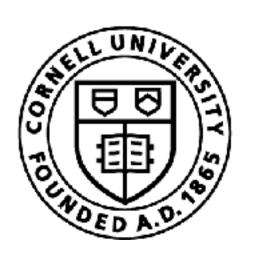
Partially Observable Markov Decision Processes

Sanjiban Choudhury



Uncertainty

Types of Aleatoric uncertainty

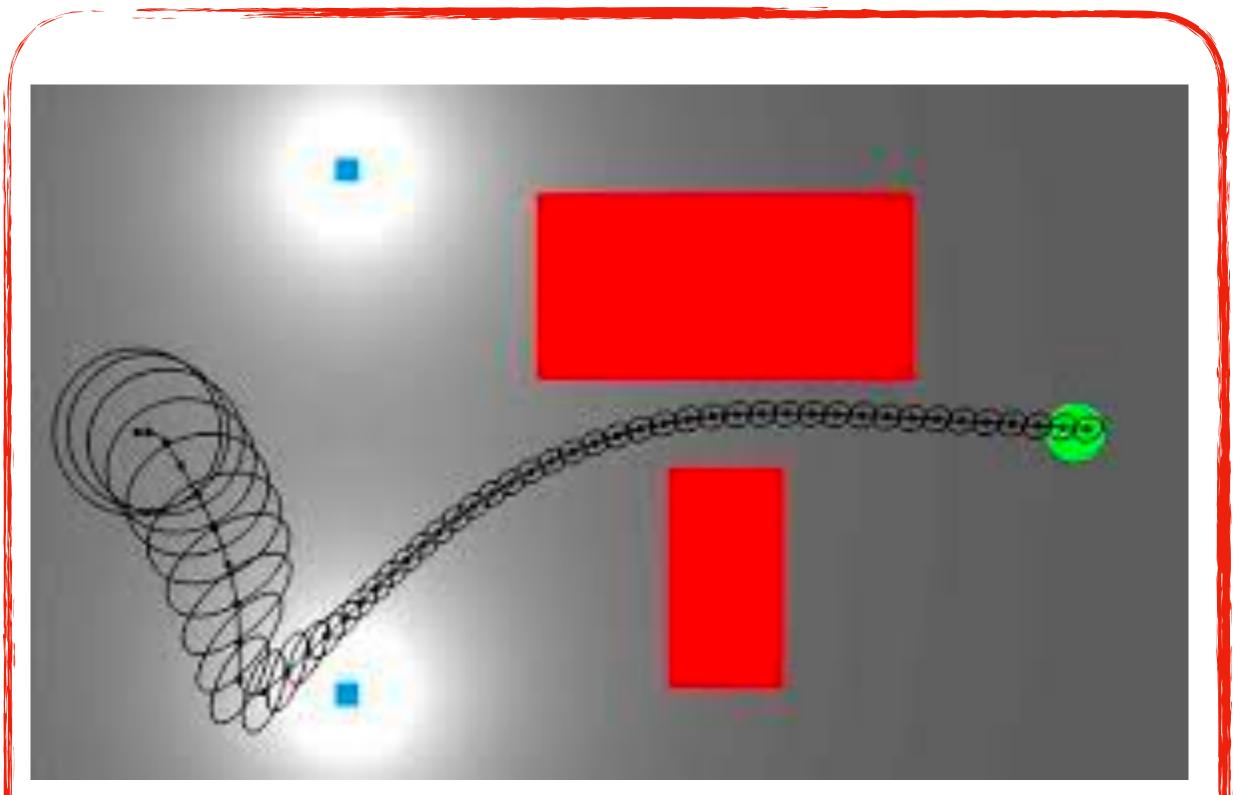


(Inherent randomness that cannot be explained away)

