
Approximate Value and Policy
Iteration

Sanjiban Choudhury

1

2

The story thus far …

2

The story thus far

3

We know how to define an MDP

If the MDP is known (i.e. I know my costs and my transition)

We know how to solve a MDP

What happens if the MDP is unknown?

Known MDP

4

If I know the transition function, I could

teleport to any state, try any action and know the next state

Unknown MDP

5

I don’t know the transition, I can only roll-out from start state, and
see where I end up

Recall: How do we solve a known
MDP?

Image courtesy Dan Klein

7

Value Iteration

Initialize value function at last time-step

for t = T − 2,…,0

Compute value function at time-step t

V*(s, t) = min
a [c(s, a) + γ∑

s′￼

𝒯(s′￼|s, a)V*(s′￼, t + 1)]∀s

V*(s, T − 1) = min
a

c(s, a) ∀s

8

Q-Value Iteration

Initialize value function at last time-step

for t = T − 2,…,0

Compute value function at time-step t

Q*(s, a, t) = c(s, a) + γ∑
s′￼

𝒯(s′￼|s, a) min
a′￼

Q*(s′￼, a′￼, t + 1) ∀s, a

Q*(s, a, T − 1) = c(s, a) ∀(s, a)

9

Q-Value Iteration (Infinite horizon)

Initialize value function at last time-step

While not converged

Update value function

Q*(s, a) = c(s, a) + γ∑
s′￼

𝒯(s′￼|s, a) min
a′￼

Q*(s′￼, a′￼) ∀(s, a)

Q*(s, a) = c(s, a) ∀(s, a)

10

Initialize value function at last time-step

While not converged

Update value function

Q*(s, a) = c(s, a) + γ∑
s′￼

𝒯(s′￼|s, a) min
a′￼

Q*(s′￼, a′￼) ∀(s, a)

Q*(s, a) = c(s, a) ∀(s, a)

Two Problems

2) What happens when 
I don’t know the MDP?

1) What happens when 
states are continuous?

Are these known?
Can I do this?

Simple Idea

Can I collect roll-out data
from the real world and
just fit a Q function?

12

Unknown

function

Neural Network

Step 1: First collect roll-out data

13

𝒟 = {(si, ai, ci, si+1)}n
i=1

Data is a tuple of

state, action, cost,

next state

Step 2: Fitted Q-Iteration

14

Regular Q-iteration

while not converged do
for s ∈ S, a ∈ A

Qnew(s, a) = c(s, a) + γ𝔼s′￼
min

a′￼

Q(s′￼, a′￼)

Q ← Qnew

return Q

Q(s, a) ← c(s, a)

Fitted Q-iteration

Init Qθ(s, a) ← 0
while not converged do

for i ∈ 1,…, n

Qθ ← Train(D)
return Qθ

D ← ∅

input ← {si, ai}
target ← ci + γ

′￼

min
a

Qθ(s′￼i, a′￼)
D ← D ∪ {input, output}

Given {si, ai, ci, s′￼i}N
i=1

Step 2: Fitted Q-Iteration

15

Regular Q-iteration

while not converged do
for s ∈ S, a ∈ A

Qnew(s, a) = c(s, a) + γ𝔼s′￼
min

a′￼

Q(s′￼, a′￼)

Q ← Qnew

return Q

Q(s, a) ← c(s, a)

Fitted Q-iteration

Init Qθ(s, a) ← 0
while not converged do

for i ∈ 1,…, n

Qθ ← Train(D)
return Qθ

D ← ∅

input ← {si, ai}
target ← ci + γ

′￼

min
a

Qθ(s′￼i, a′￼)
D ← D ∪ {input, output}

Given {si, ai, ci, s′￼i}N
i=1

Step 2: Fitted Q-Iteration

16

Regular Q-iteration

while not converged do
for s ∈ S, a ∈ A

Qnew(s, a) = c(s, a) + γ𝔼s′￼
min

a′￼

Q(s′￼, a′￼)

Q ← Qnew

return Q

Q(s, a) ← c(s, a)

Fitted Q-iteration

Init Qθ(s, a) ← 0
while not converged do

for i ∈ 1,…, n

Qθ ← Train(D)
return Qθ

D ← ∅

input ← {si, ai}
target ← ci + γ

′￼

min
a

Qθ(s′￼i, a′￼)
D ← D ∪ {input, output}

Given {si, ai, ci, s′￼i}N
i=1

ℓ(θ) =
n

∑
i=1

(Qθ(si, ai) − target)2

Training is a regression problem
Use old copy of Q

to set target

Temporal Difference Error (TD Error)

17

ℓ(θ) = (c(s, a) + γ min
a′￼

Qθold
(s′￼, a′￼) − Qθ(st, at))

2
Penalize violation of Bellman Equation

θ = θold − α∇θl(θ)

What policy do I use to collect data?

