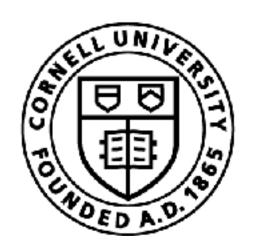
Solving Continuous MDPs: The Linear Quadratic Regulator (LQR)

Sanjiban Choudhury



The Big Picture Case 1: Known MDP Planning!

Case 2: Unknown MDP, requires feedback from environment Reinforcement Learning!

- Case 3: Unknown MDP, requires feedback from expert
 - Imitation Learning!

The Big Picture Case 1: Known MDP Planning!

Case 2: Unknown MDP, requires feedback from environment Reinforcement Learning!

We explored this a bit ...

Case 3: Unknown MDP, requires feedback from expert

Imitation Learning!

The Big Picture

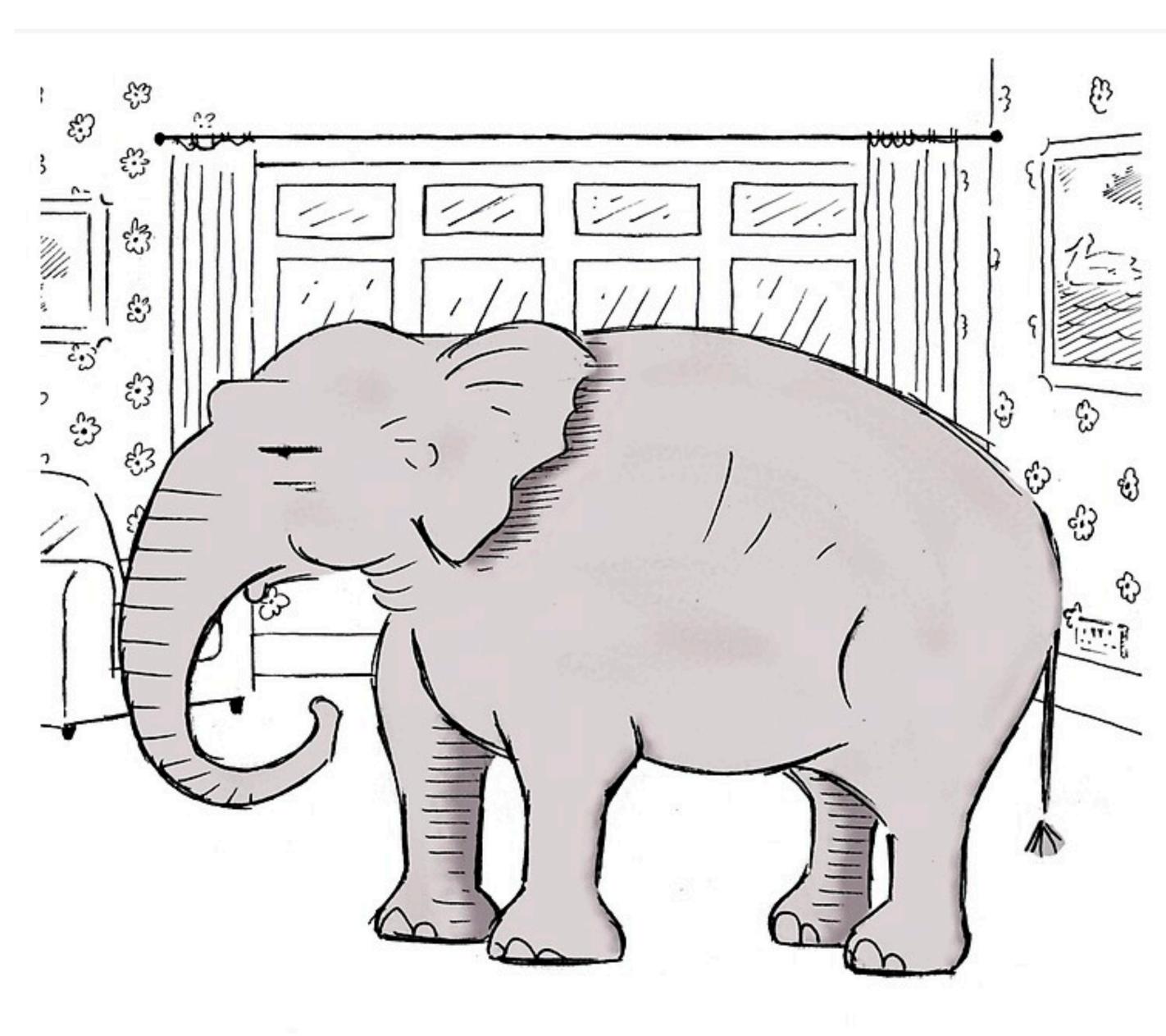
Case 1: Known MDP Planning!

Case 2: Unknown MDP, requires feedback from environment Reinforcement Learning!

Case 3: Unknown MDP, requires feedback from expert Imitation Learning!

Now let's go deeper here!

RL Learn model Plan with model



"Just pretend I'm not here..."

Model-based Planning

Step 0: Build a robot

Step 1: Collect data of your robot doing stuff in the world

Step 2: Use data to learn a dynamics model for your robot

Step 3: Plan with the model to compute an optimal policy

Step 0: Build a robot

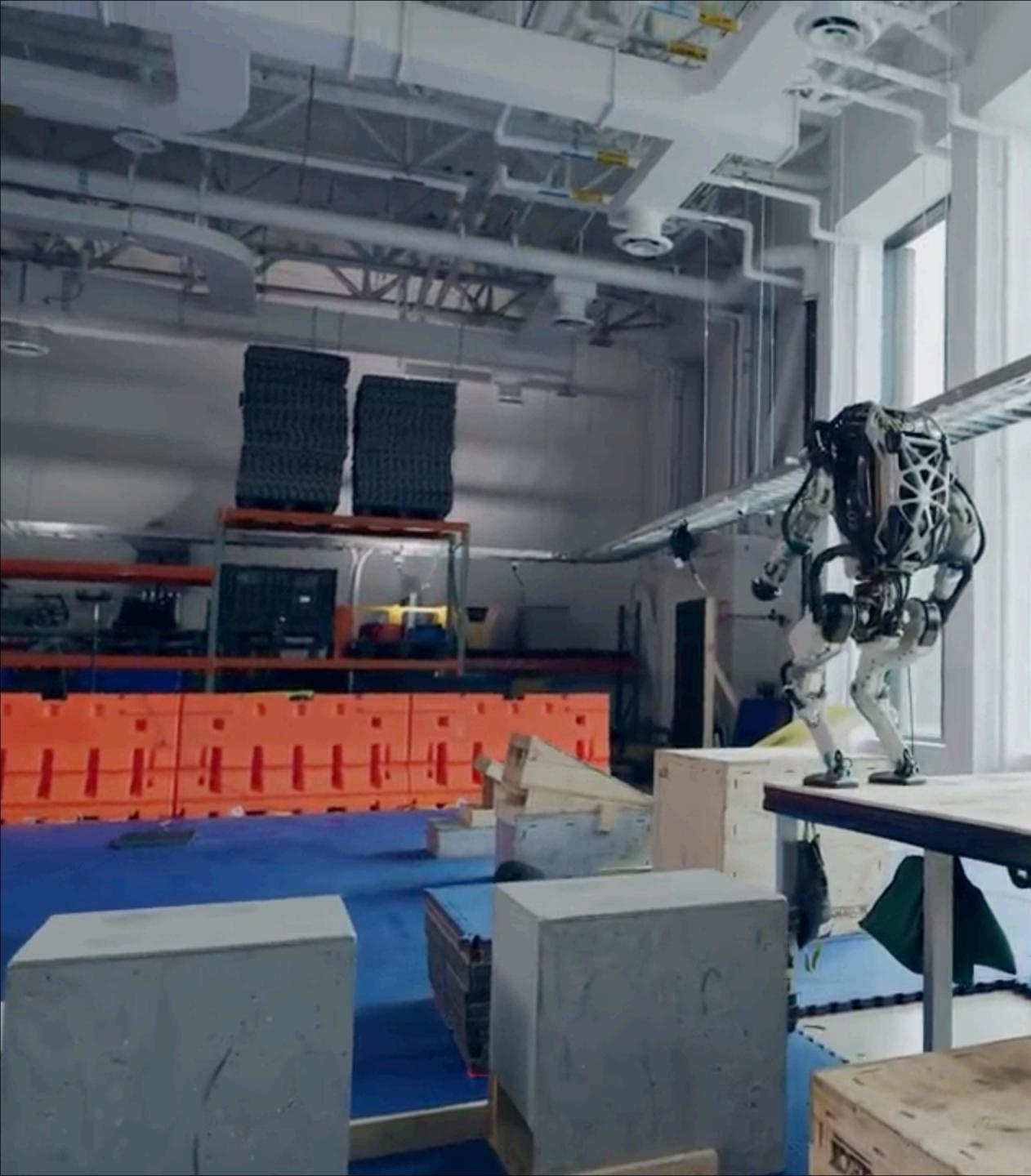
Step 1: Collect data of your robot doing stuff in the world

