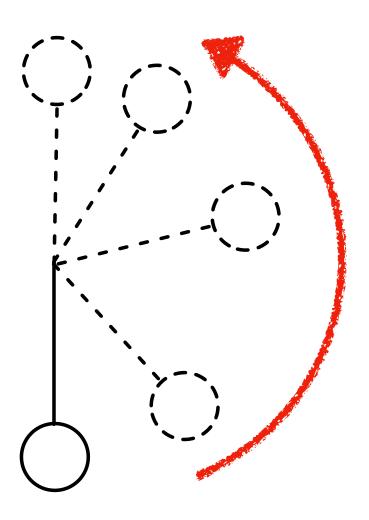
Model Predictive Control and the Unreasonable Effectiveness of Replanning Tapomayukh Bhattacharjee

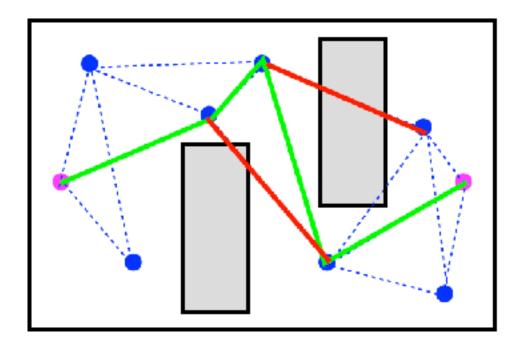
* Some slides from last year's CS 4756

Landscape of Planning / Control Algorithms

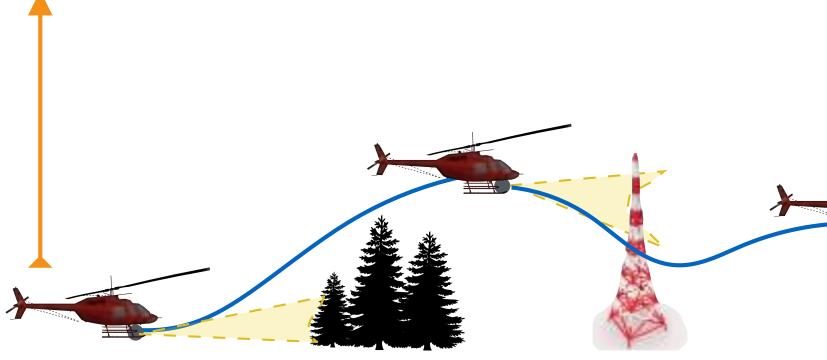
Low-level control



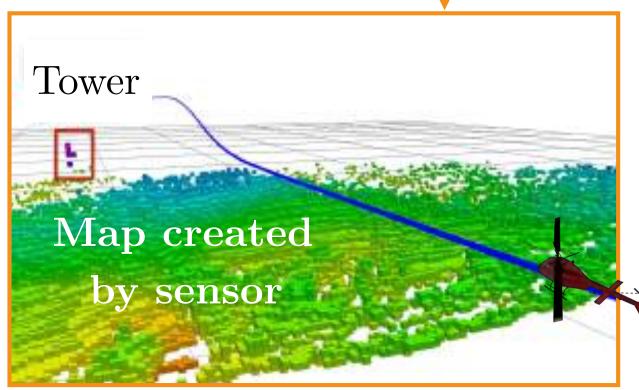
High-level path planning



LazySP

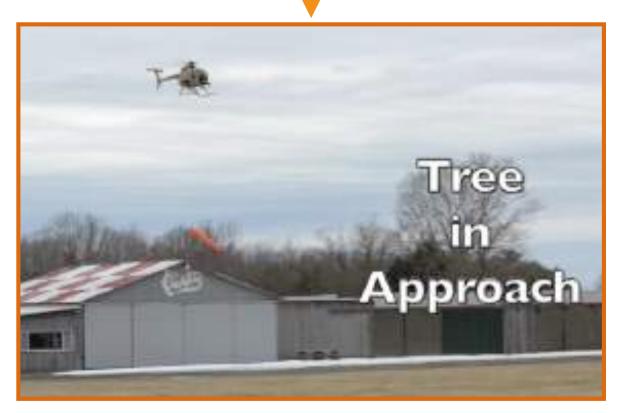


Takeoff(Respect power constraints)



Enroute (Avoid sensed obstacles)

Touchdown (Plan to multiple sites)



Recap: Solving a MDP

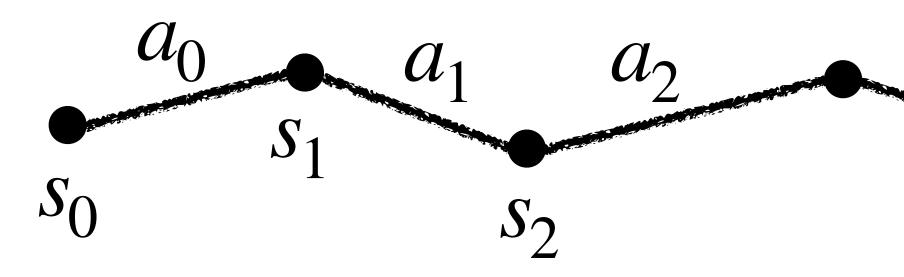
m_{1n} $a_0, ..., a_{T-1}$

(Solve for a sequence of actions)

(Sum over all costs)

T–1

t=0



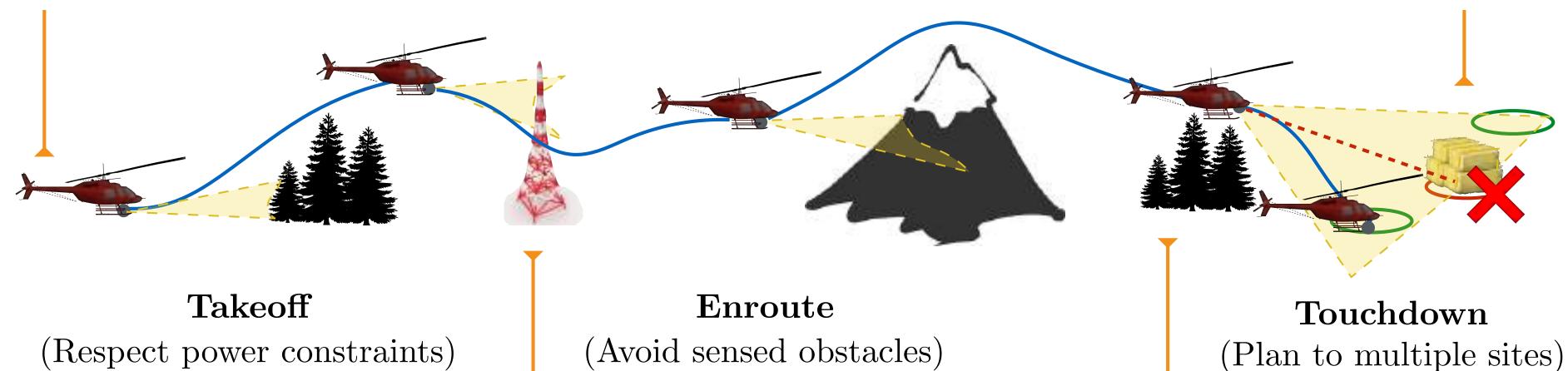
 $C(S_t, a_t)$

 $S_{t+1} = \mathcal{J}(S_t, a_t)$

(Transition function)

Brainstorm: Challenges in solving MDP for helicopter

m₁n a_0, \dots, a_{T-1} (Solve for a sequence of actions)



(Respect power constraints)

Problem 1: Don't know the terrain ahead of time!