18

Do I explore randomly? Do I use my learnt Q function?

What policy do I use to collect data?

19

Do I explore randomly? Do I use my learnt Q function?

20

(s, a, s′￼, c)

Q-learning: Learning off-policy

Fitted

Q iteration

21

22

23

So does approximate
value iteration work?

24

A simple example: Gridworld

25

True value functionOptimal path

Boyan,Justin A and Moore, Andrew W, Generalization in Reinforcement Learning: Safely Approximating the Value Function. NeurIPS 1994.

What happens when we run value iteration with a
quadratic?

26

84 draft: modern adaptive control and reinforcement learning

this can be viewed as a violation of the i.i.d assumption on training and test
samples.

The following examples from [3] [Boyan and Moore, 1995] demonstrate
this problem 12. 12 All figures from Boyan et. al

Example: 2D gridworld

Figure 8.1.1 shows the 2D grid world example, which has a linear true value
function J⇤.

Continuous Gridworld
J*(x,y)1

0.8

0.6
20
15 10.4 10 0.8
0
5

0.60.2 00
0.40.20.2

0.40.4
0.60.6 0.20

0.2 0.4 0.6 0.8 1 0.80.8
101x

y

Figure 8.1.1: The continuous
gridworld domain.

Figure 8.1.2 shows that VI with converges to the true value function.

Iteration 12 Iteration 25 Iteration 40

20 20 20
15 15 151 1 1
10 10 100.8 0.8 0.85 5 5
0 0.6 0 0.6 0 0.6
00 00 00

0.4 0.20.2 0.4 0.20.2 0.40.20.2
0.40.4 0.40.4 0.40.4

0.2 0.60.6 0.2 0.60.6 0.20.60.6
0.80.8 0.80.8 0.80.8

10 10 101 1 1

Figure 8.1.2: Training with
discrete value iteration.

However, figure 8.1.3 shows that Fitted Value Iteration with quadratic
regression fails to converge. The quadratic function, in trying to both be
flat in the middle of state space and bend down toward 0 at the goal corner,
must compensate by underestimating the values at the corner opposite
the goal. These underestimates then enlarge on each iteration, as the one-
step lookaheads indicate that points can lower their expected cost-to-go by
stepping farther away from the goal.

Iteration 17 Iteration 43 Iteration 127

8 10 -2006 1 0 1 1-300
2
4 0.8 -10 0.8 -400 0.8

-20 -5000 0.6 0.6 0.6
00 00 00

0.20.2 0.40.20.2 0.4 0.20.2 0.4 0.40.40.40.4 0.40.4
0.2 0.60.6 0.20.60.6 0.2 0.60.6 0.80.80.80.8 0.80.8 101110 110

Figure 8.1.3: Training with
quadratic regression. The value
function diverges. Fitted Value
Iteration with quadratic regres-
sion underestimates the values
at the corner opposite the goal,
and these underestimates am-
plify at each iteration.

What happens when we run value iteration with a
quadratic?

27

84 draft: modern adaptive control and reinforcement learning

this can be viewed as a violation of the i.i.d assumption on training and test
samples.

The following examples from [3] [Boyan and Moore, 1995] demonstrate
this problem 12. 12 All figures from Boyan et. al

Example: 2D gridworld

Figure 8.1.1 shows the 2D grid world example, which has a linear true value
function J⇤.

Continuous Gridworld
J*(x,y)1

0.8

0.6
20
15 10.4 10 0.8
0
5

0.60.2 00
0.40.20.2

0.40.4
0.60.6 0.20

0.2 0.4 0.6 0.8 1 0.80.8
101x

y

Figure 8.1.1: The continuous
gridworld domain.

