DAgger: Taming Covariate Shift with No Regret

Sanjiban Choudhury

Really cool talk today!

My Six Decade Experience in Visual Imaging

Prof. Don Greenburg

Colloquium at 11:45am, in G01 Gates Hall

RESEARCH NIGHT

Monday Sept. 16 2024

Panel Discussion Gates G01 5-6 PM

Poster Session Gates Atrium 6-7 PM

n What is DAGGER?

n DAGGER in the real world

Why aggregate data?

Behavior Cloning

Expert runs away after demonstrations

The Big Problem with BC

Train

Test

$\sum_{t=0}^{T-1} \mathbb{E}_{s_t \sim d_t^{\pi}}[\ell(s_t, \pi(s_t))]$

Goal: Bound on-policy loss

T - 1 $\sum \mathbb{E}_{S_t \sim d_t^{\pi}} [\ell(S_t, \pi(S_t))]$ t = 0

If we can bound above, we can bound performance difference $J(\pi) - J(\pi^*)$

What if we interactively queried the expert on states the learner visits?

DAGGER: A meta-algorithm for imitation learning

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

Stéphane Ross

Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213, USA stephaneross@cmu.edu Geoffrey J. Gordon Machine Learning Department Carnegie Mellon University Pittsburgh, PA 15213, USA ggordon@cs.cmu.edu J. Andrew Bagnell

Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213, USA dbagnell@ri.cmu.edu

[Ross et al'11]

DAgger: Initializations

Human drives

DAgger: Iteration 1

Human corrects!

[Ross et al'11]

DAgger: Iteration 2

[Ross et al'11]

After many iterations we are able to drive like a human!

DAgger: Iteration N

[Ross et al'11]

Initialize with a random policy π_1 # Can be BC Initialize empty data buffer $\mathcal{D} \leftarrow \{\}$ For i = 1, ..., N $\mathcal{D}_i = \{s_0, a_0, s_1, a_1, \dots\}$ $\mathcal{D}_i = \{s_0, \pi^*(s_0), s_1, \pi^*(s_1), \dots\}$ Aggregate data $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_i$ Select the best policy in $\pi_{1:N+1}$

DAgger (Dataset Aggregation)

- Execute policy π_i in the real world and collect data # Also called a rollout
- Query the expert for the optimal action on learner states
- Train a new learner on this dataset $\pi_{i+1} \leftarrow \text{Train}(\mathcal{D})$

14

The DAGGER Guarantee

DAGGER returns a policy π such that

What is DAGGER?

n DAGGER in the real world

Why aggregate data?

Many cool applications of DAGGER in robotics

Lee et al, Learning quadrupedal locomotion over challenging terrain (2020)

Choudhury et al, Data Driven Planning via Imitation Learning (2018)

Chen et al Learning by Cheating(2020)

Pan et al Imitation learning for agile autonomous driving (2019)

17

How do we actually apply DAGGER in practice?

Asking a *human* expert to label every state the robot visits is hard

Option 1: Extend DAGGER to different degrees of human feedback

Can we extend DAGGER to handle easier forms of human feedback preferences, interventions, etc?

Yes (*Future lectures!)

Option 2: Use an algorithmic oracle

What if we had a powerful algorithm that we can run in train time but not at test time?

Learning quadrupedal locomotion over challenging terrain

¹Robotic Systems Lab, ETH Zurich ³ Intelligent Systems Lab, Intel

FILZURICH

- Joonho Lee¹, Jemin Hwangbo^{1,2†}, Lorenz Wellhausen¹, Vladlen Koltun³, Marco Hutter¹
 - ² Robotics & Artificial Intelligence Lab, KAIST
 - [†]Substantial part of the work was carried out during his stay at 1

Quiz: Is the teacher policy realizable?

When poll is active respond at **PollEv.com/sc2582**

Send sc2582 to 22333

What is DAGGER?

Model of the seal world world

Why aggregate data?

But why does aggregating data work?

Why aggregate data?

Initialize with a random policy π_1 Initialize empty data buffer $\mathcal{D} \leftarrow \{\}$ For i = 1, ..., N

- Execute policy π_i in the real world and collect data $\mathcal{D}_{i} = \{s_{0}, a_{0}, s_{1}, a_{1}, \dots\}$
 - Query the expert for the optimal action on learner states
 - $\mathcal{D}_i = \{s_0, \pi^*(s_0), s_1, \pi^*(s_1), \dots\}$
 - Aggregate data $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_i$

Select the best policy in $\pi_{1:N+1}$

Train a new learner on this dataset $\pi_{i+1} \leftarrow \text{Train}(\mathcal{D})$

From Imitation Learning to Interactive No-Regret Learning

Interactive Learning

Learner

Adversary

Interactive Learning

Initialize policy

Update policy

Adversary

Chooses loss

Chooses loss

- - - \bullet

What is the best that I can do in such an adversarial setting?

From Imitation Learning to Interactive No-Regret Learning

How do we design algorithms that are no-regret?

(Learner) (Best in hindsight)

FOLLOW THE LEADER!

At every round *t*, choose the best policy in hindsight

$$\pi_{i} = \arg\min_{\pi} \sum_{j=1}^{i-1} l_{j}(\pi)$$
(lowest total loss)

32

 l_1

1.0

Avg. Regret:

 l_2 l_1 0.5 1.0

0.2

0.5

0.2

0.2

Policy 3

Policy 2

0.5

Avg. Regret: 080

34

Policy 3

0.7

0.2

0.2

0.5

Avg. Regret: 040

1.0 0.2

0.5 0.2

0.2

0.5

Avg. Regret: 0.53

Policy 1

1.0 0.5

0.2

0.5

1.9

Avg. Regret: 040

Policy 1

1.0 0.5

2.9

0.2

0.5

0.5

Policy 3 1.6 200

Avg. Regret: 0.32

Policy 1

1.0 0.5

0.2

0.5

3.4

Avg. Regret: 026

Is FTL no-regret?

FTL is no-regret if

1. We are in the continuous setting

2. Loss is strongly convex

41

Back to the proof!