Types of uncertainty

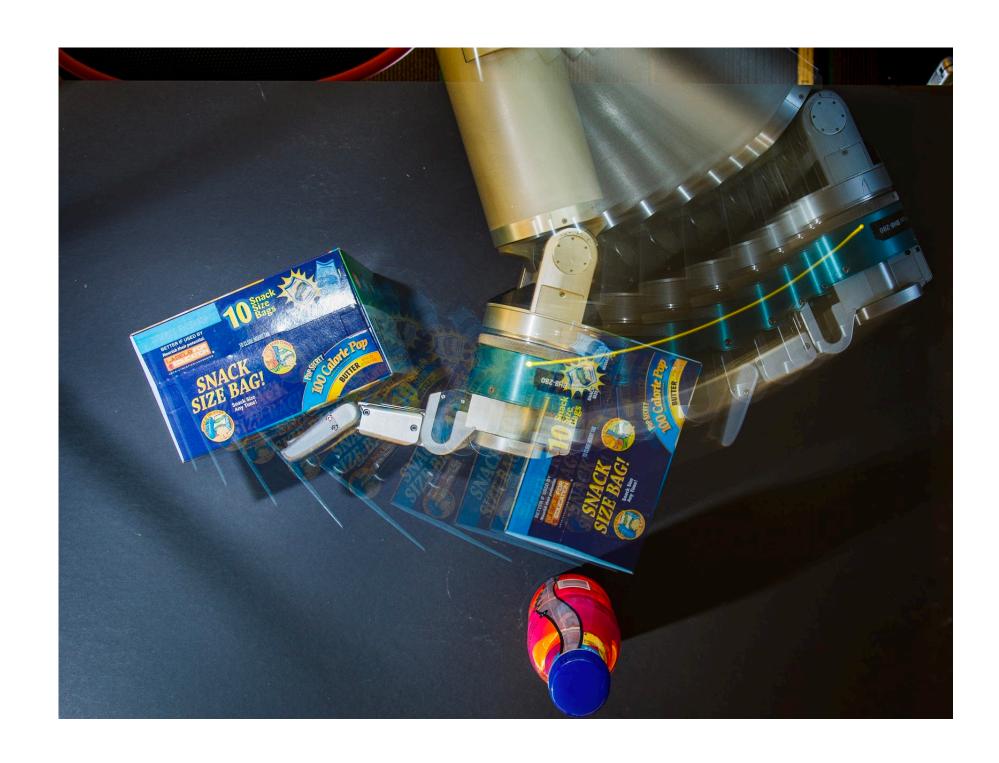
Epistemic uncertainty

(Uncertainty can be reduced through observations)



