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Switch from costs to rewards
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All optimal control / planning literature
written as costs

All RL literature written as rewards
Cost = -Reward

All min() become max()



The Likelihood
Ratio Trick!




REINFORCE

Algorithm 20: The REINFORCE algorithm.

Start with an arbitrary initial policy 7ty

while not converged do

Run simulator with 7ty to collect {¢ (7) fi |
Compute estimated gradient

N 1 N T—1 ; ; ;
Vol== Y || ) Vglogmy (at()|5§)) R(¢W)
N = | =

~ Update parameters 6 < 0 + « Vo]
return 7ty




Causality: Can actions affect the past?

Time t-1 t t+1 t+2

How can we

T-1 -1
VoJ = [( Z V,log (at(i) | St(i))) Z r(s,, at))] :

=0 =0



The Policy Gradient Theorem

_ T—1
Vo] = E,¢o) ! Z (Velogﬂe at|st) (Z r(sy, ay) ,Z_: r(sy, ay )))]
p(£|6) ! ; (Ve log 7tg(at|st) tgtr(st'/at')) ’




The Policy Gradient Theorem

t/_

p(£|6) [ Z (Ve log 7tg(at|st) t’z—:tr(St,,at,)) ’

Vg] = E c‘g !E (Vglogﬂ'g at|St (E 4 St’ at/ —+ Z 4 St’ Ay ))]

Q7T9 (St/ at)

(The reward to go)



The Policy Gradient Theorem

(Finite Horizon Version)

Vg] E n(&(6) Z Vg l()g ﬂg(at|5t) QT[Q (St, at)



The Policy Gradient Theorem

(Finite Horizon Version)
Vg] E n(&(6) Z V@ log ng(at|st) Qﬂe (St, at)

(Infinite Horizon Version)

VoI = Esimo(s),a~my(als) [Volog mg(als)Q™ (s, a)]



Hardware
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https://www.youtube.com/watch?v=mpGK4zbdi6g

c) Door opening: This task involves both the arm and
the hand working in tandem to open a door. The robot must
learn to approach the door, grip the handle, and then pull
backwards. This task has more degrees of freedom given the
additional arm, and involves the sequence of actions: going
to the door, gripping the door, and then pulling away.
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Flg S: Opening door with flexible handle
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The state space 1s all the joint angles of the hand, the
Cartesian position of the arm, the current angle of the door,
and last action taken. The action space i1s the position space
of the hand and horizontal position of the wrist of the arm.
The reward function 1s provided as

_(do)z o (iBarm — xdoor)
df := Ogoor — Oclosed

We define a trajectory as a success if at any point df > 30°.
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a) Valve Rotation: This task involves turning a valve or
faucet to a target position. The fingers must cooperatively push

and move out of the way, posing an exploration challenge.

Furthermore the contact forces with the valve complicate the
dynamics. For our task, the valve must be rotated from 0° to

180°.

Fig. 3: Illustration of valve rotation
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Fig. 3: Illustration of valve rotation

The state space consists of all the joint angles of the hand,
the current angle of rotation of the valve [6ya.], the distance
to the goal angle [df], and the last action taken. The action
space 1s joint angles of the hand and the reward function is

r = —|df| + 10 x ¥ ¢ 40/<0.13 + 50 * K 11401<0.05)
dl := evalve — egoal

We define a trajectory as a success if |df| < 20° for at
least 20% of the trajectory.
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On-policy vs Off-policy
On-policy RL algorithms:

You must collect data according to your current policy to update
learner parameters

Off-policy RL algorithms:

Your learner can learn from data from any policy
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On-policy vs Off-policy

On-policy RL algorithms:
You must collect data according to your current policy to update
learner parameters

Off-policy RL algorithms:

Your learner can learn from data from any policy

When poll is active respond at PollEv.com/sc2582
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Are we done?
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No!

Three major nightmares with policy gradients



Nightmare 1

High Variance



Consider the following MDP

na=Ul|sy) =0

nfa=D|s)=1—-0

Suppose we init @ = 0.5, and draw 4 samples with our policy
And then apply PG
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When Q values for all rollouts in a batch are high?