Problem 2: Don't have a perfect dynamics model!

Problem 3: Not enough time to plan all the way to the goal!

The Big Challenges

Problem 1: Don't know the terrain ahead of time!

Problem 2: Don't have a perfect dynamics model!

Problem 3: Not enough time to plan all the way to the goal!

The Big Challenges

Brainstorm!

Find a sequence of actions to go from start to goal.

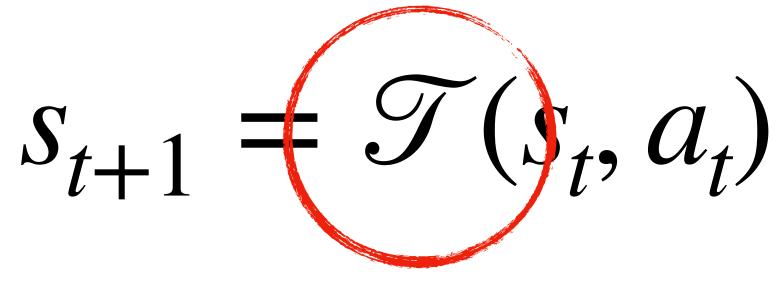
The helicopter can only sense upto 1km.

How should it deal with unknown terrain? What assumptions can it make?

11

What is the problem mathematically? T - 1 $\int C(S_t, a_t)$ m1n a_0, \dots, a_{T-1} t=0(Solve for a sequence (Sum over all costs) of actions)

If not, then how can we solve the optimization problem?



(Transition function)

Is the transition function fully known?

Idea: Plan with an optimistic model T - 1 m_{1n} a_0, \dots, a_{T-1} t=0(Solve for a sequence (Sum over all costs) of actions)

