Actor Critic

Sanjiban Choudhury

Lornell Bowers CIS
Computer Science

Vanilla REINFORCE

Start with an arbitrary initial policy my(a|s)
while not converged do

Roll-out 7y(a|s) to collect trajectories D = {Sé, aé, ré, e S;_l, a}_l, r}_l}ﬁ.\;l
T-1
Compute reward-to-go for each timestep for each trajectory Q"(s;, a/) = Z r(s,,a,)

. f'=t
Compute gradient

V,J(0) =

T—

1 I A
~ | 2 Velogmlails;) OGs;. ap)
=0

Update parameters 0 — 0+ aVyJ0)

Three major nightmares with policy gradients

Nightmare 1

High Variance

Consider the following MDP

na=Ul|s) =0

nfa=D|s)=1—-0

Suppose we init @ = 0.5, and draw 4 samples with our policy
And then apply PG

When Q values for all rollouts in a batch are high?

Recall that one of the reasons for the high variance is that the
algorithm does not know how well the trajectories perform compared
to other trajectories. Therefore, by introducing a baseline for the total
reward (or reward to go), we can update the policy based on how well

the policy performs compared to a baseline

Solution: Subtract a baselinel

4 H(a =D | 5 O) =1-0 a = \\

Suppose we subtracted of V*(sy) = 10.5 from the reward to go

Vo] = Egmo (s)Ey(als) | Vo log(mtg(als) (Q(s,a) — V™™ (s))]|

Solution: Subtract a baselinel

Vo] = Egmg (s)Ey(als) | Vo log(mg(als) (Q™ (s,a) — V™ (s))]

We can prove that this does not change the gradient

Solution: Subtract a baselinel

Vo] = Egmg (s)Ey(als) | Vo log(mg(als) (Q™ (s,a) — V™ (s))]

We can prove that this does not change the gradient

Vo] = Egmo(s)Ery(als) | Vo log(7e(als) A™ (s,a))

But turns Q values into advantage (which is lower variance)

Vanilla REINFORCE

Start with an arbitrary initial policy my(a|s)
while not converged do

Roll-out 7y(a|s) to collect trajectories D = {Sé, aé, ré, e S;_l, a}_l, r}_l}ﬁ.\;l
T-1
Compute reward-to-go for each timestep for each trajectory Q"(s;, a/) = Z r(s,,a,)

. f'=t
Compute gradient

1 | = A
V,J(0) = ~ Vlog ny(a; | s/) O"(s;, a;)
=0
Update parameters 0 — 0+ aVyJ0)

10

Fix #1: Subtract baseline

Start with an arbitrary initial policy my(a|s)
while not converged do

Roll-out my(a|s) to collect trajectories D = {s}, aj, 1l ...y sh_ ab b 1L,
T-1

Compute reward-to-go for each timestep for each trajectory Q”H(Sti, ati) = Z r (Stif, Cltif)
t'=t

-1
Fit value function ‘A/”@(Sti) ~ Z r(sti,, ati,) \L How??
t'=t -

Compute advantage A”H(S,f, ati) — Q”Q(Sti, af) — ‘7”9(5;)

Compute gradient
1
Vg](@) — N [

T—1
Z Vlog my(al | s}) A(s/, af)]
=0
Update parameters 0 — 0+ aV,yJ(0)

11

Two ways to fit critic

' Monte-Carlo

I
(V(St) -) 7/‘%’)

Needs full time-horizon

trajectories

Temporal Ditference

(V(St) — [rt + yV(s, +1)])2

Works with partial segments!
(s,a,r,s’)

12

Actor-Critic Framework

ACtOr Cr|t|C

Policy improvement Estimates value
of functions V”

13

Actor-Critic Framework (Infinite Horizon)

Start with an arbitrary initial policy my(a|s)
while not converged do

Roll-out my(a|s) to collect trajectories D = {s',a’, r', s }'*,

Fit value function ‘A/”@(Si) using TD, i.e. minimize (r' + }/‘A/’T@(Si) — ‘A/”H(Si))2

Compute advantage A%(st a') = r(s', a’) + }/‘A/”@(Si) — V7o(s")

Compute gradient _

1 A
Vol (0) =— Z; Vlog mal|si) A%(s', a')
Update parameters 0 — 0+ aV,J0)

14

Important Actor Critic Algorithms

o @ Stochastic policy
1. Soft Actor-Critic e Off-policy algorithm

® Adds entropy to reward to encourage exploration

2. 1D3 ® Deterministic policy
e Off-policy algorithm
® [rains two Q networks to combat overestimation

3. PPO ® Stochastic policy
® On-policy algorithm
® \We will cover this next!

15

Demonstrating a Walk in the Park: Learning to Walk
in 20 Minutes With Model-Free Reinforcement Learning

Laura Smith" ', [lya Kostrikov' ', Sergey Levine'
lqml contribution * Bululu Al Research, UC Berkeley

-

on which the robot is able to learn in under 20 minutes

https://www.youtube.com/watch?v=YO1USfn6sHY

Details

State-Action Space: The state 1s 30 dimensional containing the joint positions (12 values), joint
velocities (12 values), roll and pitch of the torso and binary foot contact indicators (4 values). The
action space 1s 12 dimensional corresponding to the target joint position tor the 12 robot joints. The
predicted target joint angles ¢ = q € R'? is converted to torques 7 using a PD controller with target
joint velocities set to 0.

