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Prelim

® In-class prelim, 75 minutes
® Format
e Multiple choice questions (similar to quizzes)
e Written questions (similar to written assignments Al, A3)

® Scope: Everything until last lecture (actor critic)



Today's plan

® Go through the greatest hits
® Answer questions YOU have

® Today we will spend more time on MDP, RL and less time on imitation
learning



Fundamentals: MDP



Markov Decision Process

A mathematical framework for modeling sequential decision making
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S,A,C,T

0, € R'”

(All joints)

0, € R
(All joint vel)

A, Y, W

(2d pos, heading)
C1, €2, €3, Cy

(Contact state of feet)

r e R
(12 torque)

T

Move at desired vel

_I_

Minimize torque

Newton-Euler
Equation

But need to know
ground terrain
(Which is typically
unknown)



State of car Steering Penalty for

Gas not reaching goal
State of all Penalty for violating
other agents constraints

(Safety, rules)

State of

traffic lights Penalty for high

control effort

Ol

Dynamics of car
(Known)

Dynamics/intent

of other agents
(Unknown)

Transition of
traffic light
(Hidden

variable)



The "Value Function

Vi(s,)

Read this as: Value of a policy at a given state and time
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The Bellman Equation

Vi(s,) = c(s, n(s)) + yE, V(s,.¢)

Value of Cost Value of
current state future state

St41



Optimal policy

* = argmin kg V7(sp)



Bellman Equation for the Optimal Policy

% : %
V™ (s) = min [c(st, a) +vE, V" (stﬂ))]
Uy
- Optimal
OCZT:I Cost Value of

Next State



We use V* to denote optimal value

V(s) = min [c(st, a) +yE, V* (sm))]
i
Optimal Optimal
\I;;I/Tea Cost Value of

Next State



The Bellman Equation

How to be optimal:

Step 1: Take correct first action

V¥(s,) = min [c(st, a) + yE V*(sm))]

Image courtesy Dan Klein 14
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The “"Action Value” Function

Q7 (s;, )




The Bellman Equation

Q7 (spa) = c(spa) + 7y Q7 (Siy1, 7(S141))

Value of Cost Value of
current state future state

St41



We use O* to denote optimal value

Q*(s,, a,) = c(s,,a,) + min [y[EStHQ*(St 1,4, +1))]

i1

Optimal Cost Sp/timaff
Value alue o

Next State



The Advantage Function

AT(s, ) = Q7 (s, a) = V(s



Questions?



Questions

1. Express V as Q7 Express Q in terms of V?

2. It a genie offered you V or Q, which one would you take? Why?

3. What is Bellman Equation over infinite horizon?
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Solving Known MDP (Planning)



Value lteration (Finite Horizon)

Initialize value function at last time-step

V¥(s,T— 1) = minc(s, a)

d

fort=T-2,....0

Compute value function at time-step t

V*¥(s,t) = min |c(s,a) + g/z T($'|s,a)VF(s',t+ 1)
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Infinite Horizon Value lteration

Initialize with any value function V*(s)

Repeat until convergence

V¥(s) = min |c(s,a)+ yz T(s'|s,a)V*(s')
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than the value
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= S Can we iterate over policies?
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Policy Iteration (Infinite horizon)