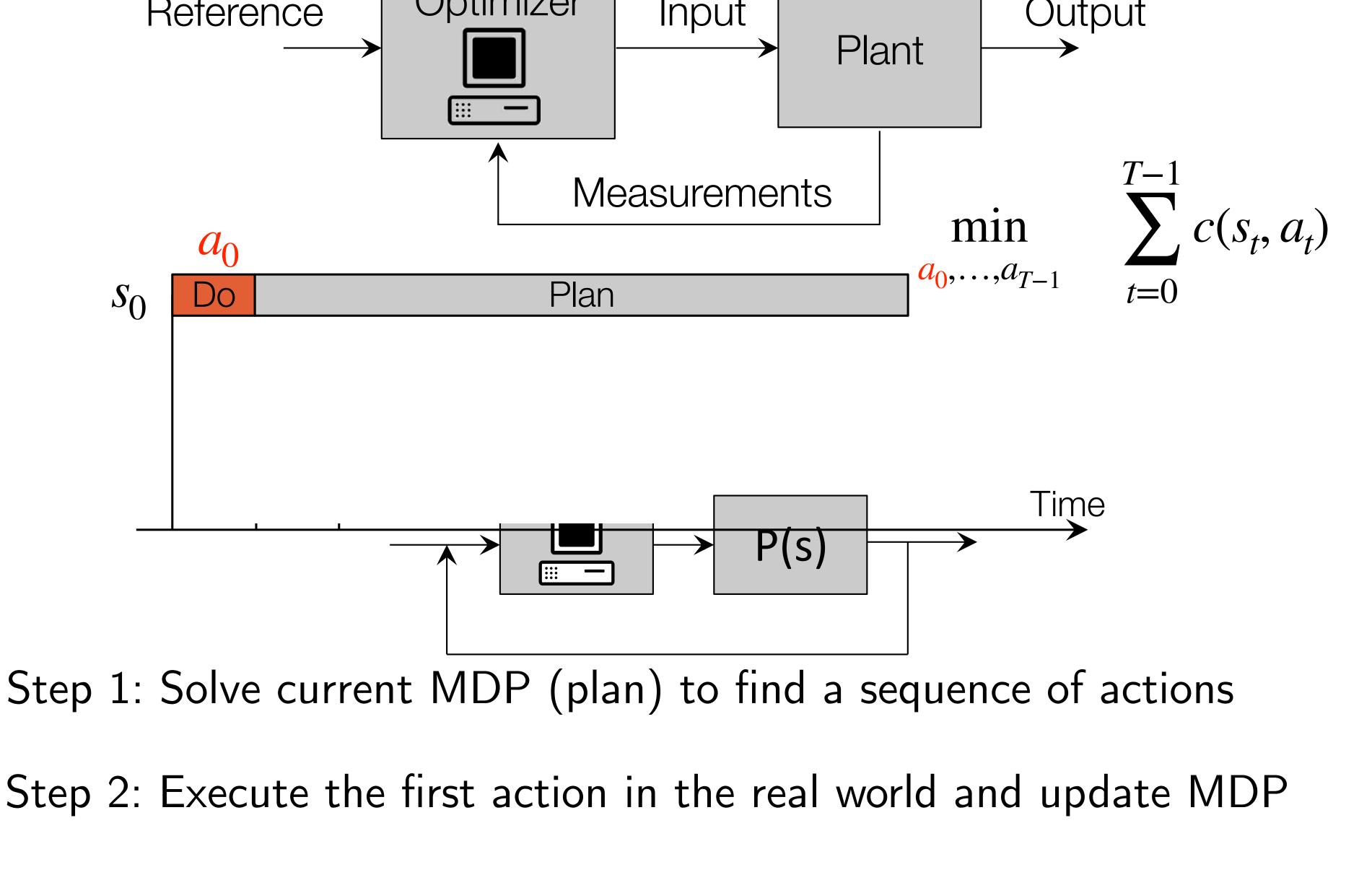
$$S_t, a_t$$

$$s_{t+1} = \hat{\mathscr{I}}(s_t,$$

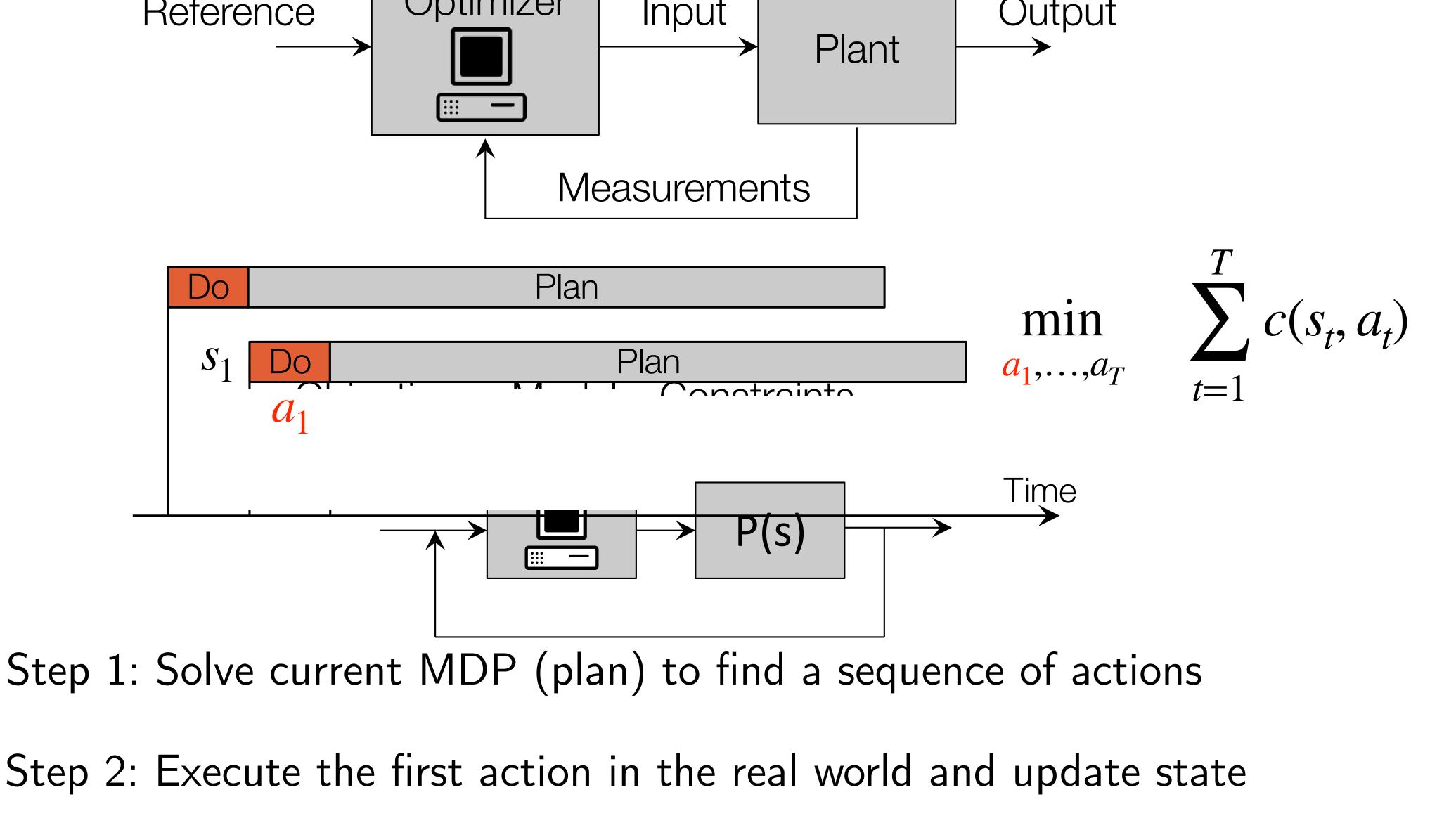
(Optimistic Model)

Assume that any unknown space is fully traversable.

Update model as you get information from real world. Replan!

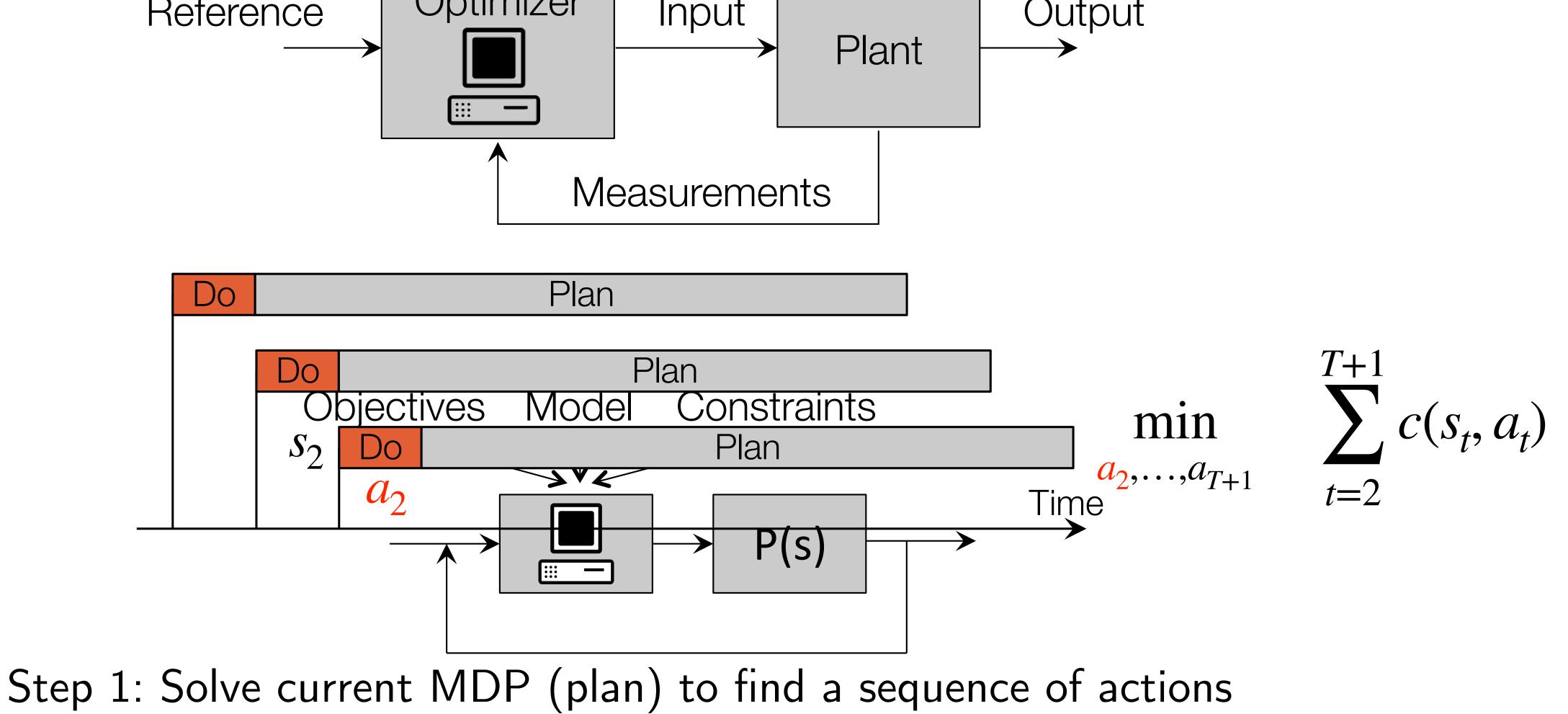


Step 3: Repeat!