Uncertain about state

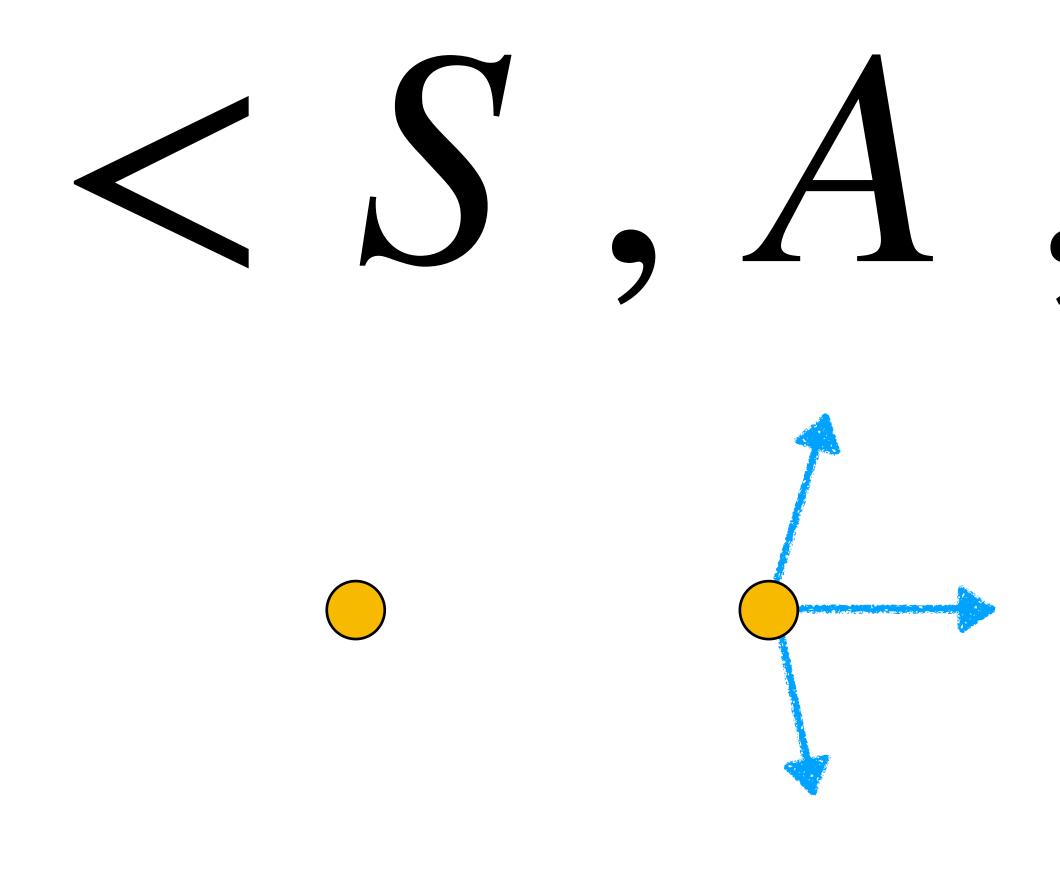
Epistemic Uncertainty

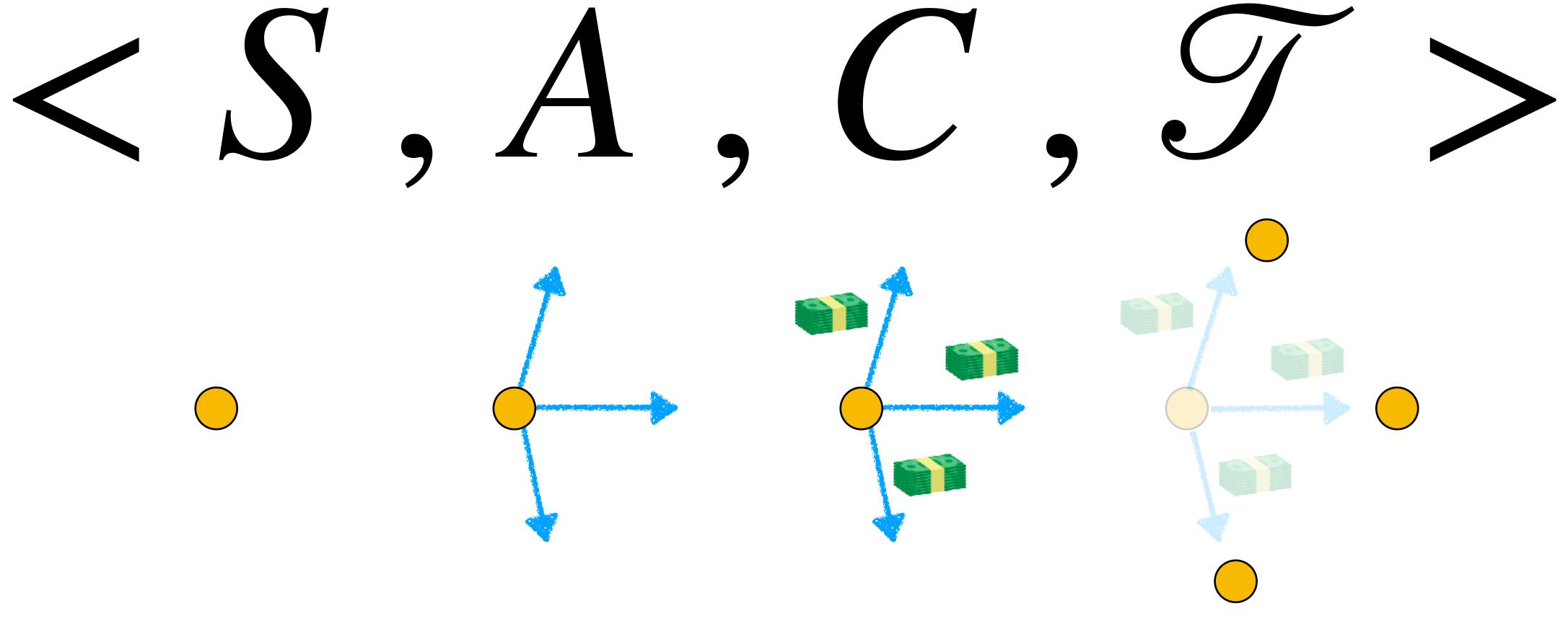


Uncertain about transitions

Markov Decision Process

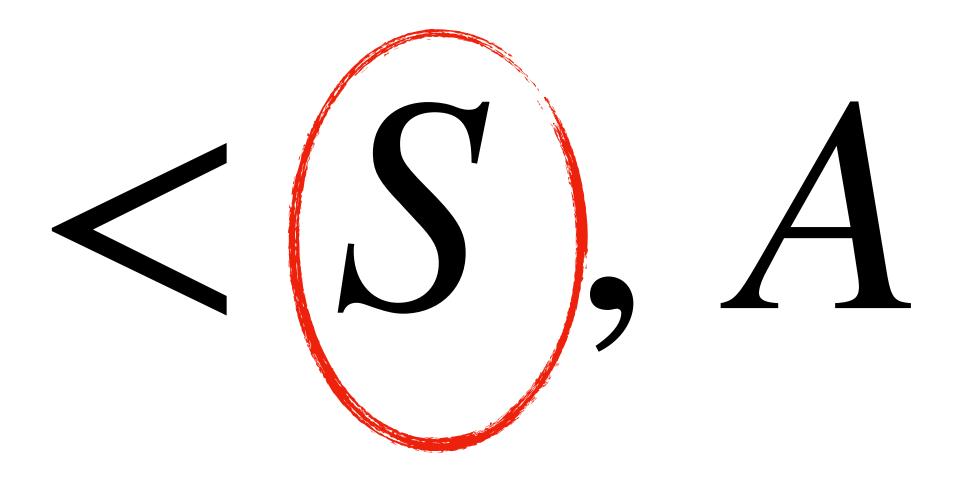
A mathematical framework for modeling sequential decision making





