From Approximate Policy Iteration to Policy Gradients

Sanjiban Choudhury

Recap

Unknown MDP, learn from roll-outs

Fitted Q Iteration, Q-learning

Problem of Bootstrapping: Errors in fitting Q feedback leading to more errors. Further exacerbated by the min()

What about policy iteration?

Policy Iteration

Init with some policy π

Repeat forever

Evaluate policy π

$$Q^{\pi}(s, a) = c(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)} Q^{\pi}(s', \pi(s'))]$$

$$\forall (s, a)$$

Improve policy

$$\pi^{+}(s) = \arg\min_{a} Q^{\pi}(s, a) \quad \forall s$$

Things to like about policy iteration

Can potentially converge much faster value iteration

Easy to initialize it with a starting policy

(e.g. use BC to initialize)

Why does policy iteration work at all?

If I select a new policy π^+

$$\pi^+(s) = \arg\min_{a} Q^{\pi}(s, a) \quad \forall s$$

is the new policy better than π

$$V^{\pi^+}(s_0) - V^{\pi}(s_0) \le 0$$

i.e. do I get monotonic improvement?

Performance Difference Lemma

Summary

Performance Difference Lemma (PDL)

$$V^{\pi^+}(s_0) - V^{\pi}(s_0) = \sum_{t=0}^{T-1} \mathbb{E}_{s_t \sim d_t^{\pi^+}} A^{\pi}(s_t, \pi^+)$$

If I select a new policy π^+

$$\pi^+(s) = \arg\min_{a} Q^{\pi}(s, a) \quad \forall s$$

Then advantage must be negative

$$A^{\pi}(s, \pi^{+}) \leq 0 \quad \forall s$$

Monotonic improvement

$$V^{\pi^+}(s_0) - V^{\pi}(s_0) \le 0$$

What about approximate policy iteration?

Approximate Policy Iteration

Init with some policy π

Repeat forever

Evaluate policy π

Rollout π , collect data (s, a, s', a'), fit a function $Q_{\theta}^{\pi}(s, a)$

Improve policy

$$\pi^+(s) = \arg\min_{a} Q_{\theta}^{\pi}(s, a)$$

Does approximate policy iteration give me monotonic improvement?

When poll is active respond at PollEv.com/sc2582

Send sc2582 to 22333

Performance Difference Lemma (PDL)

$$V^{\pi^+}(s_0) - V^{\pi}(s_0) = \sum_{t=0}^{T-1} \mathbb{E}_{s_t \sim d_t^{\pi^+}} A^{\pi}(s_t, \pi^+)$$

Approximate Policy Iteration

Collect data (s, a, s', a') using policy π

Fit a Q on the data:
$$Q_{\theta}^{\pi}(s,a)=c(s,a))+\gamma\mathbb{E}_{s'\sim\mathcal{T}(s,a)}Q_{\theta}^{\pi}(s',a')]$$

Improve:
$$\pi^+(s) = \arg\min_{a} Q_{\theta}^{\pi}(s, a)$$

Problem with Approximate Policy Iteration

$$V^{\pi^+}(s_0) - V^{\pi}(s_0) = \sum_{t=0}^{T-1} \mathbb{E}_{s_t \sim d_t^{\pi^+}} A^{\pi}(s_t, \pi^+)$$

PDL requires accurate Q^{π}_{θ} on states that π^+ will visit! $(d^{\pi^+}_t)$

But we only have states that π visits (d_t^{π})

If π^+ changes drastically from π , then $|d_t^{\pi^+} - d_t^{\pi}|$ is big!

Be stable

Slowly change policies

Policy Gradients

Policy Gradients

At the end of the day, all we care about is finding a good policy

Directly learn parameters of such a policy π_{θ}

Parameters allow us to slowly update the policy

Led to powerful modern RL algorithms like TRPO, PPO, etc.

Policy Gradient

Learn a mapping from states to actions

Roll-out policies in the real-world to estimate value

Let's derive policy gradients