Recall that one of the reasons for the high variance is that the
algorithm does not know how well the trajectories perform compared
to other trajectories. Therefore, by introducing a baseline for the total
reward (or reward to go), we can update the policy based on how well

the policy performs compared to a baseline
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Solution: Subtract a baselinel

4 H(a =D | 5 O) =1-0 a = \\

Suppose we subtracted of V*(sy) = 10.5 from the reward to go

Vol = Ed”f) (S)Eng(a\s) [VO log(ng(a|s) (Qm) (S/ a) — V7 (S))

= 23




Solution: Subtract a baselinel

Vo] = Egmg (s)Ey(als) | Vo log(mg(als) (Q™ (s,a) — V™ (s))]

We can prove that this does not change the gradient
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Solution: Subtract a baselinel

Vo] = Egmg (s)Ey(als) | Vo log(mg(als) (Q™ (s,a) — V™ (s))]

We can prove that this does not change the gradient

Vo] = Egmo(s)Ery(als) | Vo log(7e(als) A™ (s,a))

But turns Q values into advantage (which is lower variance)
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Solution: Subtract a baselinel

Vo] = Egmg (s)Ey(als) | Vo log(mg(als) (Q™ (s,a) — V™ (s))]

We can prove that this does not change the gradient

Vo] = Egmo(s)Ery(als) | Vo log(7e(als) A™ (s,a))

But turns Q values into advantage (which is lower variance)

Can we justity this move using the PDL?
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Nightmare 2:

Distribution Shift



What happens it your step-size is large?

Vol = Egm(s)Ery(als) | Vo log(7e(als) A™ (s, a)|



What happens it your step-size is large?

Vo] = Egm(s)Ery(als) | Vo log(7e(als) A, a)

A”H(S, a)

We are estimating the advantage from roll-outs
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The problem of distribution shift

True Advantage

ADVAN’(A GE



The problem of distribution shift

Estimated Advantage
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Our new policy wants to go all the way to the RIGHT
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The problem of distribution shift

True
A" advantage of
new policy

AovanTas GE
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The problem of distribution shift

L)
Estimated
- A
Advantage w —~ "~ T A7
, True
N\ 7
‘% / ==/ advantage of
< + new policy
($,a)

Our new policy wants to go all the way to the LEFT
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Recap: Problem with Approximate Policy lteration

-1
V7 (s9) — V(s,) = Z E, g A"(s, )
=0

PDL requires accurate QF on states that 7™ will visit! (df)

But we only have states that 7 visits (d)

f 7% changes drastically from 7, then |d” — d|is big]
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Be stable

Slowly change
policies

Keep d” close to d”
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Goal: Change distributions slowly

max J(6 + AD)
Y,

s.t. d™+20 |s close to d™

How do we measure distance between distributions?
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Goal: Change distributions slowly

max J(6 + AD)
Y,

s.t. KL(d™+so||d™) < €



This gives us a new type of gradient descent

max J(6 + AO)
AO

s.t. KL(d"+2||d"™) <€
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Where G(0) is the Fischer Information Matrix

GO = | Vylog ny(a|s) Vylog ry(a )" ]

s,a~df
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This is also called a "natural” gradient

0 —0+n

Where G(0) is the Fischer Information Matrix

GO = | Vylog ny(a|s) Vylog ry(a )" ]

s,a~df
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"Natural Gradient Descent

Start with an arbitrary initial policy 7g

while not converged do

Run simulator with 77, to collect {&() f\i ,
Compute estimated gradient

N 1 N [/T=1 N i ]
Vo] = N ; (Z Vg log 71y (a§)|s§))) R(g())

L Update parameters 6 < 0 + G
return 77y N

Modern variants are TRPO, PPO, etc
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Nightmare 3:

Local Optima



The Ring of Fire




ing of Fire

The R




The Ring of Fire

Get's sucked into a local optimal!




ldea: What it we had a "good reset distribution?”
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Start distribution




ldea: What it we had a "good reset distribution?”




ldea: What it we had a "good reset distribution?”

' Run REINFORCE
‘g’ from ditferent start states



ldea: What it we had a "good reset distribution?”

' Run REINFORCE
‘g’ from ditferent start states



ldea: What it we had a "good reset distribution?”

Run REINFORCE
from different start states