Step 2: Use data to learn a dynamics model for your robot

Step 3: Plan with the model to compute an optimal policy

How do we do this for robots with continuous state-actions?

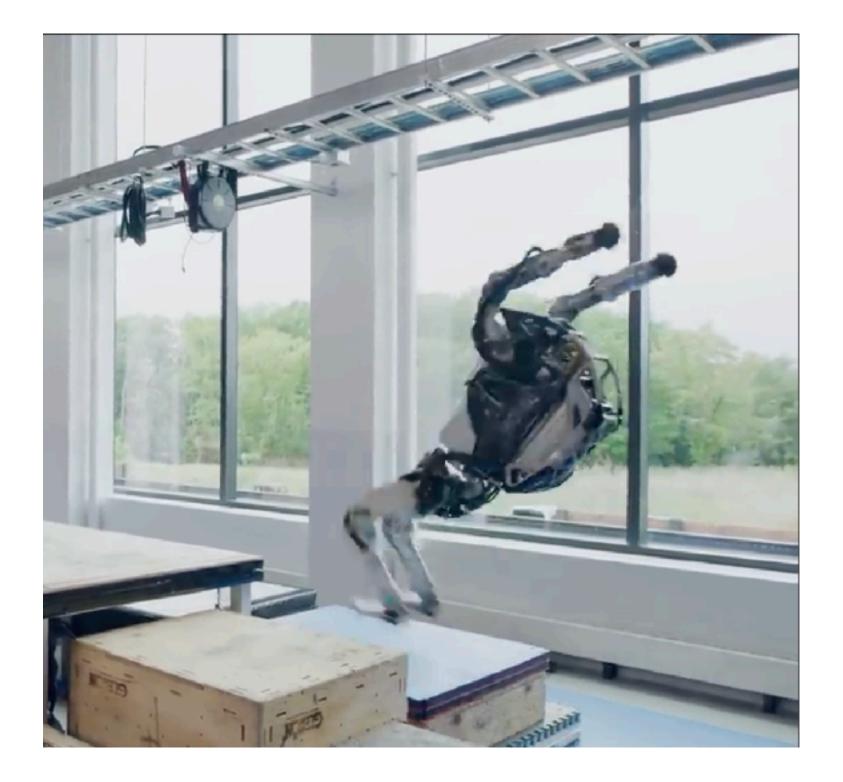
Today's Challenge!



BostonDynamics

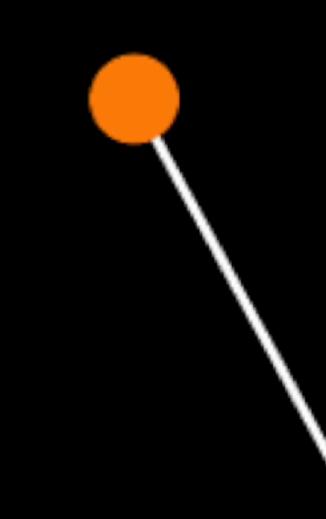
-ISTER-

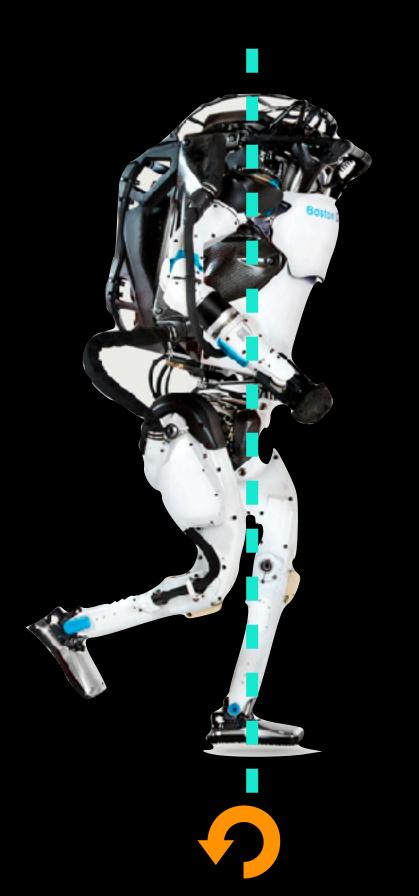
How do we model the Atlas backflip as a Markov Decision Problem <S, A, C, T>?

