space!

A slight "wrinkle"

What is the size of the belief space?

Consider the tiger MDP with 2 states. How many belief states can there be?

Belief space is enormous

For N finite state MDP, it's continuous with N dimensions

It's infinite dimensional for continuous MDPs

Belief space is enormous

Working with an explicit belief space is a no-go ...

But is there an "implicit" belief representation?

Belief space is enormous

Working with an explicit belief space is a no-go ...

But is there an "implicit" belief representation?

Idea: What if we directly work with the history of observations and actions?

 $h_t = \{O_t, a_{t-1}, O_{t-1}, a_{t-2}, \dots\}$

Idea: What if we directly work with the history of observations and actions?

History seems to have all the information we need to represent belief

 $h_t = \{O_t, a_{t-1}, O_{t-1}, a_{t-2}, \dots\}$

What sort of models can represent history?

$h_t = \{o_t, a_{t-1}, o_{t-1}, a_{t-2}, \dots\}$

Sequence models like Transformers!

Turn all your models into sequence models!

$\pi:h_t\to a_t$

(Sequence of tokens) (Action tokens)

$Q: h_t, a_t \to \mathbb{R}$

(Sequence of tokens + action token)

The Bellman Equation in Belief Space

$V^{*}(h_{t}) = \min_{a_{t}} \left[c(h_{t}, a_{t}) + \gamma \mathbb{E}_{b_{t+1}} V^{*}(h_{t+1}) \right]$

Turn all our algorithms to history models

REINFORCE

BC

DAGGER

Q-learning

