Solving Markov Decision Processes

Sanjiban Choudhury

Markov Decision Process

A mathematical framework for modeling sequential decision making

In What does it mean to solve a MDP?

D Bellman Equation

D Value Iteration

Today's class

What does it mean to solve a MDP?

4

Solving an MDP means finding a Policy

$\pi: S_t \to a_t$

A function that maps state (and time) to action

Image courtesy Dan Klein

Solving an MDP means finding a Policy

$\pi: S_t \to a_t$

A function that maps state (and time) to action

Can be deterministic or stochastic

Image courtesy Dan Klein

What makes a policy optimal?

Which policy is better?

Policy π_1

Policy π_2

Courtesy Dan Klein

What makes a policy optimal?

(Sample a start state, then follow π till end of episode)

T - 1n $\mathbb{E}_{s_0 \sim P(s_0)} \left[\sum_{\substack{s_0 \sim P(s_0) \\ a_t \sim \pi(s_t)}} C(s_t, a_t) \right]_{t=0}$ (Sum over all costs)

One last piece ...

Which of the two outcomes do you prefer?

\$50 today

\$1 million a 1000 days later

Image courtesy Dan Klein

Discount: Future rewards / costs matter less

Worth Now

At what discount value does it make sense to take \$50 today than \$1 million in 1000 days?

Worth Next Step

Worth In Two Steps

Image courtesy Dan Klein

What makes a policy optimal?

T - 1 $\mathbb{E}_{\substack{s_0 \sim P(s_0) \\ a_t \sim \pi(s_t)}} \left[\sum_{t=0} \gamma^t c(s_t, a_t) \right]$ (Discounted sum of costs)

How do we solve a MDP?

Let's start with how NOT to solve MDPs

14

$\min_{\pi} \mathbb{E}_{\substack{s_0 \sim P(s_0) \\ a_t \sim \pi(s_t)}} \left[\sum_{t=0}^{\infty} \gamma^t c(s_t, a_t) \right]$ $S_{t+1} \sim \mathcal{T}(S_t, a_t)$

How much work would brute force have to do?

What would brute force do?

T - 1

$S_{t+1} \sim \mathcal{T}(S_t, a_t)$

1. Iterate over all possible policies

What would brute force do?

T - 1 $\min_{\pi} \mathbb{E}_{\substack{s_0 \sim P(s_0) \\ a_t \sim \pi(s_t)}} \left[\sum_{t=0}^{\infty} \gamma^t c(s_t, a_t) \right]$

There are at most $(A^S)^T$ deterministic policies!!!!

- 2. For every policy, evaluate the cost
 - 3. Pick the best one

What does it mean to solve a MDP?

D Bellman Equation

D Value Iteration

Today's class

17

MDPs have a very special structure

18

Introducing the "Value" Function $V\pi(S_{t})$

Read this as: Value of a policy at a given state and time

Introducing the "Value" Function $V\pi(S_{t})$

Read this as: Value of a policy at a given state and time

Introducing the "Value" Function

 $V^{\pi}(s_t) = \mathbb{E}_{\pi}[\sum_{\tau} \gamma^k c(s_{t+k}, a_{t+k}) | s_t]$

The Bellman Equation

Value of current state

Exercise: Why is this true?

Value of Cost future state

The Bellman Equation (for deterministic policies)

$V^{\pi}(s_{t}) = c(s_{t}, \pi(s_{t})) + \gamma \mathbb{E}_{s_{t+1} \sim \pi} V^{\pi}(s_{t+1})$

Cost

Value of current state

Value of future state

Optimal policy

$\pi^* = \arg\min_{\pi} \mathbb{E}_{s_0} V^{\pi}(s_0)$

Bellman Equation for the Optimal Policy

$V^{\pi^*}(s_t) = \min_{a_t} \left[c(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1}} V^{\pi^*}(s_{t+1})) \right]$

Optimal Value

Cost

Optimal Value of Next State

Why is this true?