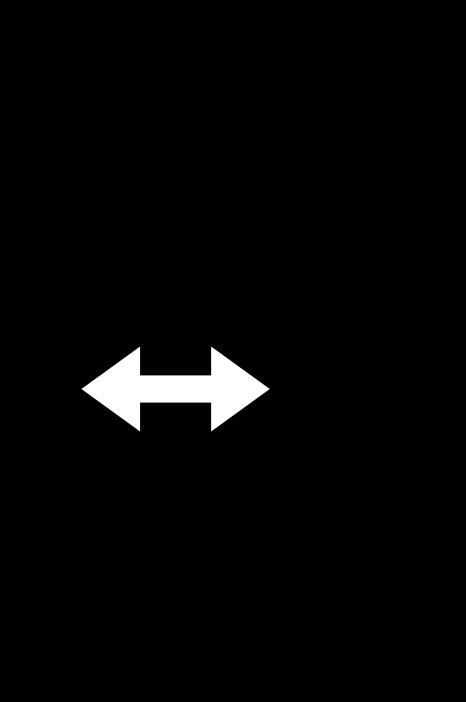


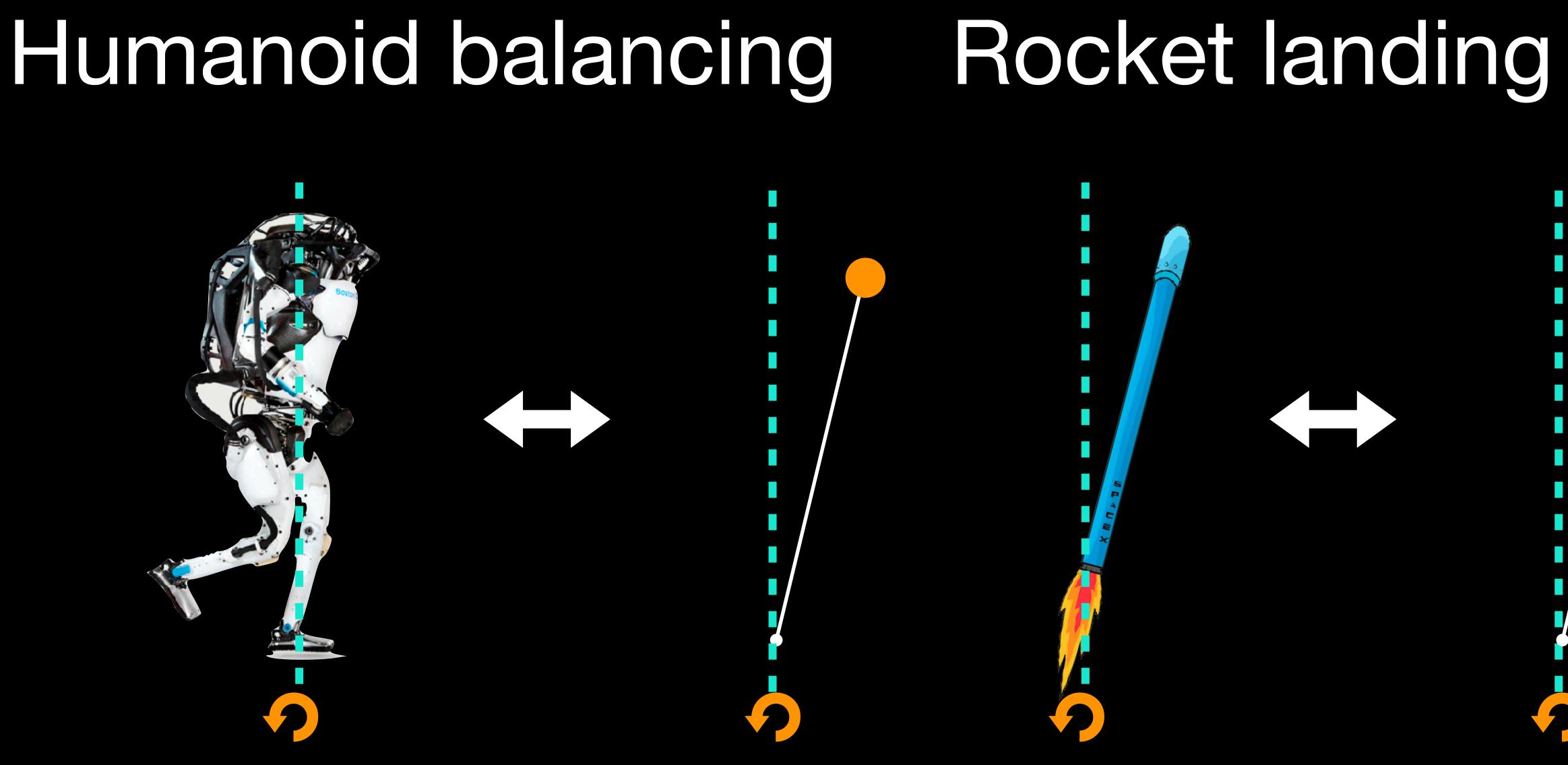
Brainstorm

The Inverted Pendulum: A fundamental dynamics model











Recall: How do we solve a MDP?



Initialize value function at last time-step

$$V^*(s, T-1) = \min_a c(s, a)$$

for t = T - 2, ..., 0

Compute value function at time-step t

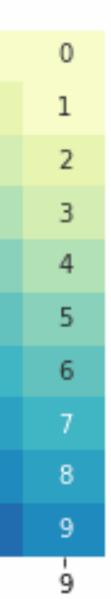
$$V^*(s,t) = \min_a$$

$$c(s, a) +$$

Value Iteration

0 -	14	14	13	14	14	14	14	2	1
	14	13	12	14	14	14	14	3	2
Ν-	13	12	11	14	14	14	14	4	3
m -	12	11	10	9	8	7	6	5	4
4 -	13	12	11	14	14	14	14	6	5
<u>ں</u> -	14	13	12	14	14	14	14	7	6
φ-	14	14	13	14	14	14	14	8	7
~ -	14	14	14	13	12	11	10	9	8
∞ -	14	14	14	14	13	12	11	10	9
თ -	14	14	14	14	14	13	12	11	10
	ò	i	ź	3	4	5	6	ż	8

