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Figure 2.3.1: Solving inverted
pendulum swing up using LQR
tracking.

LQR for Linear Time-Varying Dynamical Systems

Thus far, we have assumed that we were modeling a linear, time-
invariant system. As we will see, we might be interested in systems
that are linear, but time varying

xt+1 = Atxt + Btut (2.3.1)

c(xt, ut) = xt
>Qtxt + u>

t Rtut (2.3.2)

In this case, the LQR equations are simply updated to

Kt = �(B>
t Vt+1Bt + Rt)

�1B>
t Vt+1 At (2.3.3)

Vt = Qt + K>
t RtKt + (At + BtKt)

>Vt+1(At + BtKt) (2.3.4)

Affine Quadratic Regulation

Let’s now consider a generic affine system with time varying dynam-
ics At and Bt and a state offset xoff

t :

xt+1 = Atxt + Btut + xoff
t . (2.3.5)

Affine problems can be converted to linear problems by using homo-
geneous coordinates8: 8 https://en.wikipedia.org/wiki/

Homogeneous_coordinates

x̃ =

"
x
1

#
(2.3.6)

x̃t+1 =

"
At xoff

t
0 1

#
x̃t +

"
Bt

0

#
ut

.
= Ãt x̃t + B̃tut (2.3.7)

This is just a new LQR problem with modified state and dynamics
and a new cost defined as c(x̃t, ut) = x̃>

t Q̃t x̃t + u>
t Rtut, where the

choice of Q̃ is problem dependent. We will later see how we can
design Q̃ for the tracking problem. The Affine Quadratic Regulation
problem can then be solved in exactly the same way as the LQR
problem.9 9 Essentially the same trick can be

applied to enable us to have linear
cost functions terms in the controls as
well, but we defer this to the general
formulation derived at the end.
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Recap: Solving a MDP

min
a0,…,aT−1

T−1

∑
t=0

c(st, at)
(Solve for a sequence 

of actions)
(Sum over all costs)

st+1 = 𝒯(st, at)
(Transition function)

s0 sT

a0 a1 a2s1
s2



Brainstorm: Challenges in solving MDP for helicopter

min
a0,…,aT−1

T−1

∑
t=0

c(st, at)
(Solve for a sequence 

of actions)
(Sum over all costs)

st+1 = 𝒯(st, at)
(Transition function)

Takeoff Enroute Touchdown
(Plan to multiple sites)(Avoid sensed obstacles)(Respect power constraints)

Obstacles 
in LZ

Mountain

Map created 
by sensor

Tower



The Big Challenges
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Problem 1: Don’t know the terrain ahead of time!

Problem 2: Don’t have a perfect dynamics model!

Problem 3: Not enough time to plan all the way to the goal!
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Problem 1: Don’t know the terrain ahead of time!

Problem 2: Don’t have a perfect dynamics model!

Problem 3: Not enough time to plan all the way to the goal!



Brainstorm!
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Find a sequence of actions to go from 
start to goal. 

The helicopter can only sense upto 1km. 
  
How should it deal with unknown 
terrain? What assumptions can it make? 

Goal

Start



What is the problem mathematically?

min
a0,…,aT−1

T−1

∑
t=0

c(st, at)
(Solve for a sequence 

of actions)
(Sum over all costs)

st+1 = 𝒯(st, at)
(Transition function)

Is the transition function fully known?

If not, then how can we solve the optimization problem?



Idea: Plan with an optimistic model

min
a0,…,aT−1

T−1

∑
t=0

c(st, at)
(Solve for a sequence 

of actions)
(Sum over all costs)

st+1 = �̂�(st, at)
(Optimistic Model)

Assume that any unknown space is fully traversable. 

Update model as you get information from real world. Replan! 



Model Predictive Control (MPC)
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Step 3: Repeat!

Step 2: Execute the first action in the real world and update MDP

Step 1: Solve current MDP (plan) to find a sequence of actions

min
a0,…,aT−1

T−1

∑
t=0

c(st, at)a0
s0
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Step 3: Repeat!

Step 2: Execute the first action in the real world and update state

Step 1: Solve current MDP (plan) to find a sequence of actions

min
a1,…,aT

T

∑
t=1

c(st, at)s1
a1
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Step 3: Repeat!

Step 2: Execute the first action in the real world and update state

Step 1: Solve current MDP (plan) to find a sequence of actions

min
a2,…,aT+1

T+1

∑
t=2

c(st, at)s2
a2



The Big Challenges

19

Problem 1: Don’t know the terrain ahead of time!

Problem 2: Don’t have a perfect dynamics model!

Problem 3: Not enough time to plan all the way to the goal!



