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Today's class

0 Why do we need prediction / forecasting?

O Forecasting as a Machine Learning problem
0 Model?

O Loss?
O Data?

0 Connection between Forecasting and Model-based RL



Why do robots need to
forecast humans?



Two motivating applications

| am preparing vegetables for the soup. Can you pour some salt after stirring?
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Two motivating applications

| am preparing vegetables for the soup. Can you pour some salt after stirring?
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What do these have in common?

Forecasting human motion around robots



Two motivating applications
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Why do robots need to forecast humans?’

To enable safe, responsive, and
interpretable actions



Two motivating applications
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Forecasting human motion is essential

No human prediction:
Unresponsive robots
are discomforting
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Forecasting human motion is essential

[ Can Bob put away the pepper for me?
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Forecastlng human motion is essential
Pose Estimator UMMM [
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Why do robots need to forecast humans?

To enable safe, responsive, and
interpretable actions



Today's class

@ Why do we need prediction / forecasting?

(Enable safe, responsive, and interpretable robot actions)

O Forecasting as a Machine Learning problem
0 Model?

O Loss?
O Data?

0 Connection between Forecasting and Model-based RL
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Merging on the Highway



ACTUAL ACTUAL
c 5 62.8

PLANNER PLANNER  MPH 70

©2021 | Auror




ACTUAL ACTUAL
c 5 61.6 I

PLANNER PLANNER  MPH 70

©2021 | Aurora Proprietary



Think-Pair-
Share




L earn forecasts for merging actors

Forecast bs future trajectory

Once we have the forecast, we can
plan to merge safely
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Train a learner to forecast 5s future.

Model: Input / Output?

Data?’

[ oss?
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Think-Pair-Share!

Think (30 sec): Train a learner to forecast 5s future.

Pair: Find a partner

Share (45 sec): Partners exchange

ideas Q

Model: Input /
Output?

Data?’

[ oss?
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A first attempt at model,
data, and loss




Model: Use a sequence model that maps
past sequence (input) to future sequence (output)




Data: Drive around the car and collect data

Merge
before
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L oss: L2 Loss from Ground Truth
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L oss: L2 Loss from Ground Truth

o

Suppose | am
predicting
both mean

and variance

Hirl

|

Forecast: (
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Today's class

@ Why do we need prediction / forecasting?

(Enable safe, responsive, and interpretable robot actions)

0O Forecasting as a Machine Learning problem (First attempt)
0 Model?

O Loss?
O Data?

0 Connection between Forecasting and Model-based RL
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We have model, data, loss.

| et's deploy the model!



©2021 | Aurora Proprietary
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Forecasts have huge variance!

Forces robot to brake aggressively!
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Why is the forecast so whacky?’



Why is the forecast so whacky?’

There are two modes in the data

Mode A: D )

Robot merges
after

Mode B: D )
Robot merges

before &




What happens when you try to fit a
single Gaussian on multi-modal data?’

Ground truth

J\ /{iistribution

Gaussian averages (marginalizes) over both modes
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Okay .. so why can't we
just predict multi-modal
distributions?
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Multi-modal forecasts do not solve the issue

We are (incorrectly) telling the planner
both modes can happen simultaneously
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Forecast humans
conditioned on what the

robot will do
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Solution: Train a conditional forecast

“If | slow down, what will
happen?”

v‘)

Forecast

Model

“If | speed up, what will
happen?”
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Solution:

Train a conditional forecast
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Today's class

@ Why do we need prediction / forecasting?

(Enable safe, responsive, and interpretable robot actions)

0O Forecasting as a Machine Learning problem
& Model? (Conditional vs marginal forecasts)

O Loss?
O Data?

0 Connection between Forecasting and Model-based RL
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Two motivating applications
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Are all time steps equally
important in the loss?



Are all t

ime steps equally important?
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We need accurate forecasts when
humans come in close proximity



How does forecasting error vary over time?
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How does forecasting error vary over time?

150
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Forecasting
Error

Error is low here.
But this i1s not a critical state as
humans are far apart.
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How does forecasting error vary over time?
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How does forecasting error vary over time?
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A simple fix;
Upweight critical transition
points




Importance Sampling
ldentify “transitions’ when the human
comes into the robot's workspace
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Importance Sampling
ldentify “transitions’ when the human
comes into the robot's workspace
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Train equally on all data + transition data

All Data

- VR SH




Train equally on all data + transition data

All Data
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Generalization of the idea:

Forecasts should match the
ground truth in terms of the

cost It induces
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Solution: Replace L2 loss with cost weighted loss

Vin, & minimize E “ C(Cp, &rp) — C(Ep, EH)”

where, &,; is the observed future human motion
and, &, is the predicted / forecasted human motion
and, &, is the planned robot trajectory



Evaluation across different tasks
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Today's class

@ Why do we need prediction / forecasting?

(Enable safe, responsive, and interpretable robot actions)

0O Forecasting as a Machine Learning problem
& Model? (Conditional vs marginal forecasts)
& Loss?  (Cost-weighted vs L2 loss)

O Data?

0 Connection between Forecasting and Model-based RL
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Refresher on Model-based RL

In model-based RL, what data distribution should we train transition
models on?

When poll is active respond at PollEv.com/sc2582
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What happens when we deploy model?

“The car will Human: “What
probably merge ahead, so the heck does
| can slow down very this truck want
smoothly ...” to do, go ahead

or behind 7171"

R “?10#10"




What went wrong?’



What went wrong?’

Robot: “The car will

probably merge ahead, so
| can slow down very
smoothly ...~

T\ Humans never drive in
such an ambiguous manner
during merges!
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We trained on data when
human was driving




We trained on human driving data
We are testing on robot driving
If robot driving is different from

human driving, we

have a train-test mismatch
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DAGGER for Forecasting!

Collect
Expert Data

Train on
50% expert data
and
50% learner data

Train
Forecaster

Aggregate
Data

Plan with
Forecasts
Rollout
Policy
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Today's class

@ Why do we need prediction / forecasting?

(Enable safe, responsive, and interpretable robot actions)

O Forecasting as a Machine Learning problem
& Model? (Conditional vs marginal forecasts)
& Loss?  (Cost-weighted vs L2 loss)
& Data? (Train on-policy on robot data)

0 Connection between Forecasting and Model-based RL
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Forecasts are really just
transition models



Forecasting <-> Model-based RL

Conditional Forecasts Model

P(St;t+k | St:t—k’ at:t-l-k) M(Sf+1 ‘ St’ at)

We know how to solve model-based RL
(previous lectures!)
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Today's class

@ Why do we need prediction / forecasting?

(Enable safe, responsive, and interpretable robot actions)

O Forecasting as a Machine Learning problem
& Model? (Conditional vs marginal forecasts)
& Loss?  (Cost-weighted vs L2 loss)
& Data? (Train on-policy on robot data)

& Connection between Forecasting and Model-based RL
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