 $+\gamma \sum \mathcal{T}(s'|s,a)V^*(s',t+1)$



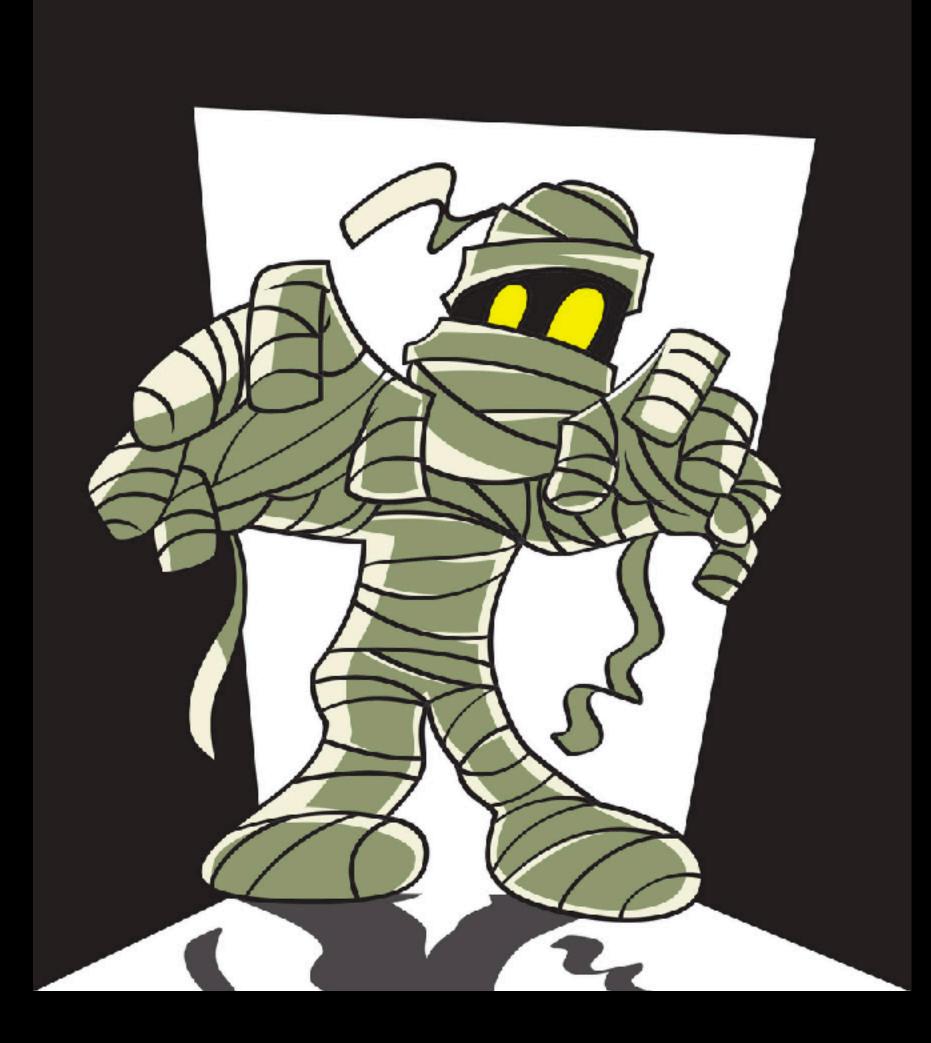
Time

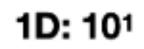
14

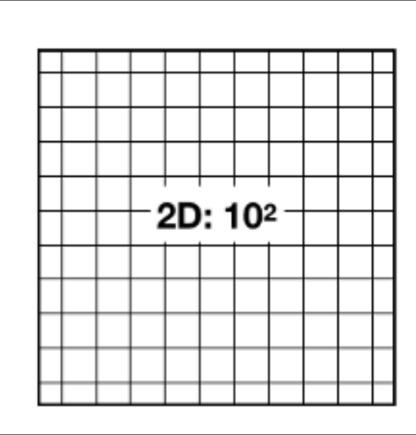
Can we apply value iteration to solve this MDP?

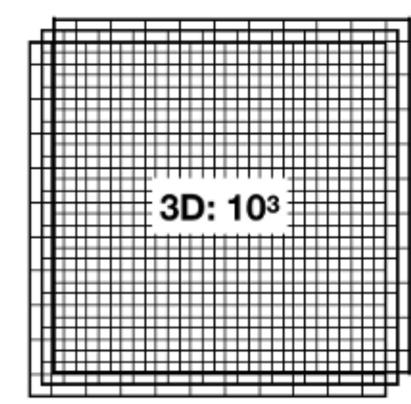
 $V^*(s,t) = \min_{a} \left| c(s,a) + \gamma \sum_{s'} \mathcal{T}(s'|s,a) V^*(s',t+1) \right|$

THE CURSE OF DIMENSIONALITY









Curse of Dimensionality

We cannot discretize continuous states and actions, because the number of states/action grows exponentially with dimension

We need some approximation or assumptions!

Can we analytically represent and update $V^{*}(s, t)?$ $V^*(s,t) = \min_{a} \left[c(s,a) + \gamma \sum_{s'} \mathcal{T}(s'|s,a) V^*(s',t+1) \right]$

What class of functions can we use for $\mathcal{T}(s'|s, a)$ and $V^*(s', t+1)$?

Can we analytically represent and update $V^{*}(s, t)?$ Yes*

$V^{*}(s,t) = \min_{a} \left[c(s,a) + \gamma \sum_{s'} \mathcal{T}(s'|s,a) V^{*}(s',t+1) \right]$ (Quadratic) (Quadratic) (Linear) (Quadratic)

Linear Quadratic Regulator (LQR)

LQR is widely used in real world robotics

But the real world is not linear and quadratic, right?

No, but we can *linearize* dynamics and quadricize the costs about some reference

LQR can then be used as a very fast subroutine to compute optimal policy

LQR is widely used in real world robotics



Whole-Arm Manipulation

Target Position: 0.2 m forward

Check out <u>notebook</u>

cs4756_robot_learning / no	tebooks / inverted_pendulum_lqr.ipynb	
🗊 jren44 Initial commit	a6c9feb · on	n Jan 18 🕚 History
Preview Code Blame		Raw 🗗 生
	Illustrated Linear Quadratic Regulator	
	Companion to courses lectures from CS6756: Learning for Robot Decision Making and Chapter 2 of Modern Adaptive Control and Reinforcement Learning.	
In [3]:	<pre>import numpy as np import autograd.numpy as np from autograd import grad, jacobian import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation from matplotlib import rc from IPython.display import HTML, Image from matplotlib.patches import Circle rc('animation', html='jshtml')</pre>	

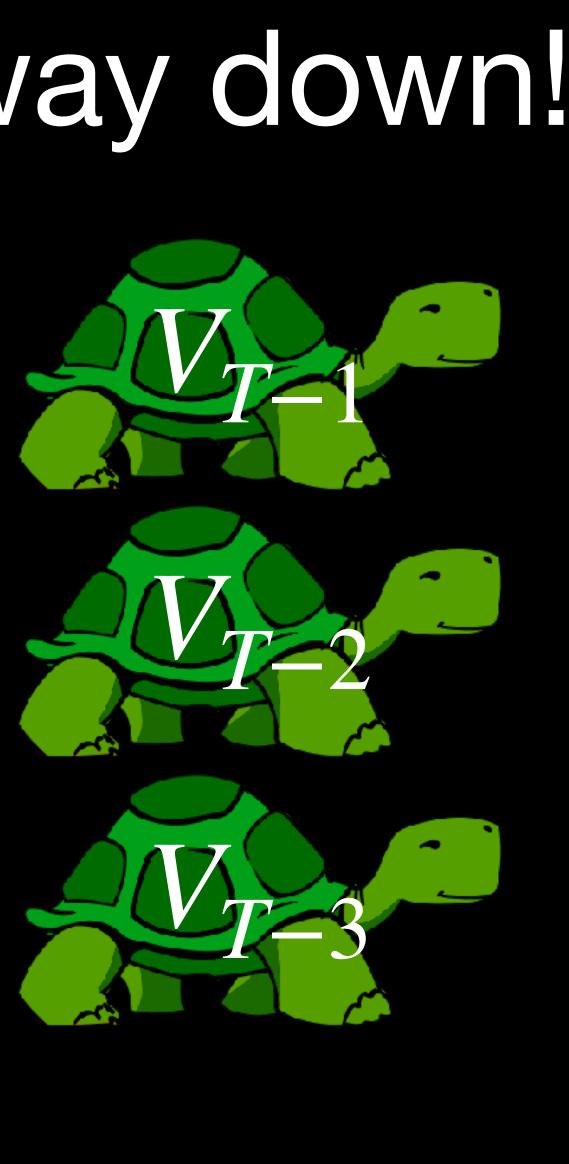
Dynamics of an Inverted Pendulum

Let's formalize!

It's quadratics all the way down!