Problem 2: Don’t have a perfect dynamics model!
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Let’s say there is an  
unknown gust of wind  

pushing you off the path



What is the problem mathematically?

min
a0,…,aT−1

T−1

∑
t=0

c(st, at)
(Solve for a sequence 

of actions)
(Sum over all costs)

st+1 = 𝒯(st, at)
(Transition function)

Is the transition function fully known?



Problem 2: Don’t have a perfect dynamics model!
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Plan with incorrect  
transition model and replan!

Theorem:  
An optimal 

policy in an incorrect model 
has bounded suboptimality  

in the real model 



The Big Challenges
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Problem 1: Don’t know the terrain ahead of time!

Problem 2: Don’t have a perfect dynamics model!

Problem 3: Not enough time to plan all the way to the goal!



Problem 3: Not enough time to plan all the way to goal!

24

No-fly-zones

Mountains

20
0 

ki
lo

m
et

er
s

NFZ Mountain
NFZ

Mountain

Path

(a) (b)

NFZ

Mountain

0s

Time to 
Collision

10s
Gradient 
direction

NFZ

Mountain

Optimizer path

Time to 
collision < 3s

(c) (d)

NFZ

Mountain

RRT* Path

RRT* Tree

NFZ

Mountain

RRT* Path Optimizer path

(e) (f)

0 100 200 300 400 500 600
1

1.5

2

2.5

3

3.5

4

Number of Vertices in Tree

N
o

rm
a

li
z
e

d
 C

o
s
t 

o
f 

P
a

th
 t

o
 G

o
a

l

1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

9

10

Iteration Steps

N
o

rm
a

li
z
e

d
 C

o
s
t 

o
f 

P
a

th
 t

o
 G

o
a

l

(g) (h)

Fig. 20: Flying between a NFZ and an unmapped mountain in Mesa, AZ (a) The skid camera view of the scenario (b) The
sensor’s view of the situation (c) The gradient due to the time to collision pushes the trajectory into the forbidden NFZ. (d)
The optimizer gets stuck in a local minima and has a critically low time to collision (e) The RRT*-AR tree is very diverse and
contorts to find a near optimal trajectory (f) Comparison of the RRT*-AR trajectory to optimizer shows that RRT*-AR is safer
(g) The best path in the RRT*-AR tree converges near optimal after sampling around 320 vertices. (h) The local optimizer
cannot lower cost below a certain limit because perturbations at this point enter the NFZ.
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CHOMP1 path

RRT*Tunnel1 path

Search tree
RRT*Tunnel1 path

CHOMP1 path

RRT*Tunnel1 
convergence

CHOMP1 
convergence

Figure 39: Ensemble { RRT*Tunnel1, CHOMP1 } performance in mountainous terrain - datapoint where
RRT*Tunnel1 finds a good solution. (a) Flying between a NFZ and an unmapped mountain in Mesa, AZ (The
skid camera view) (b) The mapped environment and traced path (c) The gradient due to the time to collision points
into the no-fly-zone (d) CHOMP1 gets stuck in a bad local minimum and has a critically low time to collision (e) The
RRT*Tunnel1 is very diverse and contorts to find a near optimal trajectory (f) Comparison of the RRT*Tunnel1

trajectory to CHOMP1 shows that RRT*Tunnel1 is safer (g) The best path in the RRT*Tunnel1 tree converges near
optimal after sampling around 320 vertices. (h) CHOMP1 cannot lower cost below a certain limit because perturbations
violate no-fly-zone constraint.

Problem:  
Take forever to plan at high 

resolution ALL the way to goal

Example mission:

Fly from Phoenix to Flagstaff 
as fast as possible (200 km)



What is the problem mathematically?

min
a0,…,aT−1

T−1

∑
t=0

c(st, at)
(Solve for a sequence 

of actions)
(Sum over all costs)

How large can T be? 

s0 sT

a0 a1 a2s1
s2



What if we planned till a shorter time horizon T’?

min
a0,…,aT′ −1

T′ −1

∑
t=0

c(st, at)
(Solve for a sequence 

of actions)
(Sum over all costs)

s0

a0 a1 a2s1
s2

s3

Is this even allowed???

Would we get the same  
solution for ?a0



We have to add in a terminal value for the final state

min
a0,…,aT′ −1

T′ −1

∑
t=0

c(st, at)
(Solve for a sequence 

of actions)
(Sum over all costs)

Can we compute the optimal value V*?

