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The Plan for Today

● Task Decomposition for Open-World Robotic Control

● API Calling for Open-World Robotic Control

● Affordance Representations for Open-World Robotic Control
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Markov Decision Process

A Markov Decision Process (MDP) is defined by a tuple ℳ =< 𝒮,𝒜,𝒫, ℛ, γ >.

𝒮: state space (𝑠𝑡 ∈ 𝒮)

𝒜: action space (𝑎𝑡 ∈ 𝒜)

𝒫: transition probability 𝑠𝑡+1 ∼ 𝒫 ⋅ 𝑠𝑡, 𝑎𝑡)

ℛ: reward function  𝑟𝑡 ∼ ℛ(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)

γ: a discount factor γ ∈ [0, 1]

state 𝑠𝑡 ,reward 𝑟𝑡

action 𝑎𝑡

environment robot

A policy 𝜋 maps state: 𝒮 → 𝒜
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Goal-Conditioned MDP

A Goal-Conditioned Markov Decision Process is defined by a tuple

ℳ =< 𝒮, 𝒞,𝒜,𝒫, ℛ, γ >.

𝒮: state space (𝑠𝑡 ∈ 𝒮)

𝒞: goal space (𝑔𝑡 ∈ 𝒞 ⊂ 𝒮)

𝒜: action space (𝑎𝑡 ∈ 𝒜)

𝒫: transition probability 𝑠𝑡+1 ∼ 𝒫 ⋅ 𝑠𝑡, 𝑎𝑡)

ℛ: reward function  𝑟𝑡 = −𝟏[𝑠𝑡 == 𝑔𝑡]

γ: a discount factor γ ∈ [0, 1]

state 𝑠𝑡 ,reward 𝑟𝑡

action 𝑎𝑡

environment robot

goal 𝑔𝑡
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Language-Conditioned MDP

A Goal-Conditioned Markov Decision Process is defined by a tuple

ℳ =< 𝒮, 𝒞,𝒜,𝒫, ℛ, γ >.

𝒮: state space (𝑠𝑡 ∈ 𝒮)

𝒞: instruction space (𝑙𝑡 ∈ 𝒞)

𝒜: action space (𝑎𝑡 ∈ 𝒜)

𝒫: transition probability 𝑠𝑡+1 ∼ 𝒫 ⋅ 𝑠𝑡, 𝑎𝑡)

ℛ: reward function  𝑟𝑡 = ?

γ: a discount factor γ ∈ [0, 1]

state 𝑠𝑡 ,reward 𝑟𝑡

action 𝑎𝑡

environment robot

instruction 𝑙𝑡
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Learning to Follow Instructions

𝜋 𝑎 𝑠, 𝑙; 𝜃)
pre-train generalize

demos with language labels

sweep the skittles into the bin after putting 
the mushroom in the container

new task

instruction
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Language-Conditioned Behavior Cloning: Given a training dataset of (expert) 
behaviors 𝐷 = 𝑠𝑖, 𝑎𝑖, 𝑙𝑖 𝑖=1

𝑁 , train the policy 𝜋𝜃(𝑎𝑡|𝑠𝑡, 𝑙𝑡) to imitate the behaviors:

𝜃∗ = argmax
𝜃

Σ𝐷 log 𝜋𝜃(𝑎𝑡|𝑠𝑡, 𝑙𝑡)

10

Language-Conditioned Imitation Learning

language labels are expensive to get 

𝜋 𝑎 𝑠, 𝑙; 𝜃)
pre-train

demos with language labels

instruction
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Integrated Language-Conditioned and Goal-Conditioned BC

Myers et al. Goal Representations for Instruction Following: A Semi-Supervised Language Interface to Control. CoRL 2023
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Integrated Language-Conditioned and Goal-Conditioned BC

Myers et al. Goal Representations for Instruction Following: A Semi-Supervised Language Interface to Control. CoRL 2023

hindsight relabeling augments supervisions
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Task Decomposition
Task decomposition enables robots to reuse and repurpose known skills.

final goalsubtasks

novel

known

cutting

sauteing

cutting sauteing layering

layering
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SayCan: “Do As I Can, Not As I Say”
Task decomposition needs to be grounded in the robot’s capabilities and the 
observed environment.

Ahn et al. CoRL 2023
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SayCan: “Do As I Can, Not As I Say”
Combine probabilities from a language model with the probabilities from a value to 
select the skill (pre-trained or pre-defined) to perform.