Partially Observable Markov Decision Process

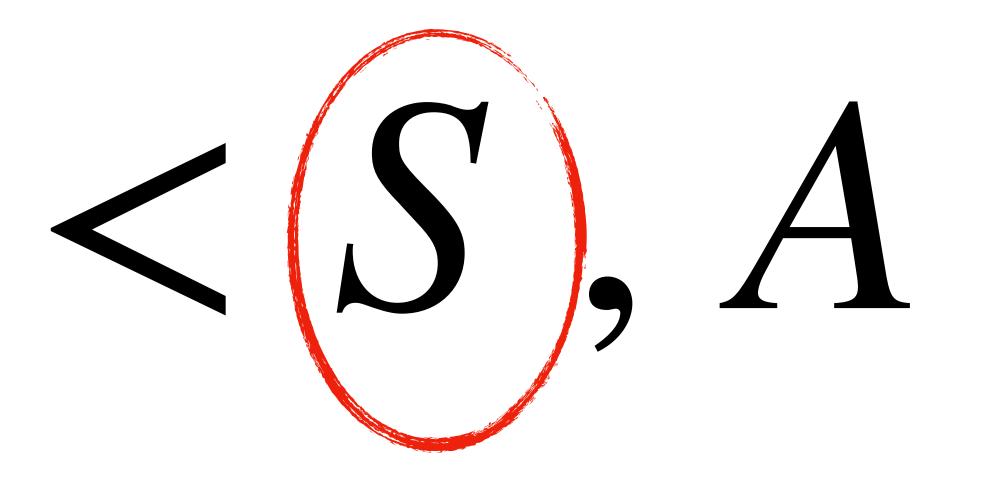
A mathematical framework for modeling sequential decision making



State is not observable!

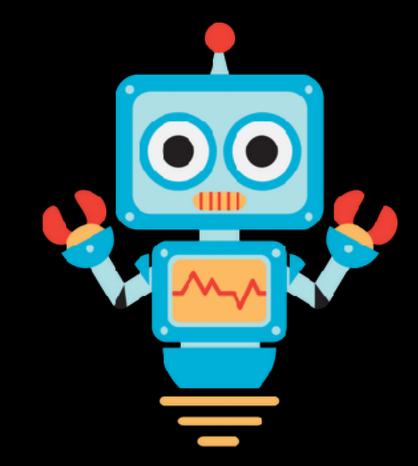
Partially Observable Markov Decision Process

A mathematical framework for modeling sequential decision making



How do we solve such MDPs ??

The Tiger Problem



8

The Tiger Problem

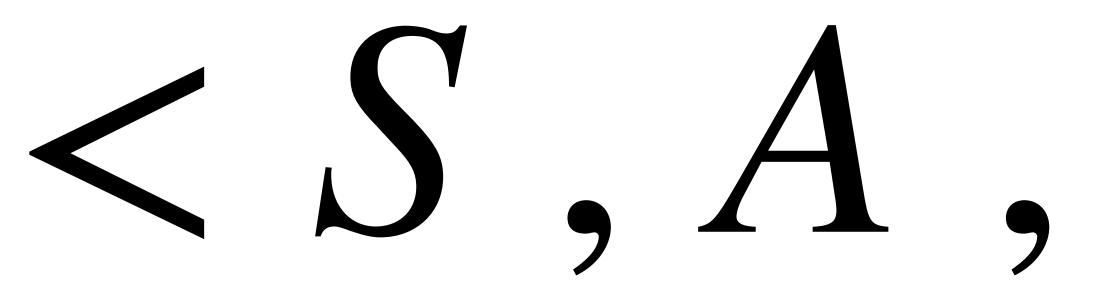
There are two doors, one with a pot of gold, one with a tiger

You don't know where the tiger is

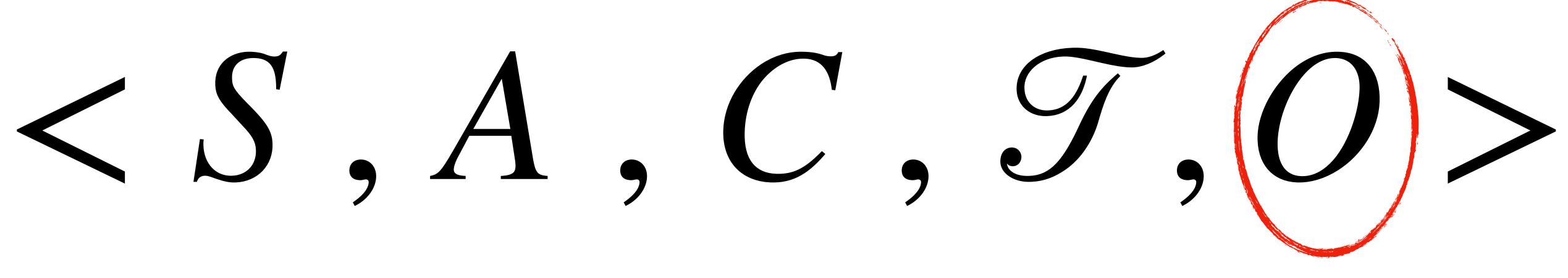
You can either open door left, open door right, or listen

- Reward for gold = +10, tiger = -100, listen = -1
- Listen tells you with 0.85 prob which door the tiger is in