Step 3: Repeat!

17



Step 3: Repeat!

- Step 2: Execute the first action in the real world and update state

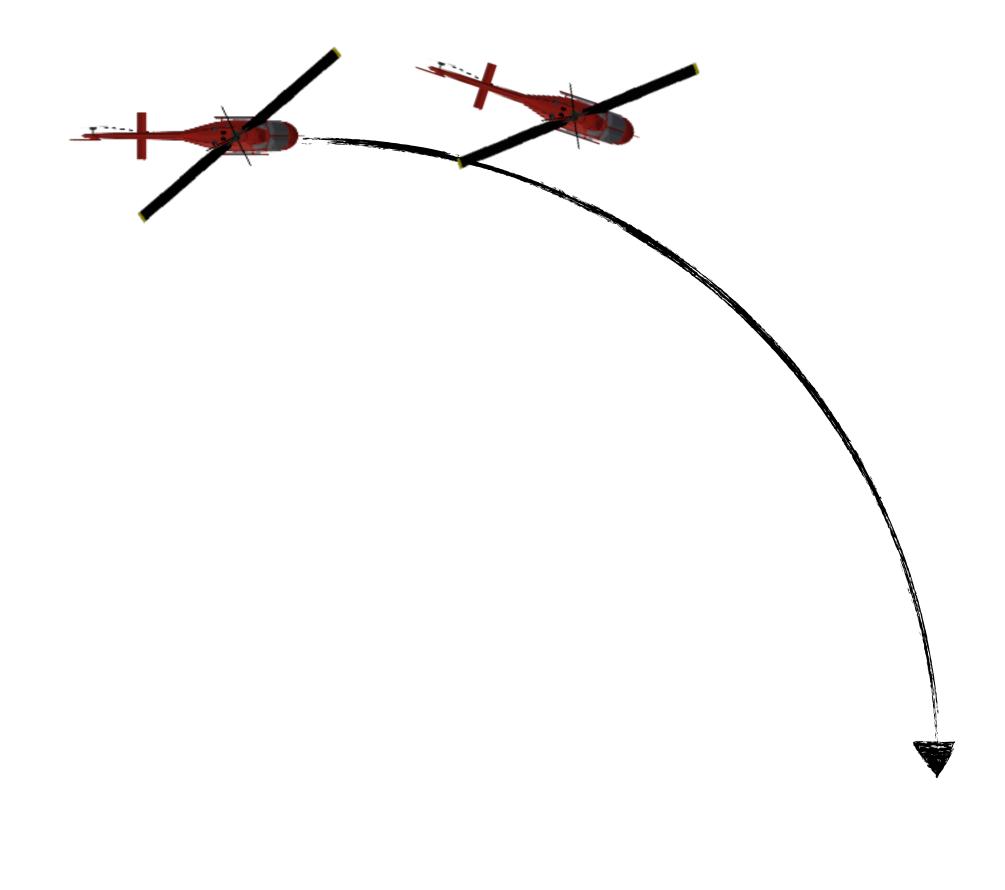
Problem 1: Don't know the terrain ahead of time!

Problem 2: Don't have a perfect dynamics model!

Problem 3: Not enough time to plan all the way to the goal!

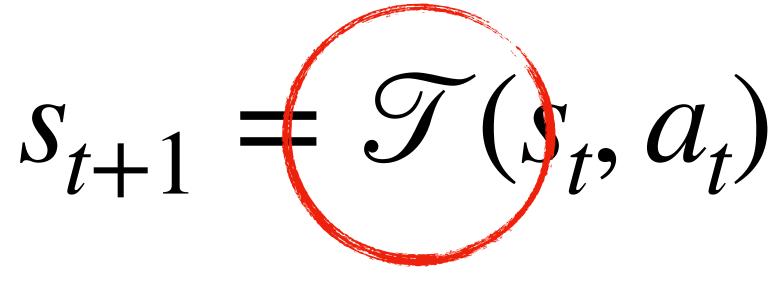
The Big Challenges

Problem 2: Don't have a perfect dynamics model!



Let's say there is an unknown gust of wind pushing you off the path

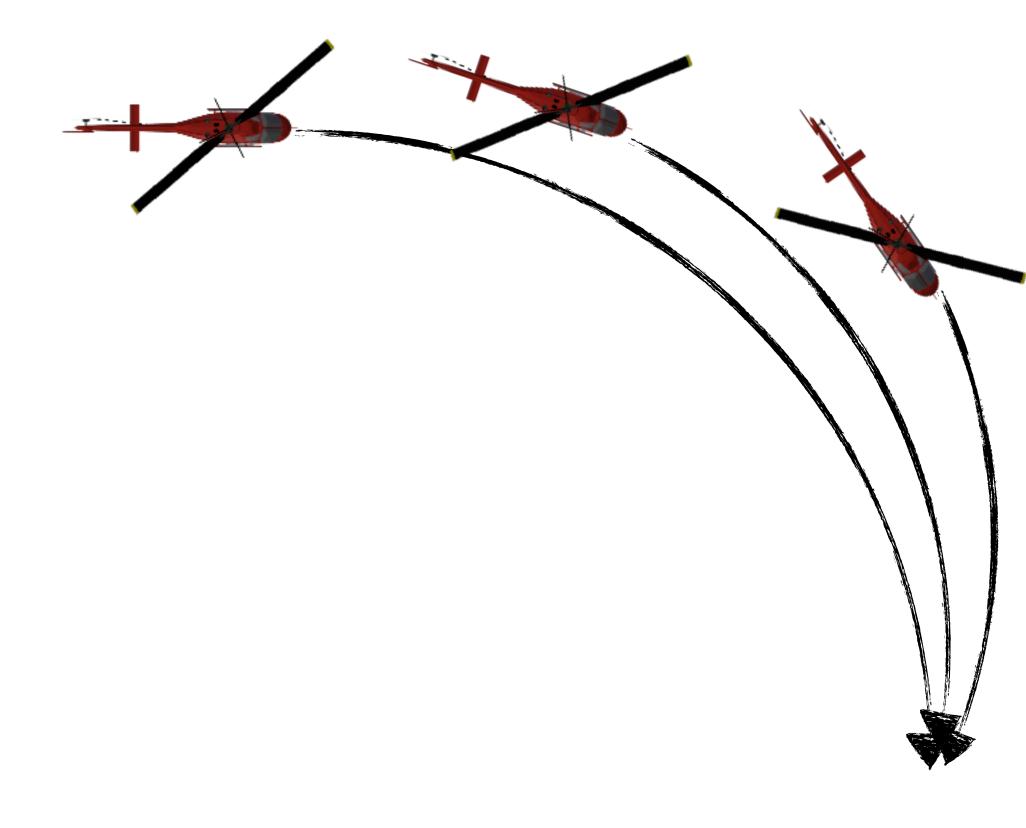
What is the problem mathematically? T - 1 $\sum C(S_t, a_t)$ min a_0, \dots, a_{T-1} t=0(Solve for a sequence (Sum over all costs) of actions)



(Transition function)

Is the transition function fully known?