Ahn et al. CoRL 2023



CS 4756: Robot Learning (Fall 2024) 17

SayCan: “Do As I Can, Not As I Say”

Ahn et al. CoRL 2023
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VLM
propose ො𝑎𝑡 ∼ 𝜋 ∙ 𝑠𝑡, 𝑐; 𝜃)

𝑐1

𝑐2

𝑐6

𝑐5

𝑐4

𝑐3

ො𝑎1

ො𝑎2

ො𝑎6

ො𝑎5

ො𝑎4

ො𝑎3

Myers*, Zheng*, Mees, Levine†, Fang†. Policy Adaptation via Language Optimization: Decomposing Tasks for Few-Shot Imitation. CoRL 2024

Policy Adaptation via Language Optimization
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Myers*, Zheng*, Mees, Levine†, Fang†. Policy Adaptation via Language Optimization: Decomposing Tasks for Few-Shot Imitation. CoRL 2024

VLM
propose ො𝑎𝑡 ∼ 𝜋 ∙ 𝑠𝑡, 𝑐; 𝜃)

𝑐1

𝑐2

𝑐6

𝑐5

𝑐4

𝑐3

ො𝑎1

ො𝑎2

ො𝑎6

ො𝑎5

ො𝑎4

ො𝑎3

freeze

Optimize instruction sequences using 
behavior cloning loss

𝑐∗ = argmin
𝑐


𝑡
ො𝑎𝑡 − 𝑎𝑡 2

Policy Adaptation via Language Optimization
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VLM
propose

𝑐1

𝑐2

𝑐6

𝑐5

𝑐4

𝑐3

ො𝑎1

ො𝑎2

ො𝑎6

ො𝑎5

ො𝑎4

ො𝑎3

Optimize instruction sequences using 
behavior cloning loss

𝑐∗, 𝑢∗ = argmin
𝑐, 𝑢


𝑡
ො𝑎𝑡 − 𝑎𝑡 2

freeze

similar to prompt tuning in NLP

Jointly optimize the temporal segmentation

Myers*, Zheng*, Mees, Levine†, Fang†. Policy Adaptation via Language Optimization: Decomposing Tasks for Few-Shot Imitation. CoRL 2024

Policy Adaptation via Language Optimization

ො𝑎𝑡 ∼ 𝜋 ∙ 𝑠𝑡, 𝑐; 𝜃)
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PALO

Policy 
Fine-Tuning

pour the contents of the scoop
into the bowl

sweep the skittles into the bin 
after putting the mushroom in 
the container

put the beet toy/purple thing 
into the drawer

pry out the pot in the drawer 
using the ladle

Given only 5 demos, PALO is able to robustly solve unseen, temporally extended tasks.

Myers*, Zheng*, Mees, Levine†, Fang†. Policy Adaptation via Language Optimization: Decomposing Tasks for Few-Shot Imitation. CoRL 2024
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The Plan for Today

● Task Decomposition for Open-World Robotic Control

● API Calls for Open-World Robotic Control

● Affordance Representations for Open-World Robotic Control



CS 4756: Robot Learning (Fall 2024)Akkaya et al. 2019; Suh et al. 2022

physics simulator

motion planner

reinforcement learning

imitation learning

……

Lack
Semantic 

Understanding

Tools for physical understanding
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large language models

vision language models

Lack
Physical 

Understanding

Tools for semantic understanding
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API Calls by LLMs
LLMs can solve new tasks, but struggle with basic functionality, such as arithmetic.
Goal: Enable LLMs to call third-party APIs.

Improve performance with 
in-context examples

Schick et al. 2023.
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Code as Policies

• Generate control flows

• Generate calls of 
perception and control 
APIs

• Run the program

Liang et al. 2023.
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Code as Policies
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Embodied Chain-of-Thought
Train a vision-language-action policy to autoregressively generate textual reasoning 
in response to commands and observations before it chooses a robot action.

Zawalski et al. 2024.
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Embodied Chain-of-Thought
a synthetic data generation pipeline that leverages numerous foundation models to 
extract features from robot demonstrations to put into corresponding textual 
reasoning chains.

Zawalski et al. 2024.



CS 4756: Robot Learning (Fall 2024) 30

The Plan for Today

● Task Decomposition for Open-World Robotic Control

● API Calling for Open-World Robotic Control

● Affordance Representations for Open-World Robotic Control
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Bridge Semantic and Physical Reasoning with Affordances

spatially grounded visual affordances

physical 
reasoning

semantic 
reasoning
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Transporter Policy
Rearrange deep features to infer spatial displacements from visual input for 
parameterizing robot actions

Zeng, et al. 2022
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CLIP
Pair the texts and images, minimize the InfoNCE loss.

Learning Transferable Visual Models From Natural Language Supervision. Radford et al. 2021
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InfoNCE
Given a context vector c, draw one positive sample from the conditional distribution 
𝑝 𝑥 𝑐 ,  and 𝑁 − 1 negative samples from the unconditional distribution 𝑝(𝑥).

Let all samples to be 𝑋 = 𝑥𝑖 𝑖=1
𝑁 . The probability of 𝑥𝑘 to be the positive sample is:

𝑝 𝑘 = “𝑝𝑜𝑠” 𝑋, 𝑐 =
𝑝(𝑥𝑘|𝑐)ς𝑖≠𝑘 𝑝(𝑥𝑖)

σ𝑗=1
𝑁 𝑝(𝑥𝑗|𝑐)ς𝑖≠𝑗 𝑝(𝑥𝑖)

=

𝑝(𝑥𝑘|𝑐)
𝑝(𝑥𝑘)

σ𝑗=1
𝑁 𝑝(𝑥𝑗|𝑐)

𝑝(𝑥𝑗)

van den Oord, et al. 2018
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InfoNCE
Given a context vector c, draw one positive sample from the conditional distribution 
𝑝 𝑥 𝑐 ,  and 𝑁 − 1 negative samples from the unconditional distribution 𝑝(𝑥).

