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The story thus far
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We know how to define an MDP

If the MDP is known (i.e. I know my costs and my transition)

We know how to solve a MDP 

What happens if the MDP is unknown?



Known MDP
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If I know the transition function, I could 

teleport to any state, try any action and know the next state



Unknown MDP
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I don’t know the transition, I can only roll-out from start state, and 
see where I end up



Recall: How do we solve a known 
MDP?

Image courtesy Dan Klein
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Value Iteration

Initialize value function at last time-step

for  t = T − 2,…,0

Compute value function at time-step t

V*(s, t) = min
a [c(s, a) + γ∑

s′￼

𝒯(s′￼|s, a)V*(s′￼, t + 1)]∀s

V*(s, T − 1) = min
a

c(s, a) ∀s
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Q-Value Iteration

Initialize value function at last time-step

for  t = T − 2,…,0

Compute value function at time-step t

Q*(s, a, t) = c(s, a) + γ∑
s′￼

𝒯(s′￼|s, a) min
a′￼

Q*(s′￼, a′￼, t + 1) ∀s, a

Q*(s, a, T − 1) = c(s, a) ∀(s, a)
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Q-Value Iteration (Infinite horizon)

Initialize value function at last time-step

While not converged

Update value function

Q*(s, a) = c(s, a) + γ∑
s′￼

𝒯(s′￼|s, a) min
a′￼

Q*(s′￼, a′￼) ∀(s, a)

Q*(s, a) = c(s, a) ∀(s, a)
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Initialize value function at last time-step

While not converged

Update value function

Q*(s, a) = c(s, a) + γ∑
s′￼

𝒯(s′￼|s, a) min
a′￼

Q*(s′￼, a′￼) ∀(s, a)

Q*(s, a) = c(s, a) ∀(s, a)

Two Problems

2) What happens when 
I don’t know the MDP?

1) What happens when 
states are continuous?

Are these known?
Can I do this?



Simple Idea


Can I collect roll-out data 
from the real world and 
just fit a Q function?
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Unknown

function

Neural Network



Step 1: First collect roll-out data
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𝒟 = {(si, ai, ci, si+1)}n
i=1

Data is a tuple of

state, action, cost, 

next state



Step 2: Fitted Q-Iteration
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Regular Q-iteration

while not converged do
for s ∈ S, a ∈ A

Qnew(s, a) = c(s, a) + γ𝔼s′￼
min

a′￼

Q(s′￼, a′￼)

Q ← Qnew

return Q

Q(s, a) ← c(s, a)

Fitted Q-iteration

Init Qθ(s, a) ← 0
while not converged do

for i ∈ 1,…, n

Qθ ← Train(D)
return Qθ

D ← ∅

input ← {si, ai}
target ← ci + γ

′￼

min
a

Qθ(s′￼i, a′￼)
D ← D ∪ {input, output}

Given {si, ai, ci, s′￼i}N
i=1
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Regular Q-iteration

while not converged do
for s ∈ S, a ∈ A

Qnew(s, a) = c(s, a) + γ𝔼s′￼
min

a′￼

Q(s′￼, a′￼)

Q ← Qnew

return Q

Q(s, a) ← c(s, a)

Fitted Q-iteration

Init Qθ(s, a) ← 0
while not converged do

for i ∈ 1,…, n

Qθ ← Train(D)
return Qθ

D ← ∅

input ← {si, ai}
target ← ci + γ

′￼

min
a

Qθ(s′￼i, a′￼)
D ← D ∪ {input, output}

Given {si, ai, ci, s′￼i}N
i=1

ℓ(θ) =
n

∑
i=1

(Qθ(si, ai) − target)2

Training is a regression problem
Use old copy of Q 

to set target



Temporal Difference Error (TD Error)
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ℓ(θ) = (c(s, a) + γ min
a′￼

Qθold
(s′￼, a′￼) − Qθ(st, at))

2
Penalize violation of Bellman Equation

θ = θold − α∇θl(θ)



What policy do I use to collect data?
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Do I explore randomly? Do I use my learnt Q function?