Problem 2: Don't have a perfect dynamics model!



Plan with incorrect transition model and replan!

Theorem: An optimal policy in an incorrect model has bounded suboptimality in the real model

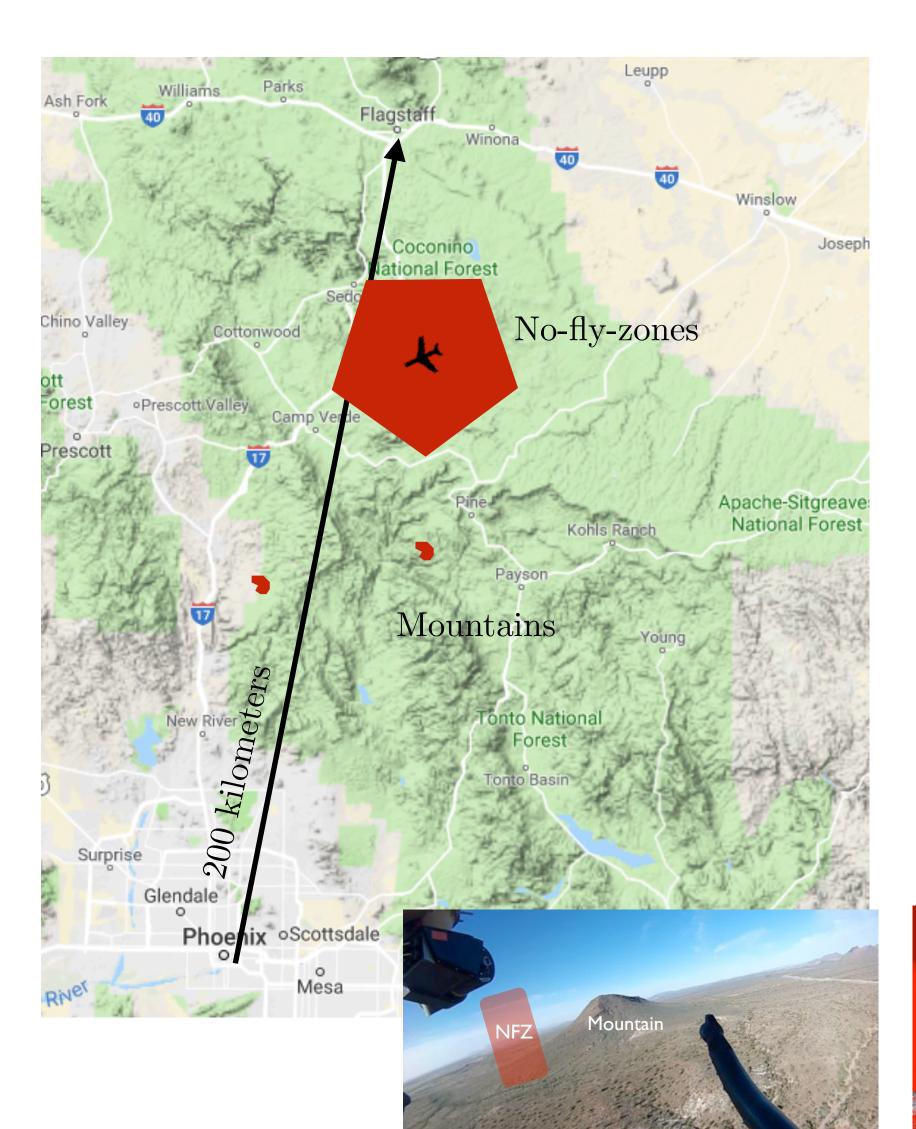
Problem 1: Don't know the terrain ahead of time!

Problem 2: Don't have a perfect dynamics model!

Problem 3: Not enough time to plan all the way to the goal!

The Big Challenges

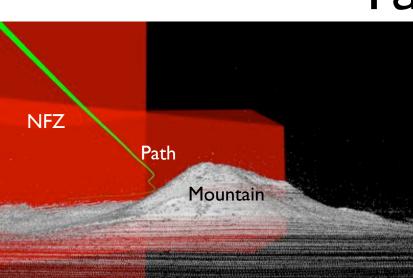
Problem 3: Not enough time to plan all the way to goal!



Example mission:

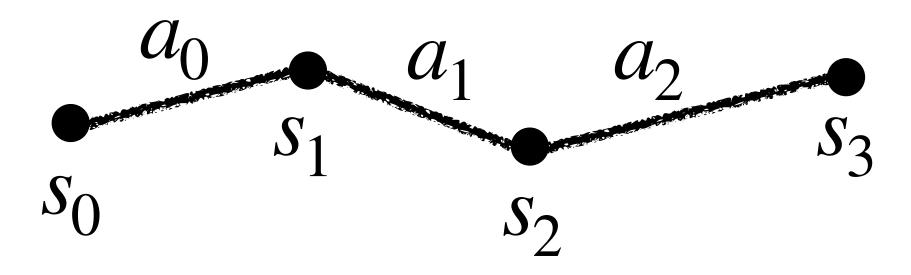
Fly from Phoenix to Flagstaff as fast as possible (200 km)