$V_{t} = Q + K_{t}^{T}RK_{t} + (A + BK_{t})^{T}V_{t+1}(A + BK_{t})$

 $K_{t} = (R + B^{T}V_{t+1}B)^{-1}B^{T}V_{t+1}A$

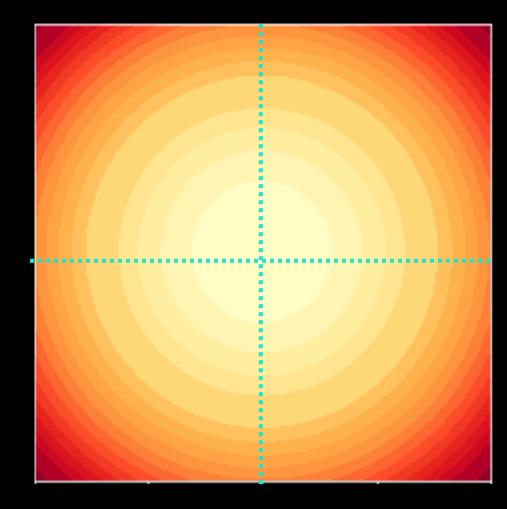


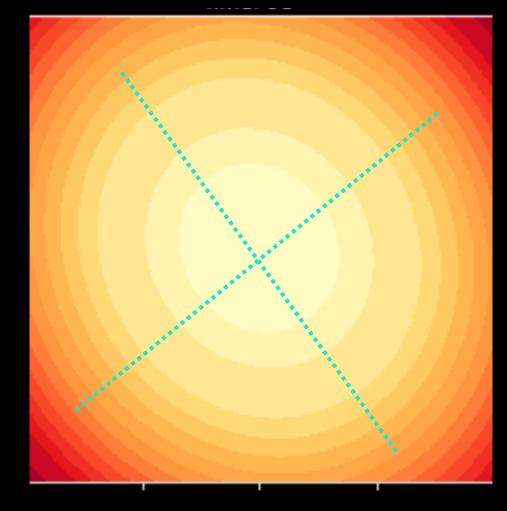
The LQR Algorithm

Initialize $V_T = Q$ For t = T - 1, ..., 1

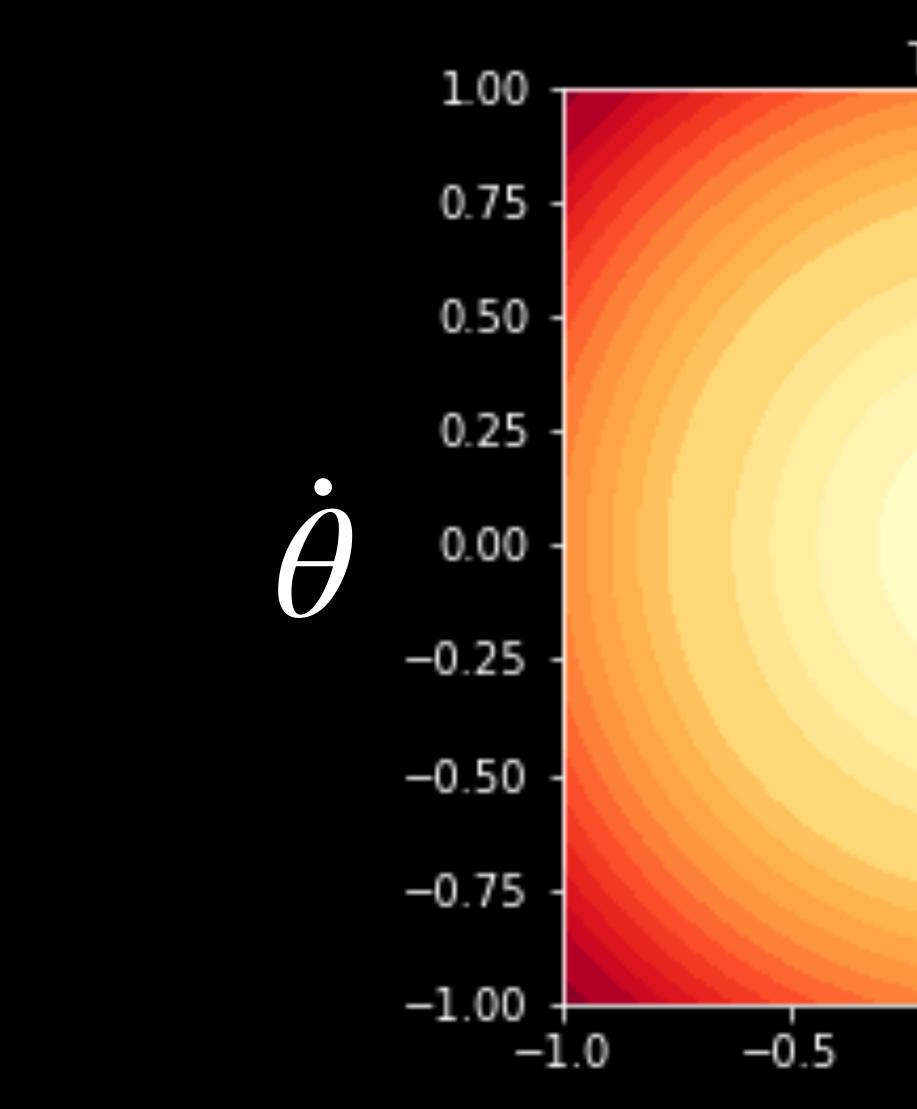
Compute gain matrix $K_{t} = (R + B^{T}V_{t+1}B)^{-1}B^{T}V_{t+1}A$