+V⋆(s′ T)
(Optimal value of 

state  )sT′ 

If not, how can we approximate it



Idea: Use a global planner to approximate   ̂V⋆

min
a0,…,aT′ −1

T′ −1

∑
t=0

c(st, at)
(Solve for a sequence 

of actions)
(Sum over all costs)

For example: Run a 2D planner from  to the goalsT

+ ̂V⋆(s′ T)
(Approximate value of 

state  )sT′ 

Use the cost of that plan to compute approximate value



MPC is an optimization-based method for feedback control

Follows the idea of optimizing for the next control u by reasoning about the 
system states over a time window i.e. horizon T

MPC: Key idea

Control:
MPC

System:
�̇�𝑥 = 𝑓𝑓 𝑥𝑥,𝑢𝑢

y = 𝑔𝑔(𝑥𝑥)
𝑢𝑢 𝑦𝑦



● Originally developed independently in the 1970’s by two pioneering industrial 
research groups (Dynamic Matrix Control by Shell Oil and ADERSA)

● By 1999, 4500 different application domains world-wide!

● Was primarily used in oil refineries and petrochemical plants, then in chemical, 
pulp and paper, before being used widely in robotics

Stepping back, a bit of history…









Also called Receding Horizon 
Control as we optimize for next 
control iteratively over a forward-
shifting time horizon



MPC primarily involves three main components:
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Objective function / Cost function: Allows us to specify the behavior we expect 
for our system given the potential future states informed by the dynamics model



MPC primarily involves three main components:

Dynamics model / Process model: Informs about the possible future states of the 
system as well as the constraints associated with it

Objective function / Cost function: Allows us to specify the behavior we expect 
for our system given the potential future states informed by the dynamics model

Optimization algorithm: Used to solve for next control given the objective 
function 



Consider the scenario where a car needs 
to navigate from point A to B in a map 
filled with obstacles A

B



Dynamics Model



Dynamics Model



Dynamics Model



Dynamics Model
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B



Dynamics Model

A
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Dynamics Model

A

B



Objective Function



Objective Function

You want to move closer to the goal with every action you take



Objective Function

You want to move closer to the goal with every action you take

If xk
T-1 is the last state of rollout ‘k‘ and xgoal is the goal state (use the lookahead 

distance to retrieve this), then 



Objective Function

You want to move closer to the goal with every action you take

If xk
T-1 is the last state of rollout ‘k’ and xgoal is the goal state (use the lookahead 

distance to retrieve this), then 

But you also want to avoid collisions



Objective Function

You want to move closer to the goal with every action you take

If xk
T-1 is the last state of rollout ‘k’ and xgoal is the goal state (use the lookahead 

distance to retrieve this), then 

But you also want to avoid collisions and with weights for the respective costs



Optimization Algorithm



Optimization Algorithm

min
Obtain rollout with least cost using 
argmin

A

B



Optimization Algorithm

min
Obtain rollout with least cost using 
argmin

Alternatively,

Specify constraints for different state 
and control variables, use non-linear 
programming (NLP) solver

● For state variables, provide range 
of the state occupied by obstacles 
i.e. collision-free space

A

B

https://nlopt.readthedocs.io/en/latest/
https://nlopt.readthedocs.io/en/latest/
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MPC: Advantages

● Offers more flexibility
○ If system doesn’t follow model closely -- we anyway reinitialize the 

optimization at every timestep
● Allows you to impose constraints

○ Using the model and as well as during optimization
○ What kind of constraints during optimization?

● Works for non-linear systems
● Scope for curating task-specific controllers using task-specific 

objective functions
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MPC: Disadvantages

● Needs a model and needs a good one!



MPC: Disadvantages

● Needs a model and needs a good one!
● Expensive since we are reinitializing at every timestep

○ Less of a problem as hardware is getting better



Learning-based Model Predictive Control for 
Autonomous Racing

Initializes a simple bicycle 
model as the model and 
learns its parameters to 
improve controller

Tapomayukh Bhattacharjee






Deep Haptic Model Predictive Control for Robot-
Assisted Dressing

Trains neural networks to learn 
force being applied by the cloth 
on the human’s arm.

Uses them to choose actions that 
minimize predicted force applied 
during assistance.






Model Predictive Contouring Control for Near-Time-
Optimal Quadrotor Flight 
Instead of just performing 
reference state tracking, 
considers the higher-level 
task of minimizing Euclidean 
distance to a continuously 
differentiable 3D path while 
maximizing the speed at 
which the path is traversed.






MPC is an optimization-based method for feedback control

Follows the idea of optimizing for the next control u by reasoning about the 
system states over a time window i.e. horizon T

MPC: Key idea

Control:
MPC

System:
�̇�𝑥 = 𝑓𝑓 𝑥𝑥,𝑢𝑢

y = 𝑔𝑔(𝑥𝑥)
𝑢𝑢 𝑦𝑦



Model Predictive Control and the 
Unreasonable Effectiveness of Replanning

Tapomayukh Bhattacharjee
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