Figure 8.1.2 shows that VI with converges to the true value function.

Iteration 12 Iteration 25 Iteration 40

20 20 20
15 15 151 1 1
10 10 100.8 0.8 0.85 5 5
0 0.6 0 0.6 0 0.6
00 00 00

0.4 0.20.2 0.4 0.20.2 0.40.20.2
0.40.4 0.40.4 0.40.4

0.2 0.60.6 0.2 0.60.6 0.20.60.6
0.80.8 0.80.8 0.80.8

10 10 101 1 1

Figure 8.1.2: Training with
discrete value iteration.

However, figure 8.1.3 shows that Fitted Value Iteration with quadratic
regression fails to converge. The quadratic function, in trying to both be
flat in the middle of state space and bend down toward 0 at the goal corner,
must compensate by underestimating the values at the corner opposite
the goal. These underestimates then enlarge on each iteration, as the one-
step lookaheads indicate that points can lower their expected cost-to-go by
stepping farther away from the goal.

Iteration 17 Iteration 43 Iteration 127

8 10 -2006 1 0 1 1-300
2
4 0.8 -10 0.8 -400 0.8

-20 -5000 0.6 0.6 0.6
00 00 00

0.20.2 0.40.20.2 0.4 0.20.2 0.4 0.40.40.40.4 0.40.4
0.2 0.60.6 0.20.60.6 0.2 0.60.6 0.80.80.80.8 0.80.8 101110 110

Figure 8.1.3: Training with
quadratic regression. The value
function diverges. Fitted Value
Iteration with quadratic regres-
sion underestimates the values
at the corner opposite the goal,
and these underestimates am-
plify at each iteration.

What happens when we run value iteration with a
quadratic?

28

84 draft: modern adaptive control and reinforcement learning

this can be viewed as a violation of the i.i.d assumption on training and test
samples.

The following examples from [3] [Boyan and Moore, 1995] demonstrate
this problem 12. 12 All figures from Boyan et. al

Example: 2D gridworld

Figure 8.1.1 shows the 2D grid world example, which has a linear true value
function J⇤.

Continuous Gridworld
J*(x,y)1

0.8

0.6
20
15 10.4 10 0.8
0
5

0.60.2 00
0.40.20.2

0.40.4
0.60.6 0.20

0.2 0.4 0.6 0.8 1 0.80.8
101x

y

Figure 8.1.1: The continuous
gridworld domain.

Figure 8.1.2 shows that VI with converges to the true value function.

Iteration 12 Iteration 25 Iteration 40

20 20 20
15 15 151 1 1
10 10 100.8 0.8 0.85 5 5
0 0.6 0 0.6 0 0.6
00 00 00

0.4 0.20.2 0.4 0.20.2 0.40.20.2
0.40.4 0.40.4 0.40.4

0.2 0.60.6 0.2 0.60.6 0.20.60.6
0.80.8 0.80.8 0.80.8

10 10 101 1 1

Figure 8.1.2: Training with
discrete value iteration.

However, figure 8.1.3 shows that Fitted Value Iteration with quadratic
regression fails to converge. The quadratic function, in trying to both be
flat in the middle of state space and bend down toward 0 at the goal corner,
must compensate by underestimating the values at the corner opposite
the goal. These underestimates then enlarge on each iteration, as the one-
step lookaheads indicate that points can lower their expected cost-to-go by
stepping farther away from the goal.

Iteration 17 Iteration 43 Iteration 127

8 10 -2006 1 0 1 1-300
2
4 0.8 -10 0.8 -400 0.8

-20 -5000 0.6 0.6 0.6
00 00 00

0.20.2 0.40.20.2 0.4 0.20.2 0.4 0.40.40.40.4 0.40.4
0.2 0.60.6 0.20.60.6 0.2 0.60.6 0.80.80.80.8 0.80.8 101110 110

Figure 8.1.3: Training with
quadratic regression. The value
function diverges. Fitted Value
Iteration with quadratic regres-
sion underestimates the values
at the corner opposite the goal,
and these underestimates am-
plify at each iteration.

Another Example: Mountain Car!

29

approximate dynamic programming 85

Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
-1 0-1 vel

-0.5-0.5
-1 -0.5 0 0.5 -1

0pospos 0
pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.