Update value $V_t = Q + K_t^T R K_t + (A + B K_t)^T V_{t+1} (A + B K_t)$

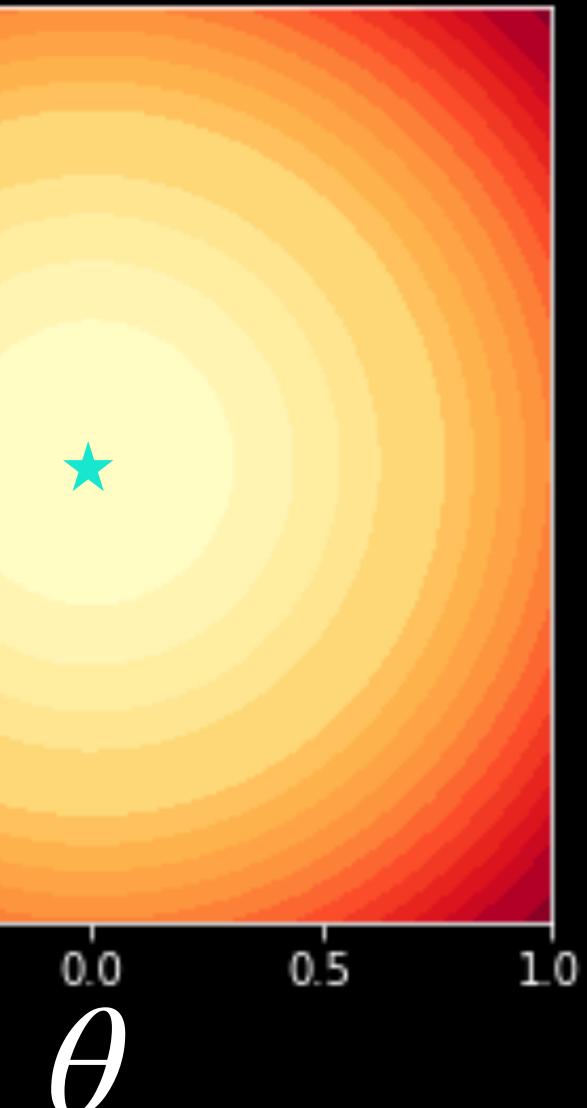




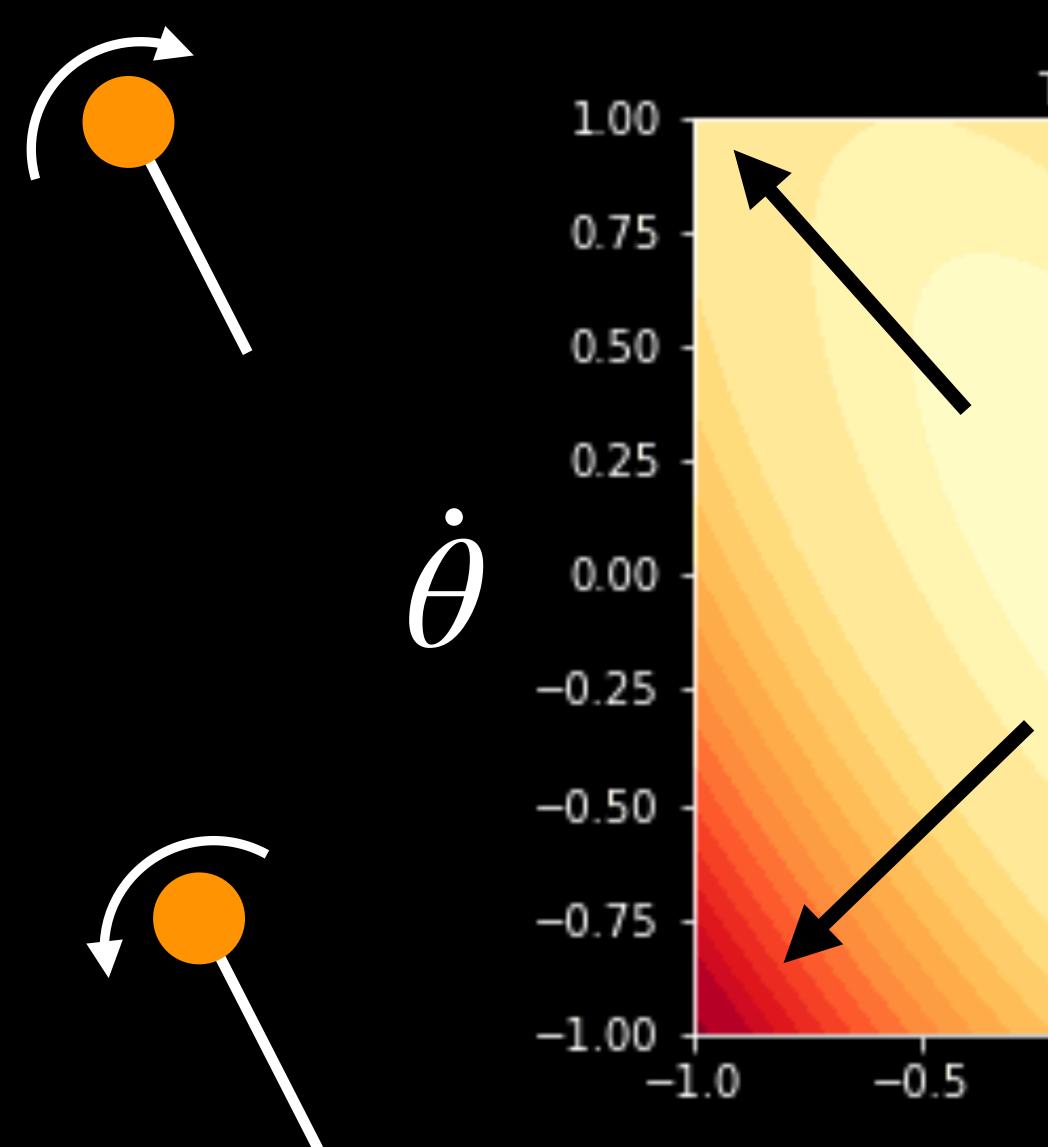
Value Iteration for Inverted Pendulum



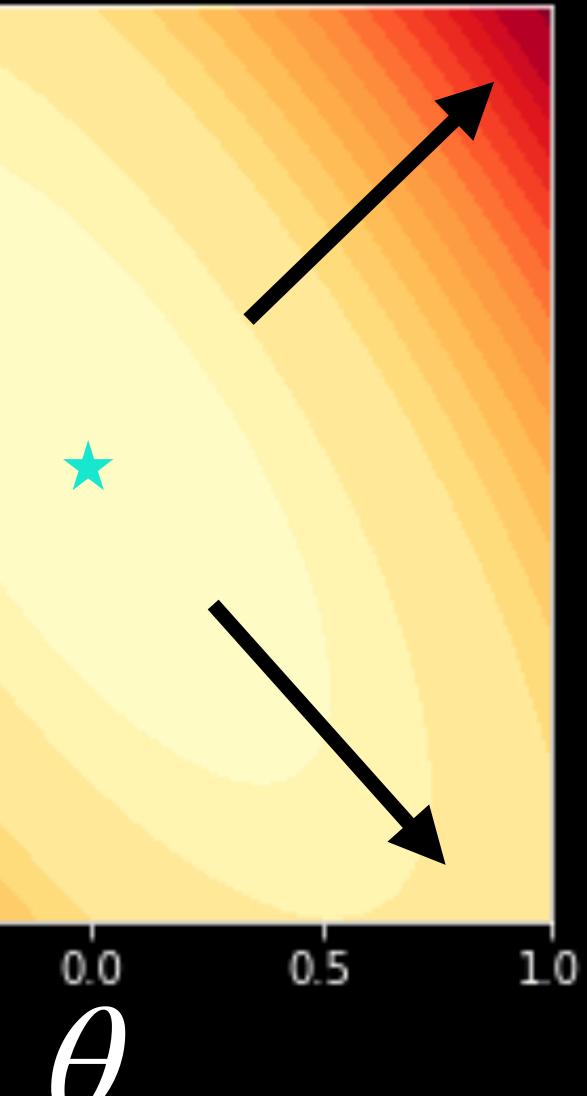
Time: 100

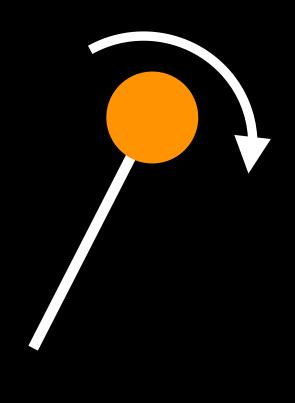


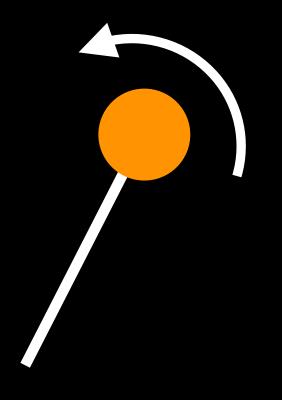
Value Iteration for Inverted Pendulum



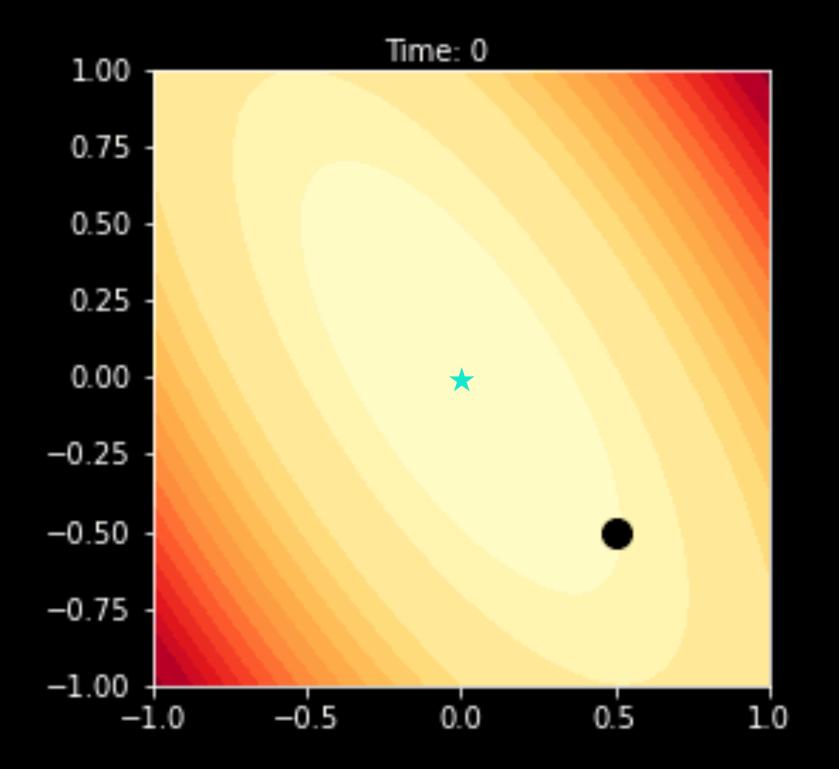
Time: 1



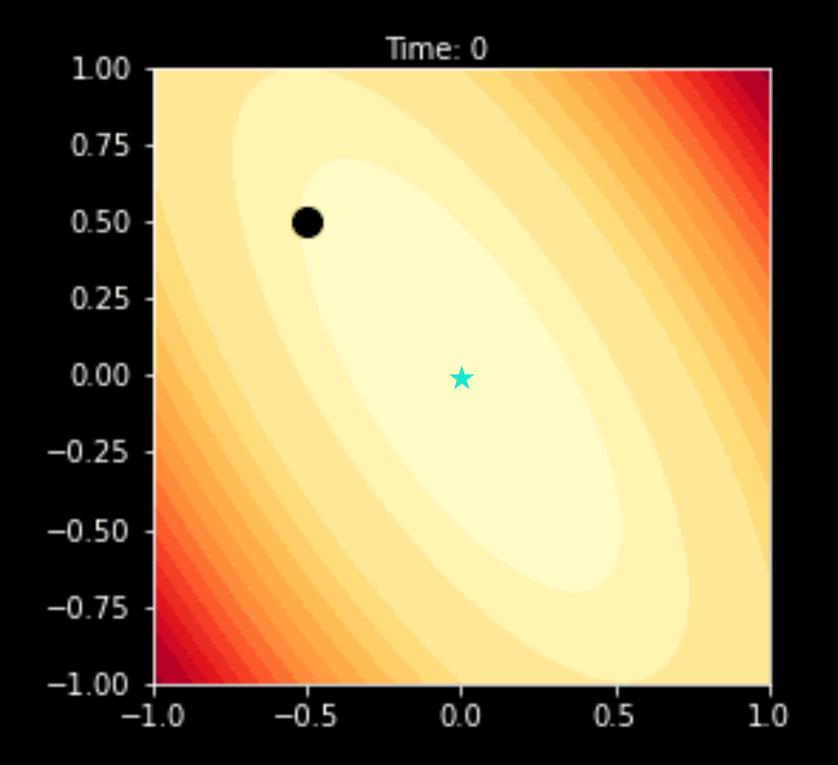




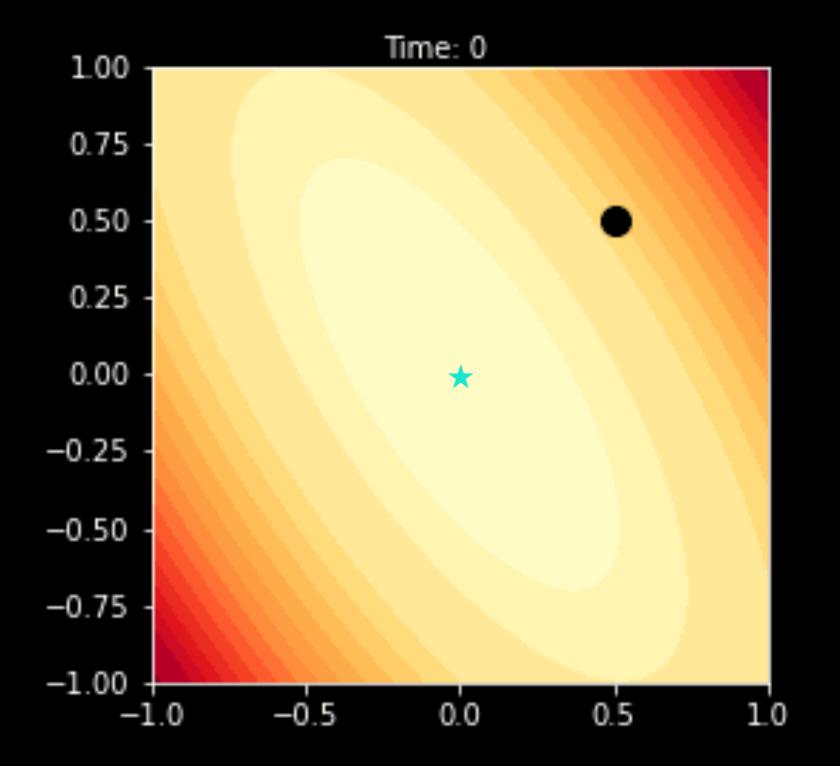