Iter: O
| | | |

Init with some policy 7z e e e e e e e
y —~- 0 0 0 0 0 0 0 0 0 0 4- =2 =2 = =2 =2 o = = a1
~- 0 0 0 0 0 0 0 0 0 0 -2 =2 =2 =2 = 3 = = = 1
~~~~~~~~~~
o - 0 0 0 0 0 0 0 0 0 1 T T A T S |
R _F n- 0 0 0 0 0 0 0 0 0 0 - = s s s s s s s st
epeat Torever - I - I
~- 0 0 0 0 0 0 0 0 0 0 @ m~- = = s s s s s a1

o - — — — — — — — — — 1

o - — — — — — — — — — 1

00000000000000000000

Evaluate policy
Vi(s) = c(s, 2(s)) + YEy gV (5)]

Improve policy

't (s) = argmin c(s, a) + yE, g V()]

d
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Policy lteration: How do we evaluate values

Vi(s) = c(s, n(s)) + vEg g sV (5)]

ldea 1: Start with an initial guess, and update (like value iteration)
Vi_l_l(s) — C(S9 ﬂ(S)) T y[Es’Ng(S,a)Vi(S,)]

ldea 2: It's a linear set of equations (no max)!

— —

VI = P4y T VR Vi=(1-9%7c"
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How we plan for real robots?’

How do we handle continuous, high-dimensional state-actions



Landscape of Planning / Control Algorithms

" r—
Low-level control High-level path

planning

QR L azySP
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Landscape of Planning / Control Algorithms

\‘{ —e———— I _ —— - e ——— _—  __— ————____ e e ——— L SRR — —‘;w

/Low—levelcontrol High-level path

planning
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Linear Quadratic Regulator (LQR)

V¥(s,t) = min |c(s,a)+ yz T($'|s,a)VE(s',t+ 1)

(Quadratic) (Quadratic) (Linear)  (Quadratic)

How can we analytically do value iteration?
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The LQR Algorithm

. o . Time: 100
Initialize V. = 0 100
0.75 -
0.50
Fort = T-1, ..., 1 .
9. 0.00

-0.25

Compute gain matrix

-0.50

K,=R+B'V, B)"'B'V, A 075 -

-1.00

Update value
V.=Q+K'RK + (A+BK)'V_ (A + BK)



L QR Converges

Q is positive semi-definite R is positive definite
A A
x'Ox >0 u" Ru > 0
for u # 0

Costs are always non-negative Costs are always positive



Landscape of Planning / Control Algorithms

Low-level control /' High-level path

planning

LQR
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General framework for motion planning

Search the graph

Create a graph

Interleave
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Edge evaluation is the most expensive step

1SION
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robots
expensive
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| Lazy Search for

Update the Graph

LazySP

Optimism Under Uncertainty

Shortest Path

-[Evaluate Path




| Lazy Search for

Update the Graph

LazySP

Optimism Under Uncertainty

Shortest Path

-'Evaluate Path /




Questions?



Questions

1. Why might we prefer policy iteration over value iteration?

2. How can | apply LQR if my MDP is not linear and quadratic?
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Unknown MDP
(Reinforcement Learning)



Approximate Value lteration

Fitted Q-iteration
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NN
[’ z’Csz i=1

Init Qy(s,a) < 0
while not converged do
D« @
foriel,...N Use old copy of @
input « {Sv a; } , to Set target

| Tra/n/ng s a regress:on prob/em

- 2(0) = 2 (Qy(s;, a;) — target)?

return Q, .



Approximate Value Evaluation

. NN
leen {Sla ai? Ci? Sl}l=1

Goal: Fit a function V/(s)

Collected from 7«

Init Vy(s) < O
while not converged do
D« @
foriel,....N
input < {s;}
target < ¢, + yVy(s;)
D <« D U {input, output}
V, < Train(D)

return V,
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The problem of Bootstrapping!

Iteration 101

Errors in approximation are amplified
Key reason is the minimization

Minimization operation visit states
where approximate values is less than
the true value of that state — that is

to say, states that look more
attractive than they should.

Typically states where you have very

few samples
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Let's work out
an example




Approximate Policy lteration

Init with some policy &

Repeat forever

Evaluate policy

Rollout 7, collect data (s, a,s’,a’), fit a function Q/ (s, a)

Improve policy

77 (s) = argmin Q/(s, a)
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Performance Difference Lemma (PDL)

T—1
V7 (sp) = V(sp) = ) Ey g A"(s, )
=0



Problem with Approximate Policy Iteration

-1
V7 (s9) — V(s,) = Z E, g A"(s, )
=0

PDL requires accurate QF on states that 7™ will visit! (df)

But we only have states that 7 visits (d)

f 7% changes drastically from 7, then |d” — d|is big]
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Policy Gradients

Vo ] = Eg qm (s),a~rg(als) [VG log 779 (a|S)Q7T9 (51 a)]

Vol = Egmo(s)Ery(als) | Vo log(7e(als) A™ (s,a))



Actor-Critic Framework

Start with an arbitrary initial policy my(a|s)
while not converged do

Roll-out 7y(a|s) to collect trajectories D = {s'. a',r, sfr}ﬁ.\;l

. LA . o - N S 0¢ i) 2
Fit value function V*(s’) using TD, i.e. minimize (r' + yV”(s.) — V™(s"))
Compute advantage A%o(st ab) = (s, a') + y‘A/”H(Si) — V(5"

Compute gradient _

1 A
Vol (0) =— Z; Vlog mal|si) A%(s', a')
Update parameters 0 — 0+ aV,J0)
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Questions?



Unknown MDP
(Imitation Learning)



Behavior Cloning

Expert runs
away after
demonstrations
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The Big Problem with BC

Train Test
T—1 -1
N E, g [£(5, (s))] D E lZ(s, a(s))]
=0 =0
e\ ' A
/ / B \k , / / B \k ,
S~ ) o~ )



The Goal

I—1
Z [EStthﬂ[f(Sta ﬂ(St))]

=0

Can we bound this to O(eT) ?



DAgger (Dataset Aggregation)

Initialize with a random policy x;
Initialize empty data buffer & « {}

Fori=1,....N
Execute policy 7; in the real world and collect data

91. — {S(), Cl(), Sl,al, }

Query the expert for the optimal action on learner states
D; = {0 ﬂ*(So)a 51 ﬂ*(51)a con )
Aggregate data Y <« Y U I,

Train a new learner on this dataset 7;,; < Irain(Y)

Select the best policy in 7.y,
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The DAGGER Argument

We can frame interactive imitation learning as online learning

FTL is no-regret it the loss is strongly convex

DAGGER is FTL

No-regret implies O(eHT)
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