Let's solve this on the board



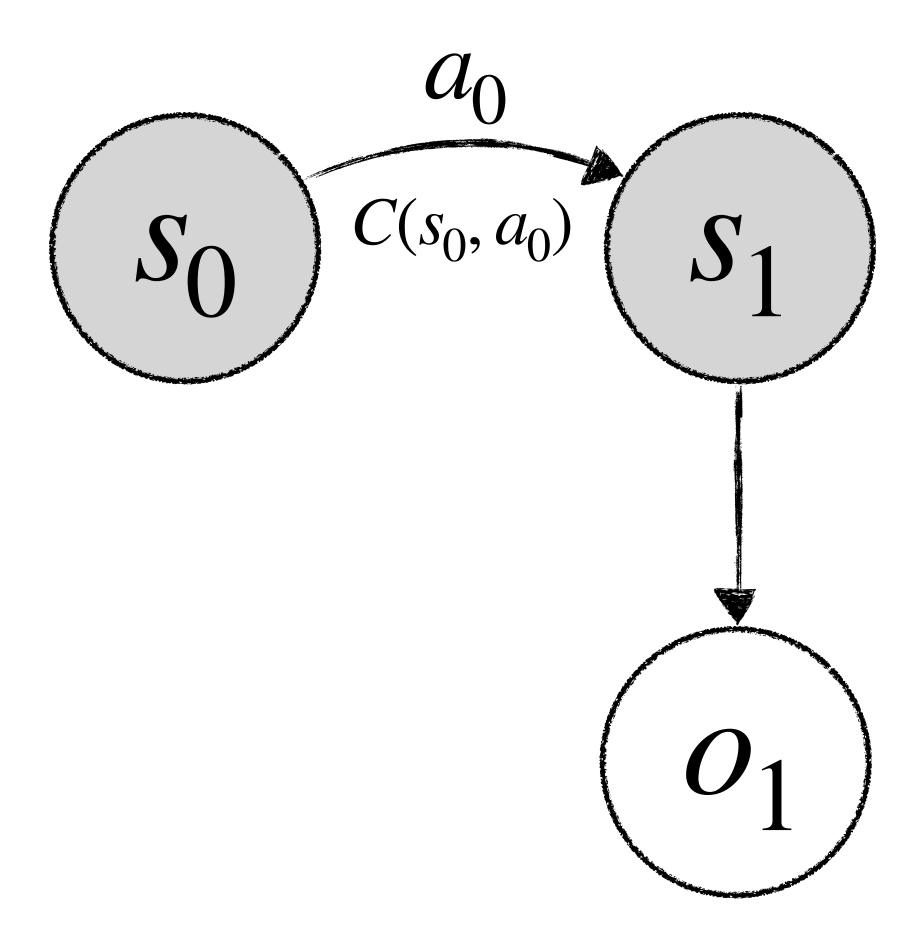
Partially Observable Markov Decision Process