An Easy Starting Point



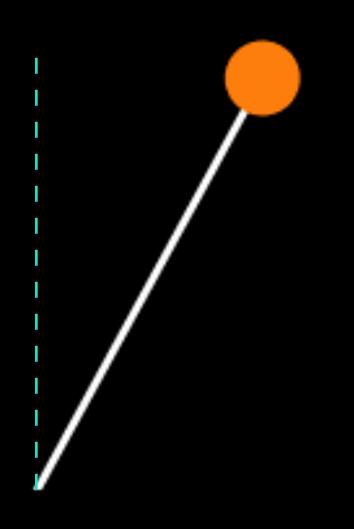
Another Easy Starting Point

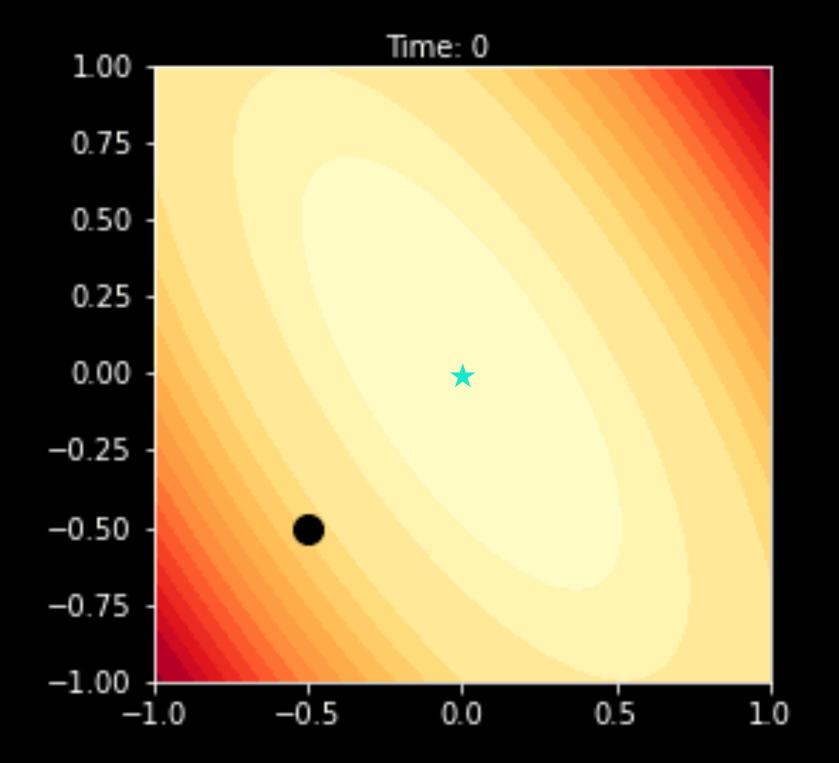


A Hard Starting Point



Another Hard Starting Point



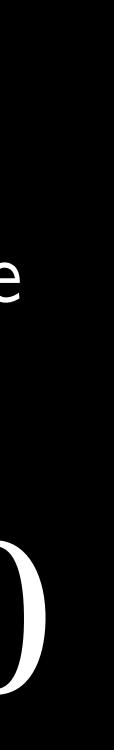


LQR Converges

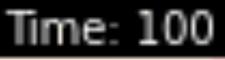
Q is positive semi-definite

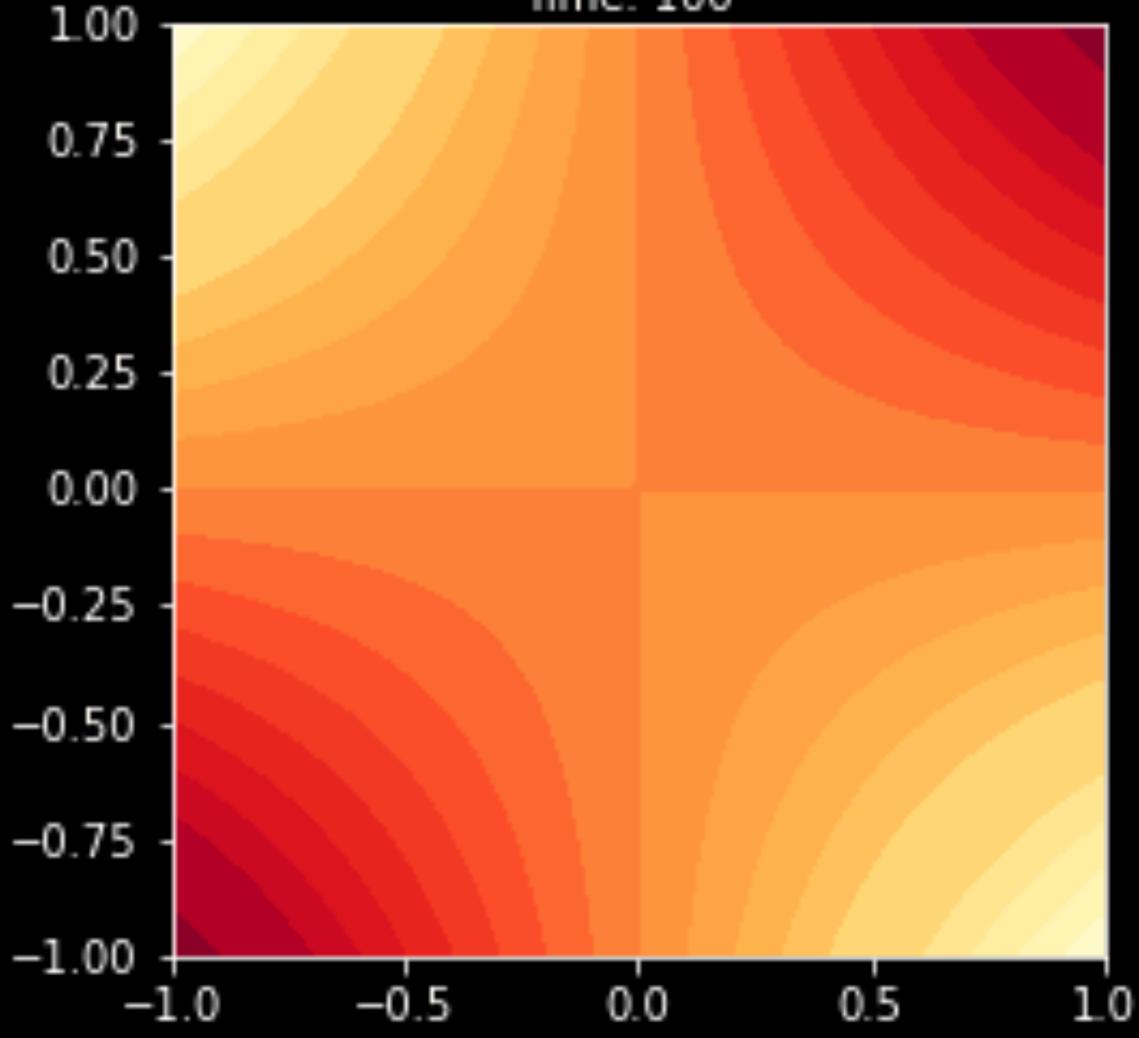
xTOx > 0

R is positive definite



What if Q is not PSD?





$Q = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