Let all samples to be 𝑋 = 𝑥𝑖 𝑖=1
𝑁 . The probability of 𝑥𝑘 to be the positive sample is:

𝑝 𝑘 = “𝑝𝑜𝑠” 𝑋, 𝑐 =
𝑝(𝑥𝑘|𝑐)ς𝑖≠𝑘 𝑝(𝑥𝑖)

σ𝑗=1
𝑁 𝑝(𝑥𝑗|𝑐)ς𝑖≠𝑗 𝑝(𝑥𝑖)

=
𝑓𝜃(𝑥𝑘, 𝑐)

σ𝑗=1
𝑁 𝑓𝜃(𝑥𝑗, 𝑐)

𝑓𝜃 𝑥, 𝑐 ∝
𝑝(𝑥|𝑐)
𝑝(𝑥)

van den Oord, et al. 2018
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InfoNCE
The InfoNCE loss optimizes the negative log probability of classifying the positive 
sample correctly:

ℒInfoNCE = −𝔼[log
𝑓𝜃(𝑥, 𝑐)

σ𝑥′ 𝑓𝜃(𝑥′ 𝑐)
]

𝑓𝜃 𝑥, 𝑐 ∝
𝑝(𝑥|𝑐)
𝑝(𝑥)

van den Oord, et al. 2018
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CLIPort
CLIPort combines the broad semantic understanding of CLIP with the spatial 
precision of Transporter.

Zeng, et al. 2022
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VoxPoser: Composable 3D Value Maps for Manipulation
Given the RGB-D observation of the environment and a language instruction, 
1. prompt LLMs to generate code to compute a value maps
2. plan for motion trajectories to maximize the values

Huang, et al. 2023
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VoxPoser: Composable 3D Value Maps for Manipulation

Huang, et al. 2023

require a large amount of 
in-context examples
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Set-of-Mark Prompting
Simply overlaying IDs on image 
regions unleashes visual 
grounding and corrects answers 
for GPT-4V

Set-of-Mark Prompting Unleashes Extraordinary Visual Grounding in GPT-4V. Yang et al. 2023
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Use a set of keypoints to specify the motion trajectory for solving the task.

Wipe the snack wrapper off the table using the brush.

MOKA: Marking Open-world Keypoint Affordances

3

1

2

grasp function target waypoints

Separate semantics and motions

Predictable on 2D images.

Can specify diverse motions.

Agnostic to the embodiment.

Fang, Liu, Abbeel, Levine. RSS 2024
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Challenge: Directly predicting keypoint coordinates requires fine-grained spatial reasoning.

Wipe the snack wrapper off the table using the brush.

MOKA: Marking Open-world Keypoint Affordances

grasp function target waypoints Fang, Liu, Abbeel, Levine. RSS 2024
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To facilitate reasoning for the VLM, MOKA annotates a set of marks on the input image.

MOKA: Marking Open-world Keypoint Affordances

marks

P1

P2

P3

P4

P5

Q1

Q2 Q3

Q4

Wipe the snack wrapper off the table using the brush.

grasp function target waypoints
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Without any training on any robot data, the VLM can solve the commanded manipulation task.

3

1

2

MOKA: Marking Open-world Keypoint Affordances

marks

Wipe the snack wrapper off the table using the brush.

grasp function target waypoints
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Without any training on any robot data, the VLM can solve the commanded manipulation task.

The prediction is robust to different instructions, poses, and objects.

MOKA: Marking Open-world Keypoint Affordances

Table 
cleaning

Fang*, Liu*, Abbeel, Levine. Multi-Task Domain Adaptation. RSS 2024
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How can we fine-tune VLM for robotic control without extensive robot data? 

KALIE: Keypoint Affordance Learning from Imagined Environments

Fang, Liu, Abbeel, Levine. RSS 2024
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Directly applying generative models to generate new images will result in artifacts and 
misaligned information.

KALIE: Keypoint Affordance Learning from Imagined Environments

Tang, Rajkumar, Zhou, Walke, Levine, Fang. Fine-Tuning Vision-Language Models for Open-World Manipulation without Robot Data. In Submission

How can we generates synthetic data with high diversity while staying faithful to the task 
semantics and keypoint annotation?
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KALIE uses a context image as additional inputs to the diffusion model, which specifies the 
geometric properties of the object to be inpainted.

KALIE: Keypoint Affordance Learning from Imagined Environments

expert data
(s, y)

context
c

transformed context
f (mi * c)

transformed mask
f (mi) + mi

synthetic data
(s’, y’)

diffusion model g
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● Employ conditional diffusion models to diversify the training data.

● Fine-tune the VLM to predict affordances through low-rank adaptation.

KALIE: Keypoint Affordance Learning from Imagined Environments
co

lle
ct

ed
 d

at
a

sy
nt

he
tic
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at

a
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The Plan for Today

● Task Decomposition for Open-World Robotic Control

● API Calling for Open-World Robotic Control

● Affordance Representations for Open-World Robotic Control
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