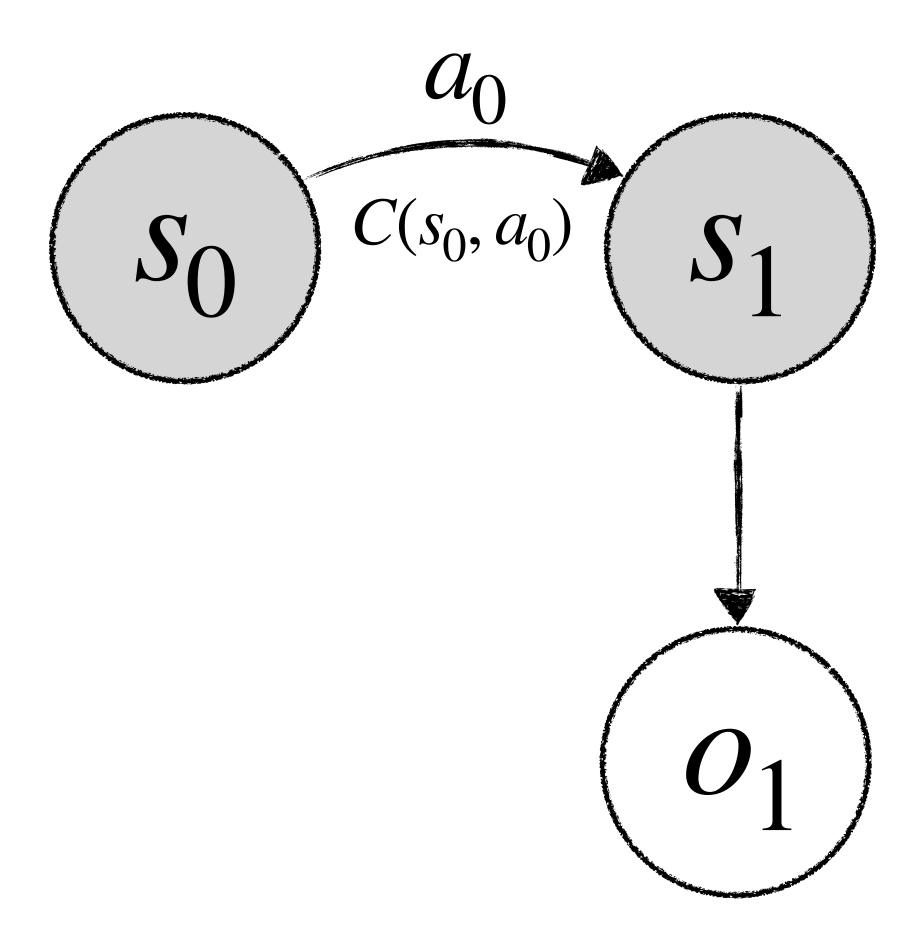


Observations

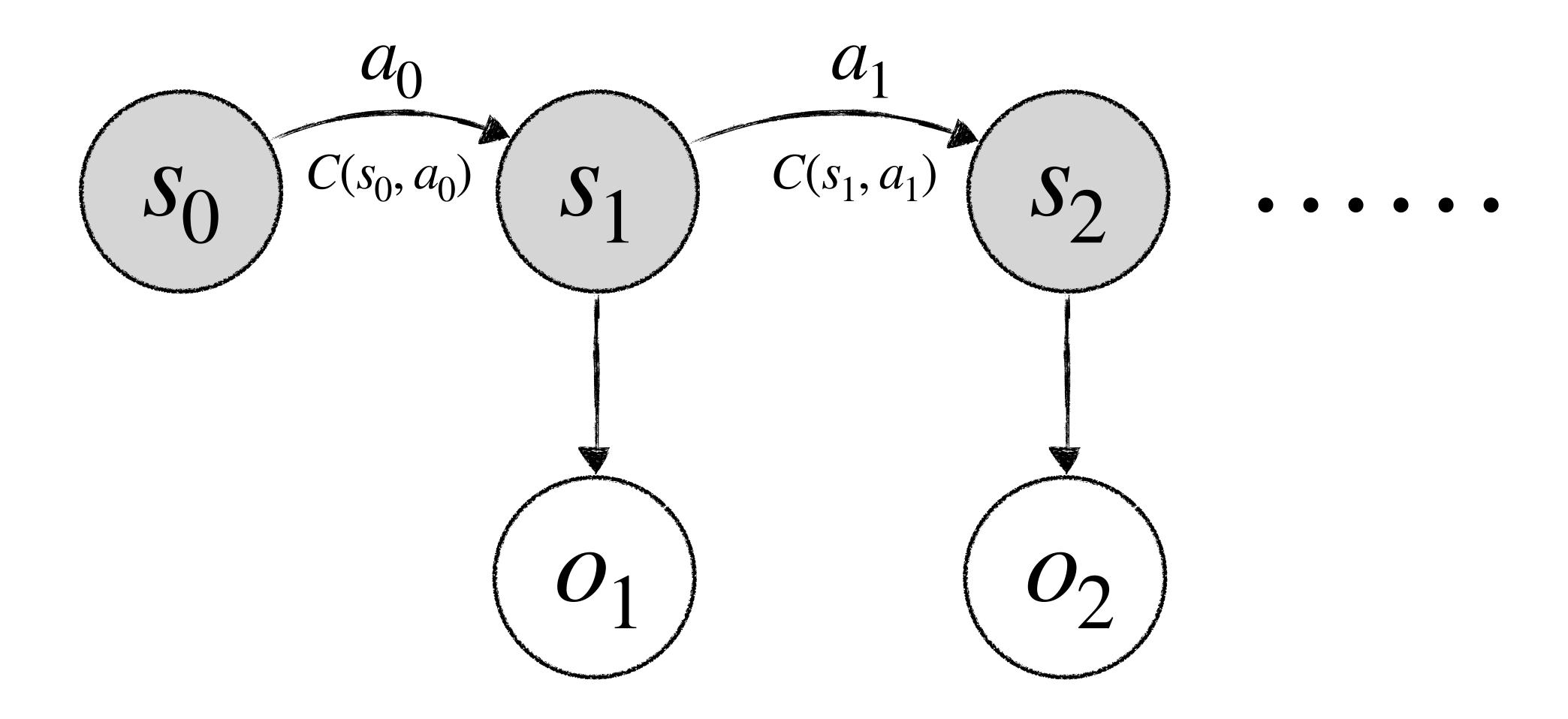
11

12





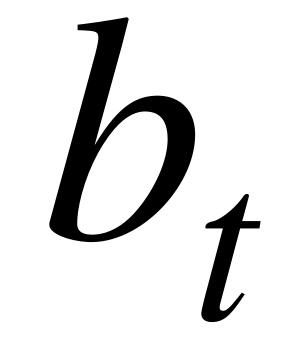
14



Convert MDP over states to MDP over *belief*

Belief State

Probability over states given history of actions and b_{i} observations



history of actions and $b_t = P(s_t | o_t, a_{t-1}, ..., a_1, o_1, a_0)$

17

 $b_{t+1} = P(s_{t+1} | o_{t+1}, a_t, \dots, a_1, o_1, a_0)$

 $b_{t+1} = P(s_{t+1} | o_{t+1}, a_t, \dots, a_1, o_1, a_0)$

(Bayes Rule) $\propto P(o_{t+1} | s_{t+1}) P(s_{t+1} | a_t, o_t, \dots, a_1, o_1, a_0)$

