Partially Observable Markov Decision Processes

Sanjiban Choudhury

Cornell Bowers CIS Computer Science

Uncertainty
 .
 8
 ncertainty
 \square

Sond
-
z
-
五

\qquad
$3: 8$ $(-2+8$ 34 (x) $+3$ $15+0$
 4
\qquad

-

.
.
$5+8$
2

(ta
と
\qquad

$$
0
$$

$$
1
$$

Types of uncertainty

Aleatoric uncertainty

(Inherent randomness that cannot be explained away)

Epistemic uncertainty

(Uncertainty can be reduced through observations)

Epistemic Uncertainty

Uncertain about state

Uncertain about transitions

Markov Decision Process

A mathematical framework for modeling sequential decision making

Partially Observable Markov Decision Process

A mathematical framework for modeling sequential decision making

State is not
observable!

Partially Observable Markov Decision Process

A mathematical framework for modeling sequential decision making

N

How do we solve such MDPs ??

The Tiger Problem

The Tiger Problem

There are two doors, one with a pot of gold, one with a tiger

You don't know where the tiger is

You can either open door left, open door right, or listen

$$
\text { Reward for gold }=+10 \text {, tiger }=-100 \text {, listen }=-1
$$

Listen tells you with 0.85 prob which door the tiger is in

Let's solve this on the board

Partially Observable Markov Decision Process

Observations

The Graphical Model

The Graphical Model

The Graphical Model

The Graphical Model

Convert MDP over states to MDP over belief

Belief State

b_{t}

Probability over states given
history of actions and $\quad b_{t}=P\left(s_{t} \mid o_{t}, a_{t-1}, \ldots, a_{1}, o_{1}, a_{0}\right)$ observations

Belief State is Markovian!

$$
b_{t+1}=P\left(s_{t+1} \mid o_{t+1}, a_{t}, \ldots, a_{1}, o_{1}, a_{0}\right)
$$

Belief State is Markovian!

$$
b_{t+1}=P\left(s_{t+1} \mid o_{t+1}, a_{t}, \ldots, a_{1}, o_{1}, a_{0}\right)
$$

(Bayes Rule) $\propto P\left(o_{t+1} \mid s_{t+1}\right) P\left(s_{t+1} \mid a_{t}, o_{t}, \ldots, a_{1}, o_{1}, a_{0}\right)$

Belief State is Markovian!

$$
b_{t+1}=P\left(s_{t+1} \mid o_{t+1}, a_{t}, \ldots, a_{1}, o_{1}, a_{0}\right)
$$

(Bayes Rule) $\propto P\left(o_{t+1} \mid s_{t+1}\right) P\left(s_{t+1} \mid a_{t}, o_{t}, \ldots, a_{1}, o_{1}, a_{0}\right)$
$\left(\right.$ Transition Function) $\propto P\left(o_{t+1} \mid s_{t+1}\right) \sum_{s_{t}} P\left(s_{t+1} \mid s_{t}, a_{t}\right) P\left(s_{t} \mid o_{t}, a_{t-1}, \ldots\right)$

Belief State is Markovian!

$$
b_{t+1}=P\left(s_{t+1} \mid o_{t+1}, a_{t}, \ldots, a_{1}, o_{1}, a_{0}\right)
$$

(Bayes Rule) $\propto P\left(o_{t+1} \mid s_{t+1}\right) P\left(s_{t+1} \mid a_{t}, o_{t}, \ldots, a_{1}, o_{1}, a_{0}\right)$
(Transition Function) $\propto P\left(o_{t+1} \mid s_{t+1}\right) \sum_{s_{t}} P\left(s_{t+1} \mid s_{t}, a_{t}\right) P\left(s_{t} \mid o_{t}, a_{t-1}, \ldots\right)$

$$
\propto P\left(o_{t+1} \mid s_{t+1}\right) \sum P\left(s_{t+1} \mid s_{t}, a_{t}\right) \quad b_{t}
$$

The "Transition Function" of Belief

$$
\begin{array}{cccc}
b_{t+1} \propto P\left(o_{t+1} \mid s_{t+1}\right) \sum_{s_{t}} P\left(s_{t+1} \mid s_{t}, a_{t}\right) & b_{t} \\
\text { New } & \text { Observation } & \text { Transition } & \text { Old } \\
\text { Belief } & \text { Prob } & \text { Prob } & \text { Belief }
\end{array}
$$

The "Cost Function" in Belief Space

$$
c\left(b_{t}, a_{t}\right)=\sum_{s} b_{t}(s) c\left(s, a_{t}\right)
$$

Belief Cost is simply the expected cost under my current belief

Belief Markov Decision Process

B
 A

 ,

The "Value" Function

$V^{\pi}\left(b_{t}\right)$

Read this as: Value of a policy at a given belief and time

$V^{\pi}\left(b_{t}\right)=c_{t}+\gamma c_{t+1}+\gamma^{2} c_{t+2}+$

The Bellman Equation in Belief Space

Optimal	Cost	Optimal
Value	Value of	
	Next State	

Are we done?

Seems like everything we learned so far can be "lifted" to belief space!

A slight "wrinkle"

What is the size of the belief space?

Consider the tiger MDP with 2 states. How many belief states can there be?

Belief space is enormous

For N finite state MDP, it's continuous with N dimensions

It's infinite dimensional for continuous MDPs

Belief space is enormous

Working with an explicit belief space is a no-go ...

But is there an "implicit" belief representation?

Belief space is enormous

Working with an explicit belief space is a no-go ...

But is there an "implicit" belief representation?

Idea: What if we directly work with the history of observations and actions?

$$
h_{t}=\left\{o_{t}, a_{t-1}, o_{t-1}, a_{t-2}, \ldots\right\}
$$

Idea: What if we directly work with the history of observations and actions?

$$
h_{t}=\left\{o_{t}, a_{t-1}, o_{t-1}, a_{t-2}, \ldots\right\}
$$

History seems to have all the information we need to represent belief

What sort of models can represent history?

$$
h_{t}=\left\{o_{t}, a_{t-1}, o_{t-1}, a_{t-2}, \ldots\right\}
$$

Sequence models like Transformers!

Turn all your models into sequence models!

$$
\pi: h_{t} \rightarrow a_{t}
$$

(Sequence of tokens) (Action tokens)

$$
Q: h_{t}, a_{t} \rightarrow \mathbb{R}
$$

(Sequence of tokens + action token)

The Bellman Equation in Belief Space

$\left.V^{*}\left(h_{t}\right)=\min _{a_{t}}\left[c\left(h_{t}, a_{t}\right)+\gamma \mathbb{E}_{b_{t+1}} V^{*}\left(h_{t+1}\right)\right)\right]$

Turn all our algorithms to history models

BC

DAGGER

REINFORCE

Q-learning