We use V^* to denote optimal value

$V^{*}(s_{t}) = \min_{a_{t}} \left[c(s_{t}, a_{t}) + \gamma \mathbb{E}_{s_{t+1}} V^{*}(s_{t+1}) \right]$

Optimal Value

Cost

Optimal Value of Next State

The Bellman Equation

Image courtesy Dan Klein

Step 1: Take correct first action

 $V^*(s_t) = \min_{a_t} \left[c(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1}} V^*(s_{t+1})) \right]$

What does it mean to solve a MDP?

Markov Bellman Equation

D Value Iteration

Today's class

Value Iteration

Image courtesy Dan Klein

$\langle S, A, C, \mathcal{T} \rangle$

- Two absorbing states: Goal and Swamp (can never leave)
- c(s) = 0 at the goal,
 - c(s) = 1 everywhere else
- Transitions deterministic
- Time horizon T = 30
- Discount $\gamma = 1$

What is the optimal value at T-1?

 $V^*(s_{T-1}) = \min c(s_{T-1}, a)$ \mathcal{A}

Time: 29

 $\pi^*(s_{T-1}) = \arg\min c(s_{T-1}, a)$ \mathcal{A}

What is the optimal value at T-2?

 $V^*(s_{T-2}) = \min[c(s_{T-2}, a) + V^*(s_{T-1})]$

Time: 28

 $\pi^*(s_{T-2}) = \arg\min[c(s_{T-2}, a) + V^*(s_{T-1})]$

Dynamic Programming all the way!

0 -	14	14	13	14	14	14	14	2	1	0
	14	13	12	14	14	14	14	3	2	1
~ -	13	12	11	14	14	14	14	4	3	2
m -	12	11	10	9	8	7	6	5	4	3
4 -	13	12	11	14	14	14	14	6	5	4
<u>ں</u> -	14	13	12	14	14	14	14	7	6	5
φ-	14	14	13	14	14	14	14	8	7	6
2	14	14	14	13	12	11	10	9	8	7
∞ -	14	14	14	14	13	12	11	10	9	8
ი -	14	14	14	14	14	13	12	11	10	9
	ò	i	ź	3	4	5	6	ż	8	9

 $V^*(s_t) = \min_{a} [c(s_t, a) + V^*(s_{t+1})]$

Time: 16

 $\pi^*(s_t) = \arg\min_{a} [c(s_t), a) + V^*(s_{t+1})]$

Initialize value function at last time-step

for t = T - 2, ..., 0

Compute value function at time-step t

Value Iteration

- $V^*(s, T-1) = \min c(s, a)$

 $V^*(s,t) = \min_{a} \left[c(s,a) + \gamma \sum_{s'} \mathcal{T}(s'|s,a) V^*(s',t+1) \right]$

Quiz!

Computational complexity of value iteration

Initialize value function at last time-step

V

for t = T - 2, ..., 0

 $V^*(s,t) = \min_a$

When poll is active respond at **PollEv.com/sc2582**

$$V^{*}(s, T-1) = \min_{a} c(s, a)$$

Compute value function at time-step t

$$\left[c(s,a) + \gamma \sum_{s'} \mathcal{T}(s' | s, a) V^*(s', t+1)\right]$$

Why is the optimal policy a function of time?

Pulling the goalie when you are losing and have seconds left ..

What happens when horizon is infinity?

What happens when horizon is infinity?

 $V^{\pi^*}(s_t) = \min_{a_t} \left[c(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1}} V^{\pi^*}(s_{t+1})) \right]$

Value Function Converges! (For $\gamma < 1$)

Infinite Horizon Value Iteration

Initialize with some value function $V^*(s)$

Repeat forever

Update values

 $V^*(s) = \min_{a} \left[c(s,a) + \gamma \sum_{s'} \mathcal{T}(s'|s,a) V^*(s') \right]$

What does it mean to solve a MDP?

Markov Bellman Equation

Malue Iteration

Today's class

43