What policy do I use to collect data?
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Do I explore randomly? Do I use my learnt Q function?
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(s, a, s′￼, c)

Q-learning: Learning off-policy

Fitted 

Q iteration
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So does approximate 
value iteration work?
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A simple example: Gridworld
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True value functionOptimal path

Boyan,Justin A and Moore, Andrew W, Generalization in Reinforcement Learning: Safely Approximating the Value Function. NeurIPS 1994. 



What happens when we run value iteration with a 
quadratic?
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84 draft: modern adaptive control and reinforcement learning

this can be viewed as a violation of the i.i.d assumption on training and test
samples.

The following examples from [3] [Boyan and Moore, 1995] demonstrate
this problem 12. 12 All figures from Boyan et. al

Example: 2D gridworld

Figure 8.1.1 shows the 2D grid world example, which has a linear true value
function J⇤.

Continuous Gridworld
J*(x,y)1
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Figure 8.1.1: The continuous
gridworld domain.

Figure 8.1.2 shows that VI with converges to the true value function.
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Figure 8.1.2: Training with
discrete value iteration.

However, figure 8.1.3 shows that Fitted Value Iteration with quadratic
regression fails to converge. The quadratic function, in trying to both be
flat in the middle of state space and bend down toward 0 at the goal corner,
must compensate by underestimating the values at the corner opposite
the goal. These underestimates then enlarge on each iteration, as the one-
step lookaheads indicate that points can lower their expected cost-to-go by
stepping farther away from the goal.
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Figure 8.1.3: Training with
quadratic regression. The value
function diverges. Fitted Value
Iteration with quadratic regres-
sion underestimates the values
at the corner opposite the goal,
and these underestimates am-
plify at each iteration.
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Another Example: Mountain Car!
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Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
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pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.
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Figure 8.1.5: Training with
neural network.



What happens when we run value iteration with a  
2 Layer MLP?
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The problem of Bootstrapping!
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min()

Errors in approximation are amplified

Key reason is the minimization

Minimization operation visit states 
where approximate values is less than 
the true value of that state – that is 
to say, states that look more 
attractive than they should.

Typically states where you have very 
few samples



What about policy 
iteration?
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Policy Iteration
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Policy ImprovementPolicy Evaluation



Policy Iteration
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Repeat forever

Evaluate policy

Improve policy

Init with some policy  π

Qπ(s, a) = c(s, a)) + γ𝔼s′￼∼𝒯(s,a)Qπ(s′￼, π(s′￼))]

π+(s) = arg min
a

Qπ(s, a)



Fitted Policy Iteration
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π+(s) = arg min
a

Qπ(s, a)

This remains 

the same!

Policy ImprovementFitted policy evaluation

Init Qθ(s, a) ← 0
while not converged do

for i ∈ 1,…, n

Qθ ← Train(D)
return Qθ

D ← ∅

input ← {si, ai}
target ← ci + γQθ(s′￼i, π(s′￼i))
D ← D ∪ {input, output}

Given {si, ai, ci, s′￼i}N
i=1

Collect data 

using current policy π
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π+(s) = arg min
a

Qπ(s, a)

Policy ImprovementFitted policy evaluation

Init Qθ(s, a) ← 0
while not converged do

for i ∈ 1,…, n

Qθ ← Train(D)
return Qθ

D ← ∅

input ← {si, ai}
target ← ci + γQθ(s′￼i, π(s′￼i))
D ← D ∪ {input, output}

Given {si, ai, ci, s′￼i}N
i=1

This is fine..

Fitted Policy Iteration

No min()

step
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π+(s) = arg min
a

Qπ(s, a)

But this has

the min() step! 

Policy ImprovementFitted policy evaluation

Init Qθ(s, a) ← 0
while not converged do

for i ∈ 1,…, n

Qθ ← Train(D)
return Qθ

D ← ∅

input ← {si, ai}
target ← ci + γQθ(s′￼i, π(s′￼i))
D ← D ∪ {input, output}

Given {si, ai, ci, s′￼i}N
i=1

This is fine..

Fitted Policy Iteration