Problem: Take forever to plan at high lution ALL the way to goal

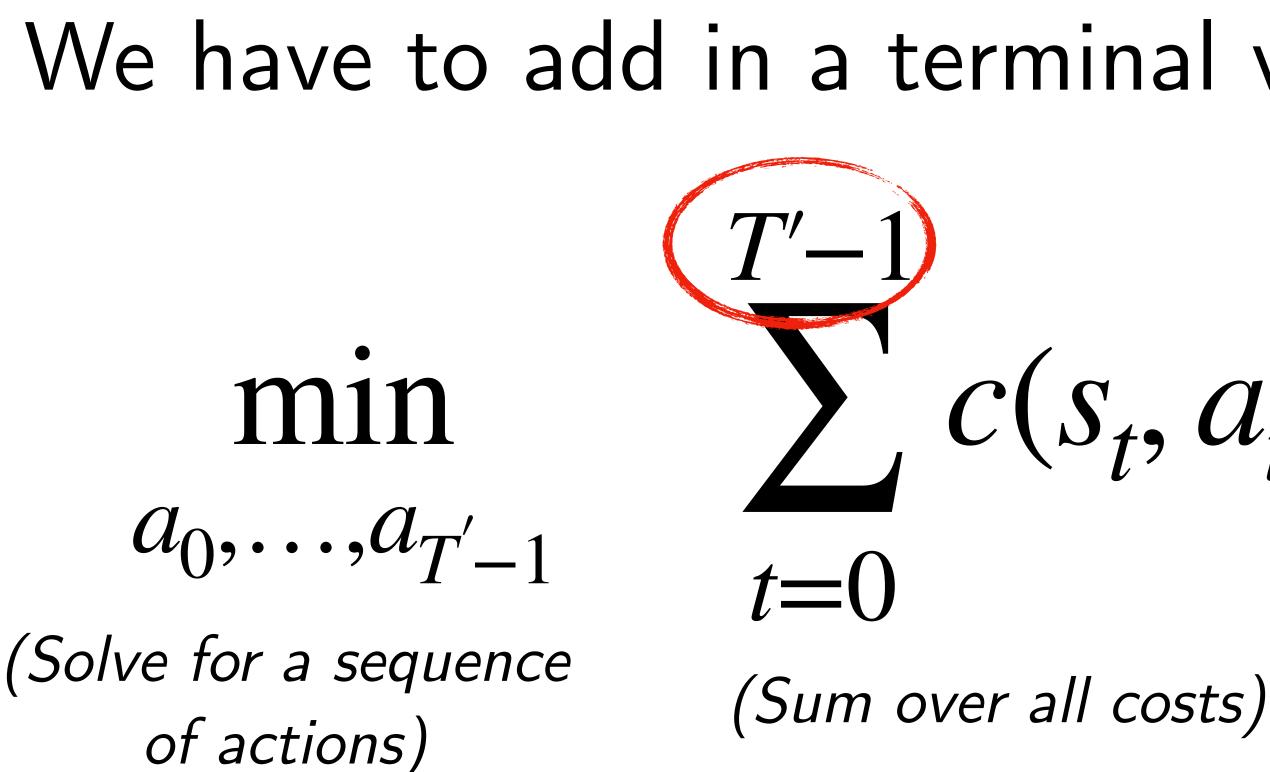


What is the problem mathematically? $C(S_t, a_t)$ m_{1n} How large can T be? a_0, \dots, a_{T-1} t=0(Solve for a sequence (Sum over all costs) of actions)

What if we planned till a shorter time horizon T'? $C(S_t, a_t)$ m_{1n} $a_0, \dots, a_{T'-1}$ t=0(Solve for a sequence (Sum over all costs) of actions)



Is this even allowed??? Would we get the same solution for a_0 ?



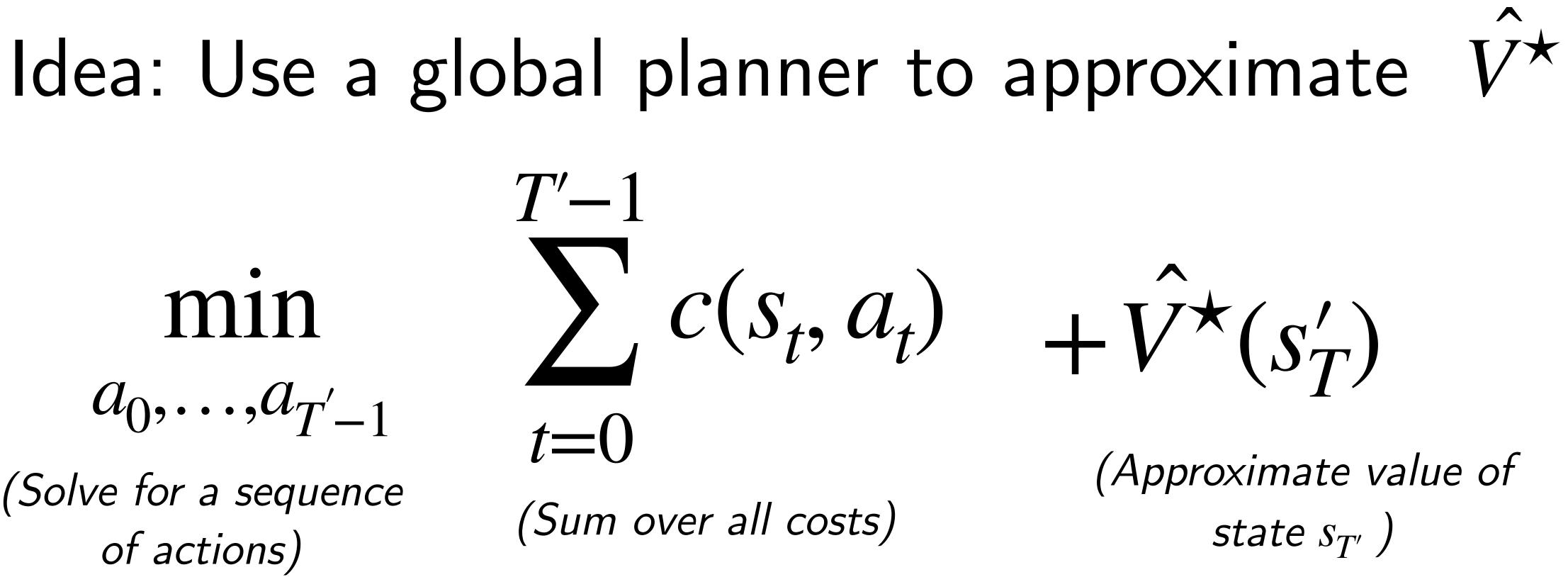
If not, how can we approximate it

We have to add in a terminal value for the final state

 $C(S_t, a_t) + V^*(S_T)$

(Optimal value of state $S_{T'}$)

Can we compute the optimal value V*?



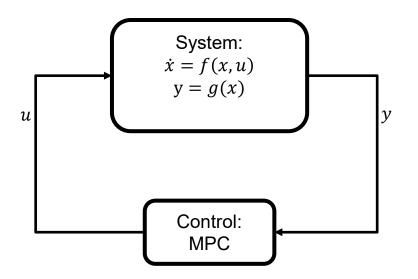
For example: Run a 2D planner from S_T to the goal

Use the cost of that plan to compute approximate value

MPC: Key idea

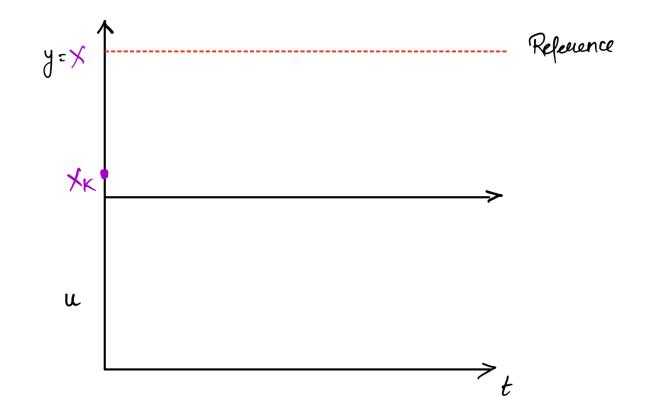
MPC is an optimization-based method for feedback control