 $b_{t+1} = P(s_{t+1} | o_{t+1}, a_t, \dots, a_1, o_1, a_0)$

(Bayes Rule) $\propto P(o_{t+1} | s_{t+1}) P(s_{t+1} | a_t, o_t, \dots, a_1, o_1, a_0)$

(Transition Function) $\propto P(o_{t+1} | s_{t+1}) \sum P(s_{t+1} | s_t, a_t) P(s_t | o_t, a_{t-1}, ...)$ S_{t}

 $b_{t+1} = P(s_{t+1} | o_{t+1}, a_t, \dots, a_1, o_1, a_0)$

(Bayes Rule) $\propto P(o_{t+1} | s_{t+1}) P(s_{t+1} | a_t, o_t, \dots, a_1, o_1, a_0)$

(Transition Function) $\propto P(o_{t+1} | s_{t+1}) \sum P(s_{t+1} | s_t, a_t) P(s_t | o_t, a_{t-1}, ...)$ S_{t}

 $\propto P(o_{t+1} | s_{t+1}) \sum P(s_{t+1} | s_t, a_t) b_t$

 S_{t}

$b_{t+1} \propto P(o_{t+1} | s_{t+1}) \sum P(s_{t+1} | s_t, a_t) \quad b_t$ S_{t} Old Transition New Observation Belief Prob