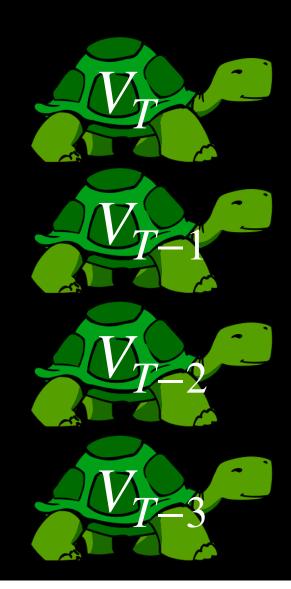
What if R is not positive definite? $R = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

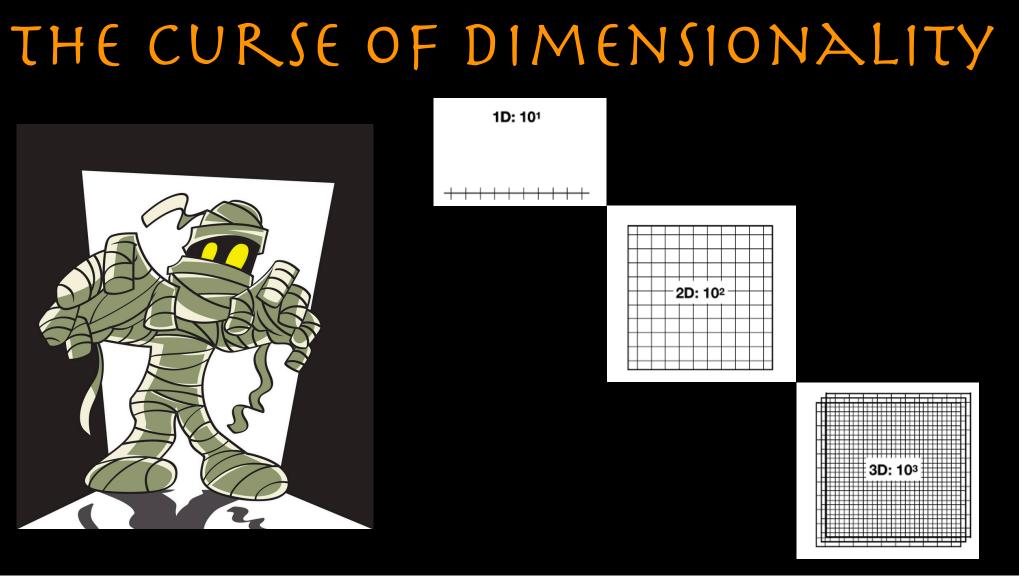
Hint: Gain matrix update?

 $K_{t} = (R + B^{T}V_{t+1}B)^{-1}B^{T}V_{t+1}A$

tl;dr

It's quadratics all the way down!





The LQR Algorithm

Initialize $V_T = Q$

For $t = T \dots 1$

Compute gain matrix $K_t = (R + B^T V_{t+1} B)^{-1} B^T V_{t+1} A$

Update value $V_t = Q + K_t^T R K_t + (A + B K_t)^T V_{t+1} (A + B K_t)$