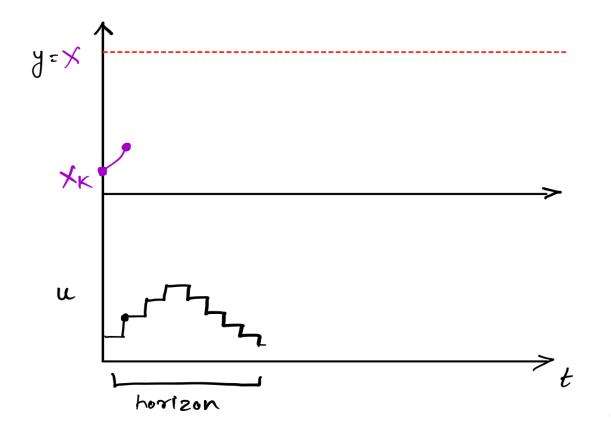
Follows the idea of optimizing for the next control **u** by reasoning about the system states over a time window i.e. horizon **T**

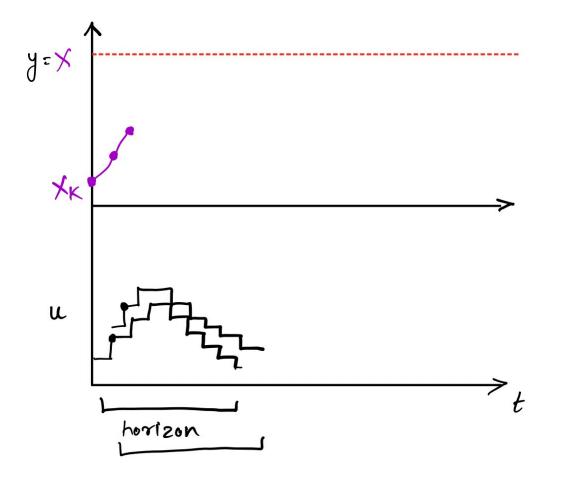


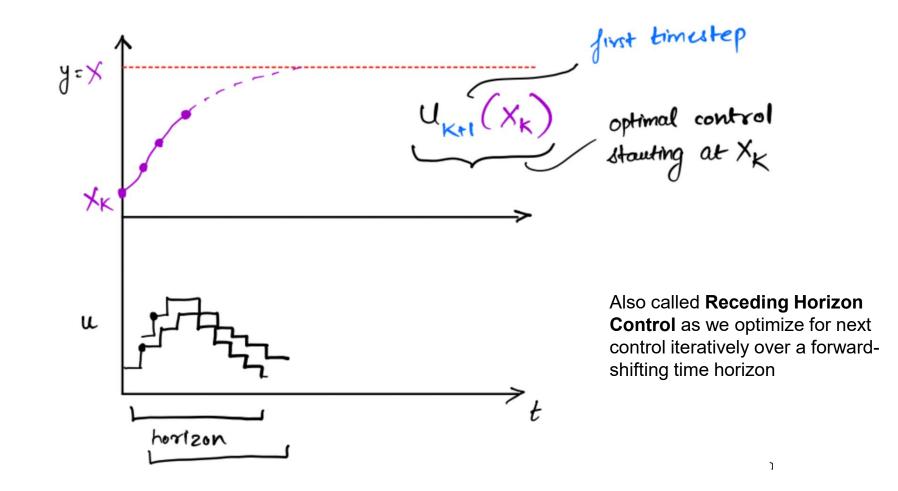
Stepping back, a bit of history...

- Originally developed independently in the 1970's by two pioneering industrial research groups (Dynamic Matrix Control by Shell Oil and ADERSA)
- By 1999, 4500 different application domains world-wide!
- Was primarily used in oil refineries and petrochemical plants, then in chemical, pulp and paper, before being used widely in robotics









Dynamics model / Process model: Informs about the possible future states of the system as well as the constraints associated with it

Dynamics model / Process model: Informs about the possible future states of the system as well as the constraints associated with it

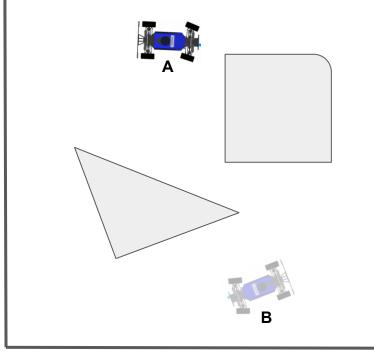
Objective function / Cost function: Allows us to specify the behavior we expect for our system given the potential future states informed by the dynamics model

Dynamics model / Process model: Informs about the possible future states of the system as well as the constraints associated with it

Objective function / Cost function: Allows us to specify the behavior we expect for our system given the potential future states informed by the dynamics model

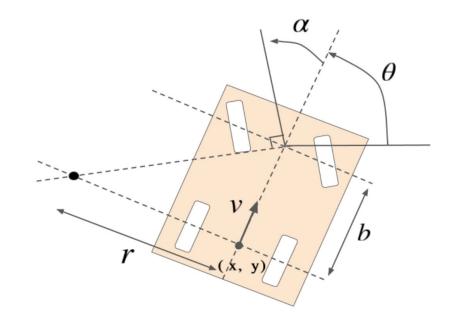
Optimization algorithm: Used to solve for next control given the objective function

Consider the scenario where a car needs to navigate from point A to B in a map filled with obstacles



Dynamics Model

Dynamics Model

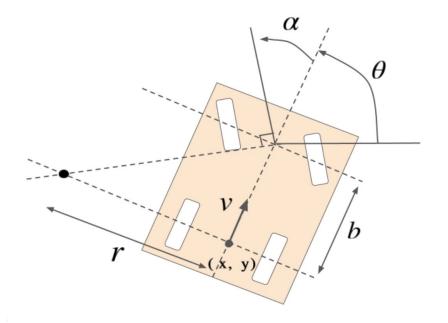


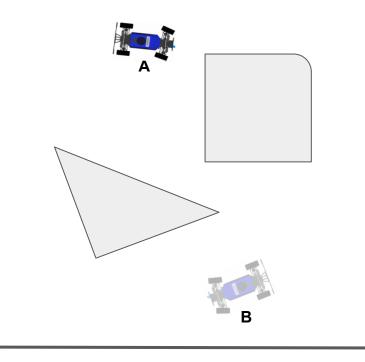
 $\dot{x} = v \cos \theta$ $\dot{y} = v \sin \theta$ $\dot{\theta} = \omega$

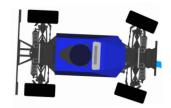
$$\theta_{t+1} = \theta_t + \frac{v}{b} \tan \alpha \Delta t$$