Iteration 11 Iteration 101 Iteration 201

12 50
11 2 25 2 20

0 -10010 1 -25 1 -200 19 -50 -300
-1 -1 0-1 0 -1 0 -1-1

-0.5-0.5 -0.5-0.5 -0.5-0.5
-1

00 00
-1 -1 00

0.50.5 -20.50.5 -2 0.50.5 -2

Figure 8.1.5: Training with
neural network.

What happens when we run value iteration with a  
2 Layer MLP?

30

approximate dynamic programming 85

Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
-1 0-1 vel

-0.5-0.5
-1 -0.5 0 0.5 -1

0pospos 0
pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.

Iteration 11 Iteration 101 Iteration 201

12 50
11 2 25 2 20

0 -10010 1 -25 1 -200 19 -50 -300
-1 -1 0-1 0 -1 0 -1-1

-0.5-0.5 -0.5-0.5 -0.5-0.5
-1

00 00
-1 -1 00

0.50.5 -20.50.5 -2 0.50.5 -2

Figure 8.1.5: Training with
neural network.

approximate dynamic programming 85

Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
-1 0-1 vel

-0.5-0.5
-1 -0.5 0 0.5 -1

0pospos 0
pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.

Iteration 11 Iteration 101 Iteration 201

12 50
11 2 25 2 20

0 -10010 1 -25 1 -200 19 -50 -300
-1 -1 0-1 0 -1 0 -1-1

-0.5-0.5 -0.5-0.5 -0.5-0.5
-1

00 00
-1 -1 00

0.50.5 -20.50.5 -2 0.50.5 -2

Figure 8.1.5: Training with
neural network.

What happens when we run value iteration with a  
2 Layer MLP?

31

approximate dynamic programming 85

Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
-1 0-1 vel

-0.5-0.5
-1 -0.5 0 0.5 -1

0pospos 0
pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.

Iteration 11 Iteration 101 Iteration 201

12 50
11 2 25 2 20

0 -10010 1 -25 1 -200 19 -50 -300
-1 -1 0-1 0 -1 0 -1-1

-0.5-0.5 -0.5-0.5 -0.5-0.5
-1

00 00
-1 -1 00

0.50.5 -20.50.5 -2 0.50.5 -2

Figure 8.1.5: Training with
neural network.

approximate dynamic programming 85

Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
-1 0-1 vel

-0.5-0.5
-1 -0.5 0 0.5 -1

0pospos 0
pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.

Iteration 11 Iteration 101 Iteration 201

12 50
11 2 25 2 20

0 -10010 1 -25 1 -200 19 -50 -300
-1 -1 0-1 0 -1 0 -1-1

-0.5-0.5 -0.5-0.5 -0.5-0.5
-1

00 00
-1 -1 00

0.50.5 -20.50.5 -2 0.50.5 -2

Figure 8.1.5: Training with
neural network.

What happens when we run value iteration with a  
2 Layer MLP?

32

approximate dynamic programming 85

Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
-1 0-1 vel

-0.5-0.5
-1 -0.5 0 0.5 -1

0pospos 0
pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.

Iteration 11 Iteration 101 Iteration 201

12 50
11 2 25 2 20

0 -10010 1 -25 1 -200 19 -50 -300
-1 -1 0-1 0 -1 0 -1-1

-0.5-0.5 -0.5-0.5 -0.5-0.5
-1

00 00
-1 -1 00

0.50.5 -20.50.5 -2 0.50.5 -2

Figure 8.1.5: Training with
neural network.

approximate dynamic programming 85

Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
-1 0-1 vel

-0.5-0.5
-1 -0.5 0 0.5 -1

0pospos 0
pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.

Iteration 11 Iteration 101 Iteration 201

12 50
11 2 25 2 20

0 -10010 1 -25 1 -200 19 -50 -300
-1 -1 0-1 0 -1 0 -1-1

-0.5-0.5 -0.5-0.5 -0.5-0.5
-1

00 00
-1 -1 00

0.50.5 -20.50.5 -2 0.50.5 -2

Figure 8.1.5: Training with
neural network.

The problem of Bootstrapping!

33

approximate dynamic programming 85

Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
-1 0-1 vel

-0.5-0.5
-1 -0.5 0 0.5 -1

0pospos 0
pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.