Reward: Algorithm:
Soft Actor-Critic

r(s,a) =ry(s,a) — O.lvzaw

where v,,4,, 1S an angular yaw velocity and

1, for Ve € [’Ut, 2’Ut]
rv(s,a) = <0, for v, € (—oo, —v:| U [4vy, 00)
1 — e—vel Gtherwise.

2’Ut ?

17

Nightmare 2:

Distribution Shift

What happens it your step-size is large?

Vol = Egm(s)Ery(als) | Vo log(7e(als) A™ (s, a)|

What happens it your step-size is large?

Vo] = Egm(s)Ery(als) | Vo log(7e(als) A, a)

A”H(S, a)

We are estimating the advantage from roll-outs

20

The problem of distribution shift

True Advantage

ADVAN’(A GE

The problem of distribution shift

Estimated Advantage

—- - - -
- ~ -

4 - 3
2 Ovifl&('("m

-

onmu*r A GE

A‘ﬂ
True Advantage

| [€,a)
Our new policy wants to go all the way to the RIGHT

22

The problem of distribution shift

True
A" advantage of
new policy

AovanTas GE
/
/
/
\
x> ,

23

The problem of distribution shift

L)
Estimated
- A
Advantage w —~ "~ T A7
, True
N\ 7
‘% / ==/ advantage of
< + new policy
($,a)

Our new policy wants to go all the way to the LEFT

24

Recap: Problem with Approximate Policy lteration

-1
V7 (s9) — V(s,) = Z E, g A"(s,)
=0

PDL requires accurate QF on states that 7™ will visit! (df)

But we only have states that 7 visits (d)

f 7% changes drastically from 7, then |d” — d|is big]

25

Be stable

Slowly change
policies

Keep d” close to d”

20

Goal: Change distributions slowly

max J(6 + AD)
Y,

s.t. d™+20 |s close to d™

How do we measure distance between distributions?

27

Goal: Change distributions slowly

max J(6 + AD)
Y,

s.t. KL(d™+so||d™) < €

Fix #2: Take small steps

Start with an arbitrary initial policy my(a|s)
while not converged do

Roll-out 7y(a|s) to collect trajectories D = {si, a, r, sfr}ﬁ.\il
Fit value function V™(s") using TD, i.e. minimize (r' + }/VﬂQ(Si) — V7(s"))?
Compute advantage A™(s', a’) = r(s',a’) + ;/\A/’T@(Si) — V(s

Compute gradient

= o
Vol(0) =~ D Vylog my(af|s)) A”ﬁ(sl,a’)] s.t. KL(n(0+ AO) || n(0)) <€
=0
Update parameters 0 — 0+ aV,yJ0) \
- p
How??
N Y

29

Natural Gradient Descent (also known as TRPO)

Start with an arbitrary initial policy my(a|s)
while not converged do

Roll-out 7y(a|s) to collect trajectories D = {si, a, r, sfr}ﬁ.\il
Fit value function V™(s") using TD, i.e. minimize (r' + }/VﬂQ(Si) — V7(s"))?
Compute advantage A™(s', a’) = r(s',a’) + ;/\A/’T@(Si) — V(s

Compute gradient

T-1

% D Vylog my(af|s)) A”Q(S’}a")] — oA (e
=0
~ AO'G(O)AO < €
Update parameters 0 < 0+ aG(0)~' V,J(6) G(0) is Fischer Information Matrix

30

Proximal Policy Optimization (PPO)

Computing Fischer Information matrix is expensive and slow!

ldea: Instead of taking small steps, change the loss
function so there is no benefit in taking large steps!

31

Proximal Policy Optimization (PPO)

Computing Fischer Information matrix is expensive and slow!

ldea: Instead of taking small steps, change the loss
function so there is no benefit in taking large steps!

Instead of defining gradient, we will define a surrogate loss function
(Lets say we are at iteration k)

o«
Z(0) = _s,arvyt@k — A"(s, a)

32

Proximal Policy Optimization (PPO)

Computing Fischer Information matrix is expensive and slow!

ldea: Instead of taking small steps, change the loss
function so there is no benefit in taking large steps!

Clip the loss it the policy 7, deviates too much from 7,

S, A~ Ty
' g, g,

Il I
ZO) =F min | == A”%(s, a), clip (—9,1 —e,1+ e) A%(s, a)

33

Nightmare 3:

Local Optima

The Ring of Fire

ing of Fire

The R

The Ring of Fire

Get's sucked into a local optimal!

ldea: What it we had a "good reset distribution?”

Pl
»
’
»

Start distribution

ldea: What it we had a "good reset distribution?”

ldea: What it we had a "good reset distribution?”

' Run REINFORCE
‘g’ from ditferent start states

ldea: What it we had a "good reset distribution?”

' Run REINFORCE
‘g’ from ditferent start states

ldea: What it we had a "good reset distribution?”

Run REINFORCE
from different start states

Fix #3: Use a reset distribution

Start with an arbitrary initial policy my(a|s)

while not converged do Instead of rolling out
Roll-out 7y(a|s) to collect trajectories D = {s', a’, ', st }V_ from the start state,
Fit value function V(s’) using TD, i.e. minimize (r + yV(si) — V7(s’))? rollout from states
Compute advantage A™(s', a’) = r(s', a’) + yV(si) — V7(s') expert VISIts
Compute gradient | [
Vol (0) =— tz; Vlog m(al|s) A%(s',a’) | s.t. KL(z(0 + AO)| | (0)) < e
Update parameters 0 — 0+ aV,J©)

43