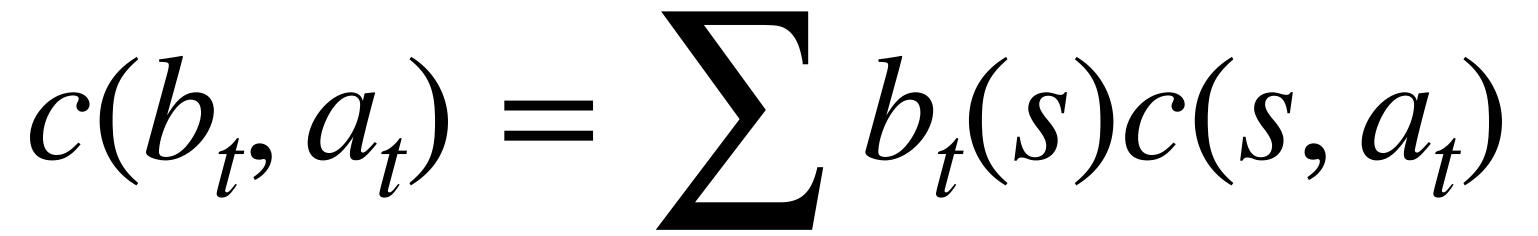
Belief

Prob

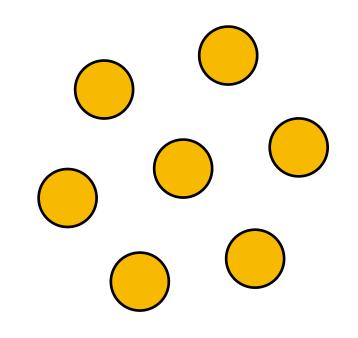
The "Transition Function" of Belief

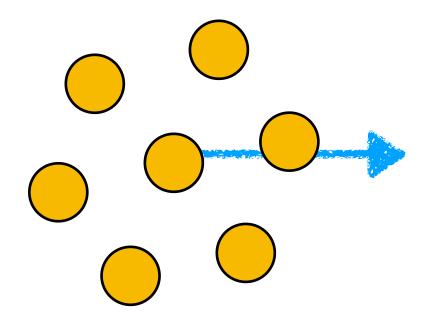
The "Cost Function" in Belief Space

Belief Cost is simply the expected cost under my current belief

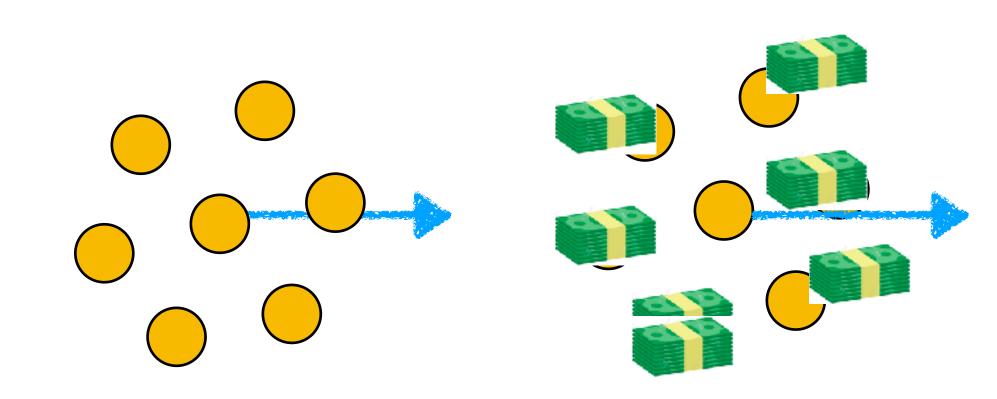


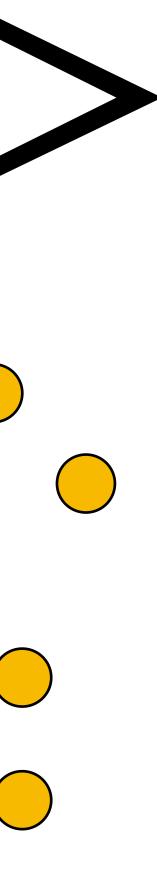
S





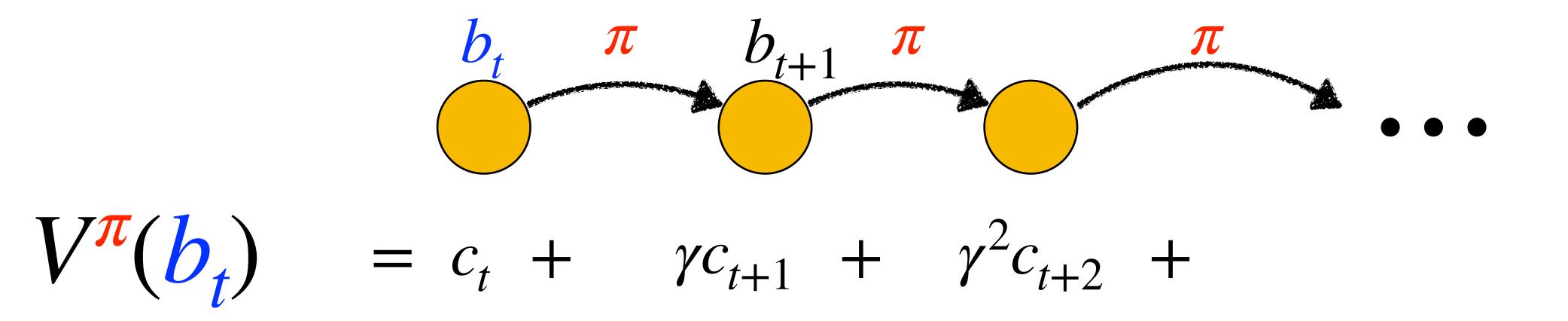
Belief Markov Decision Process





The "Value" Function $V\pi(b_{t})$

Read this as: Value of a policy at a given belief and time



The Bellman Equation in Belief Space

$V^{*}(b_{t}) = \min_{a_{t}} \left[c(b_{t}, a_{t}) + \gamma \mathbb{E}_{b_{t+1}} V^{*}(b_{t+1}) \right]$

Optimal Value

Cost

Optimal Value of Next State

Are we done?

Seems like everything we learned so far can be "ifted" to belief space!

A slight "wrinkle"

What is the size of the belief space?

Consider the tiger MDP with 2 states. How many belief states can there be?

Belief space is enormous



For N finite state MDP, it's continuous with N dimensions

It's infinite dimensional for continuous MDPs

Belief space is enormous

Working with an explicit belief space is a no-go ...

But is there an "implicit" belief representation?

Belief space is enormous

Working with an explicit belief space is a no-go ...

But is there an "implicit" belief representation?

Idea: What if we directly work with the history of observations and actions?

 $h_t = \{O_t, a_{t-1}, O_{t-1}, a_{t-2}, \dots\}$

Idea: What if we directly work with the history of observations and actions?

History seems to have all the information we need to represent belief

 $h_t = \{O_t, a_{t-1}, O_{t-1}, a_{t-2}, \dots\}$

What sort of models can represent history?

$h_t = \{o_t, a_{t-1}, o_{t-1}, a_{t-2}, \dots\}$

Sequence models like Transformers!

Turn all your models into sequence models!

$\pi:h_t\to a_t$

(Sequence of tokens) (Action tokens)

$Q: h_t, a_t \to \mathbb{R}$

(Sequence of tokens + action token)

The Bellman Equation in Belief Space

$V^{*}(h_{t}) = \min_{a_{t}} \left[c(h_{t}, a_{t}) + \gamma \mathbb{E}_{b_{t+1}} V^{*}(h_{t+1}) \right]$

Turn all our algorithms to history models

REINFORCE

BC

DAGGER

Q-learning