Iteration 11 Iteration 101 Iteration 201

12 50
11 2 25 2 20

0 -10010 1 -25 1 -200 19 -50 -300
-1 -1 0-1 0 -1 0 -1-1

-0.5-0.5 -0.5-0.5 -0.5-0.5
-1

00 00
-1 -1 00

0.50.5 -20.50.5 -2 0.50.5 -2

Figure 8.1.5: Training with
neural network.

approximate dynamic programming 85

Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
-1 0-1 vel

-0.5-0.5
-1 -0.5 0 0.5 -1

0pospos 0
pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.

Iteration 11 Iteration 101 Iteration 201

12 50
11 2 25 2 20

0 -10010 1 -25 1 -200 19 -50 -300
-1 -1 0-1 0 -1 0 -1-1

-0.5-0.5 -0.5-0.5 -0.5-0.5
-1

00 00
-1 -1 00

0.50.5 -20.50.5 -2 0.50.5 -2

Figure 8.1.5: Training with
neural network.

max()

The problem of Bootstrapping!

34

approximate dynamic programming 85

Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
-1 0-1 vel

-0.5-0.5
-1 -0.5 0 0.5 -1

0pospos 0
pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.

Iteration 11 Iteration 101 Iteration 201

12 50
11 2 25 2 20

0 -10010 1 -25 1 -200 19 -50 -300
-1 -1 0-1 0 -1 0 -1-1

-0.5-0.5 -0.5-0.5 -0.5-0.5
-1

00 00
-1 -1 00

0.50.5 -20.50.5 -2 0.50.5 -2

Figure 8.1.5: Training with
neural network.

approximate dynamic programming 85

Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
-1 0-1 vel

-0.5-0.5
-1 -0.5 0 0.5 -1

0pospos 0
pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.

Iteration 11 Iteration 101 Iteration 201

12 50
11 2 25 2 20

0 -10010 1 -25 1 -200 19 -50 -300
-1 -1 0-1 0 -1 0 -1-1

-0.5-0.5 -0.5-0.5 -0.5-0.5
-1

00 00
-1 -1 00

0.50.5 -20.50.5 -2 0.50.5 -2

Figure 8.1.5: Training with
neural network.

min()

Errors in approximation are amplified

Key reason is the minimization

Minimization operation visit states
where approximate values is less than
the true value of that state – that is
to say, states that look more
attractive than they should.

Typically states where you have very
few samples

What about policy
iteration?

35

Policy Iteration

36

Policy ImprovementPolicy Evaluation

Policy Iteration

37

Repeat forever

Evaluate policy

Improve policy

Init with some policy π

Qπ(s, a) = c(s, a)) + γ𝔼s′￼∼𝒯(s,a)Qπ(s′￼, π(s′￼))]

π+(s) = arg min
a

Qπ(s, a)

Fitted Policy Iteration

38

π+(s) = arg min
a

Qπ(s, a)

This remains

the same!

Policy ImprovementFitted policy evaluation

Init Qθ(s, a) ← 0
while not converged do

for i ∈ 1,…, n

Qθ ← Train(D)
return Qθ

D ← ∅

input ← {si, ai}
target ← ci + γQθ(s′￼i, π(s′￼i))
D ← D ∪ {input, output}

Given {si, ai, ci, s′￼i}N
i=1

Collect data

using current policy π

39

π+(s) = arg min
a

Qπ(s, a)

Policy ImprovementFitted policy evaluation

Init Qθ(s, a) ← 0
while not converged do

for i ∈ 1,…, n

Qθ ← Train(D)
return Qθ

D ← ∅

input ← {si, ai}
target ← ci + γQθ(s′￼i, π(s′￼i))
D ← D ∪ {input, output}

Given {si, ai, ci, s′￼i}N
i=1

This is fine..

Fitted Policy Iteration

No min()

step

40

π+(s) = arg min
a

Qπ(s, a)

But this has

the min() step!

Policy ImprovementFitted policy evaluation

Init Qθ(s, a) ← 0
while not converged do

for i ∈ 1,…, n

Qθ ← Train(D)
return Qθ

D ← ∅

input ← {si, ai}
target ← ci + γQθ(s′￼i, π(s′￼i))
D ← D ∪ {input, output}

Given {si, ai, ci, s′￼i}N
i=1

This is fine..

Fitted Policy Iteration