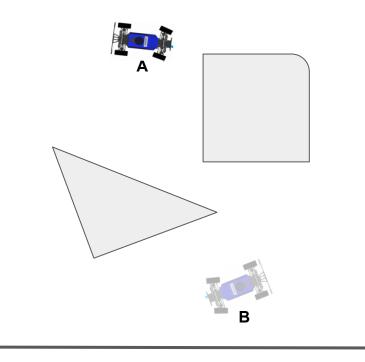
$$x_{t+1} = x_t + \frac{b}{\tan \alpha} [\sin \theta_{t+1} - \sin \theta_t]$$

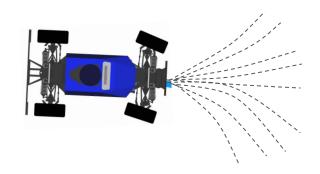
$$y_{t+1} = y_t + \frac{b}{\tan \alpha} [-\cos \theta_{t+1} + \cos \theta_t]$$

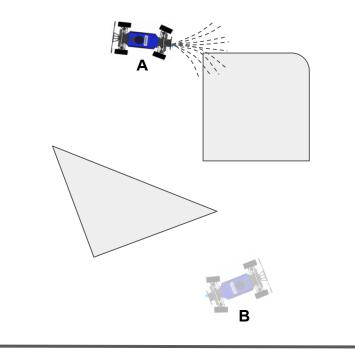


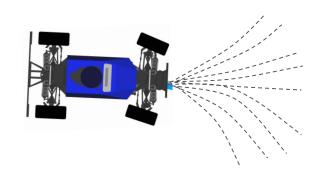












You want to move closer to the goal with every action you take

You want to move closer to the goal with every action you take

If x_{T-1}^k is the last state of rollout 'k' and x_{goal} is the goal state (use the lookahead distance to retrieve this), then

$$J_{dist}^{k} = \left\| x_{T-1}^{k} - x_{goal} \right\|_{2}^{2}$$

You want to move closer to the goal with every action you take

If x_{T-1}^k is the last state of rollout 'k' and x_{goal} is the goal state (use the lookahead distance to retrieve this), then

$$J_{dist}^{k} = \left\| x_{T-1}^{k} - x_{goal} \right\|_{2}^{2}$$

But you also want to avoid collisions

You want to move closer to the goal with every action you take

If x_{T-1}^k is the last state of rollout 'k' and x_{goal} is the goal state (use the lookahead distance to retrieve this), then

$$J_{dist}^{k} = \left\| x_{T-1}^{k} - x_{goal} \right\|_{2}^{2}$$

But you also want to avoid collisions and with weights for the respective costs

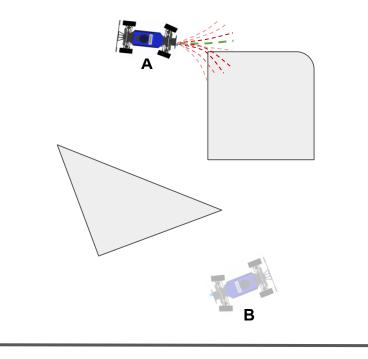
$$J_{total}^{k} = W_{dist} * J_{dist}^{k} + W_{collision} * J_{collision}^{k}$$

Optimization Algorithm

Optimization Algorithm

 $\min J_{total}^k$

Obtain rollout with least cost using **argmin**



Optimization Algorithm

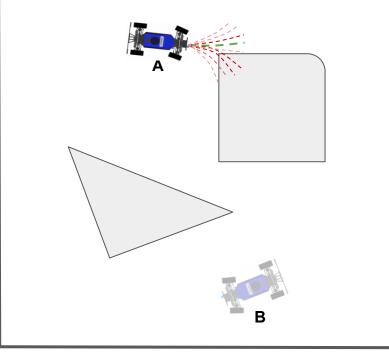
min J_{total}^k

Obtain rollout with least cost using **argmin**

Alternatively,

Specify constraints for different state and control variables, use <u>non-linear</u> <u>programming (NLP) solver</u>

• For state variables, provide range of the state occupied by obstacles i.e. collision-free space



- Offers more flexibility
 - If system doesn't follow model closely -- we anyway reinitialize the optimization at every timestep

- Offers more flexibility
 - If system doesn't follow model closely -- we anyway reinitialize the optimization at every timestep
- Allows you to impose constraints
 - Using the model and as well as during optimization
 - What kind of constraints during optimization?

- Offers more flexibility
 - If system doesn't follow model closely -- we anyway reinitialize the optimization at every timestep
- Allows you to impose constraints
 - Using the model and as well as during optimization
 - What kind of constraints during optimization?
- Works for non-linear systems

- Offers more flexibility
 - If system doesn't follow model closely -- we anyway reinitialize the optimization at every timestep
- Allows you to impose constraints
 - Using the model and as well as during optimization
 - What kind of constraints during optimization?
- Works for non-linear systems
- Scope for curating task-specific controllers using task-specific objective functions

MPC: Disadvantages

MPC: Disadvantages

• Needs a model and needs a good one!

MPC: Disadvantages

- Needs a model and needs a good one!
- Expensive since we are reinitializing at every timestep
 - Less of a problem as hardware is getting better

Learning-based Model Predictive Control for Autonomous Racing

Initializes a simple bicycle model as the model and learns its parameters to improve controller

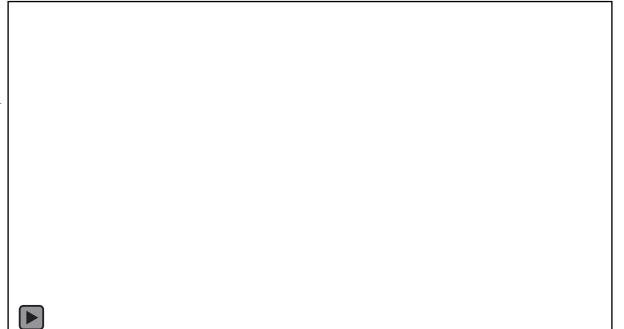
Deep Haptic Model Predictive Control for Robot-Assisted Dressing

Trains neural networks to learn force being applied by the cloth on the human's arm.

Uses them to choose actions that minimize predicted force applied during assistance.

Model Predictive Contouring Control for Near-Time-Optimal Quadrotor Flight

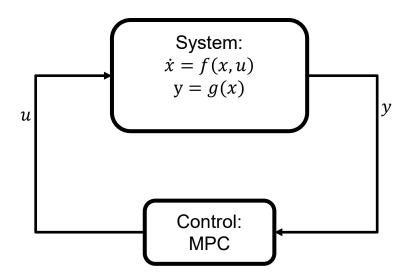
Instead of just performing reference state tracking, considers the higher-level task of minimizing Euclidean distance to a continuously differentiable 3D path while maximizing the speed at which the path is traversed.



MPC: Key idea

MPC is an optimization-based method for feedback control

Follows the idea of optimizing for the next control **u** by reasoning about the system states over a time window i.e. horizon **T**



Model Predictive Control and the Unreasonable Effectiveness of Replanning

Tapomayukh Bhattacharjee

