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The Plan for Today

e Task Decomposition for Open-World Robotic Control

e API Calling for Open-World Robotic Control

e Affordance Representations for Open-World Robotic Control
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Markov Decision Process

A Markov Decision Process (MDP) is defined by a tuple M =< §, A, P, R,y >.

state s; ,reward r;

§: state space (s; € §) | '
: action € | -
A action space (a; € A) environment L 2o robot
P: transition probability s;1q ~ P(:|s¢, ar) t |
R: reward function 1 ~ R(s¢, g, Se41) action a,

y: a discount factor y € [0, 1]

for i in range(1000):
action = np.random.randn(env.robots[0].dof) # sample random action

A pO“Cy A mapS State 5 — c/q obs, reward, done, info = env.step(action) # take action in the environment

env.render() # render on display
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Goal-Conditioned MDP

A Goal-Conditioned Markov Decision Process is defined by a tuple

M =<S8,C,AP,RY>.

goal g =
§: state space (s; € §)
state s; ,reward r;

C: goal space (g € C € 9§)

A action space (a; € A) | )

- - environment ‘ i ropot
P: transition probability s;1q ~ P(:|ss, ay) ' |
R: reward function r; = —1[s; == g¢] action a,

y: a discount factor y € [0, 1]
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Language-Conditioned MDP

A Goal-Conditioned Markov Decision Process is defined by a tuple

M=<S§,C,AP,R,Y>.
instruction [ =
§: state space (s; € §)
state s; ,reward r;
C: instruction space (l; € C)

A action space (a; € A .

P ( t ) environment ‘ ‘75& robot
P: transition probability s;1q ~ P(:|ss, ay) ' |
R: reward function r; =7? action a,

y: a discount factor y € [0, 1]
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Learning to Follow Instructions

sweep the skittles into the bin after putting
the mushroom in the container

instruction

& @ pre-train generalize
e —— m(als, ;0) ——

9

demos with language labels new task
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Language-Conditioned Imitation Learning

',,... &
. R | instruction
i ‘ e : = . '
: |« pre-train
eV, = ; 0
Lo —— m(als, ;)
b s
o
b el - & =
- = = language labels are expensive to get

i T

demos with language labels

Language-Conditioned Behavior Cloning: Given a training dataset of (expert)
behaviors D = {(s;, a;, [;)}},, train the policy mg(a;|ss, I;) to imitate the behaviors:

0" = arg max Yplogmg(aelse, lt)
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Integrated Language-Conditioned and Goal-Conditioned BC

a FEW language-
annotated trajectories

“put the pot on T _, Language Behavioral
l': the towel” 4 Cloning Loss

instruction

Myers et al. Goal Representations for Instruction Following: A Semi-Supervised Language Interface to Control. CoRL 2023
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Integrated Language-Conditioned and Goal-Conditioned BC

a FEW language-
annotated trajectories

“put the pot on n _, Language Behavioral
'l: the towel” < Cloning Loss

instruction

Aligned Task
Representations

MANY hindsight-relabeled
trajectories with goals

initial state
|:> — z —ﬂ, — Goal‘Behavioral
., Cloning Loss

hindsight relabeling augments supervisions

Myers et al. Goal Representations for Instruction Following: A Semi-Supervised Language Interface to Control. CoRL 2023
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Task Decomposition

Task decomposition enables robots to reuse and repurpose known skills.

CS 4756: Robot Learning (Fall 2024)

subtasks

sauteing

sauteing

final goal

novel

= known




SayCan: “Do As | Can, Not As | Say”

Task decomposition needs to be grounded in the robot’s capabilities and the
observed environment.

Ahn et al. CoRL 2023
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SayCan: “Do As | Can, Not As | Say”

Combine probabilities from a language model with the probabilities from a value to
select the skill (pre-trained or pre-defined) to perform.

Instruction Relevance with LLMs Combined Task Affordances with Value Functions
How would you put -6 Find an apple 0.6
an apple on the -30 Find a coke 0.6
table? 30 Find a sponge 0.6
4 Pick up the apple 0.2 1
[ would: 1. . '
- -30 Pick up the coke 0.2 (
5 Place the apple 0.1
30 Place the coke 0.1 Value
LLM -10 Go to the table 08 Functions
-20 Go to the counter 0.8
I would: 1. Find an apple, 2. ¢

;H“( >I
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SayCan: “Do As | Can, Not As | Say”

Ahn et al. CoRL 2023
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Policy Adaptation via Language Optimization

VLM ~
propose l A ~ T[('lSt; C, 6)
“move up” C1 &1
“move to the ~
Humipl | ©2 az
“move up” C3 as
“move forward to A
the drawer” Cq Ay
Cg ds
move down Ce de

Myers’, Zheng”, Mees, Levinet, Fang?. Policy Adaptation via Language Optimization: Decomposing Tasks for Few-Shot Imitation. CoRL 2024

CS 4756: Robot Learning (Fall 2024)



Policy Adaptation via Language Optimization

VLM A
propose l Ay ~ T[('lst' & 9)
) = ~ freeze
move up Cq aq
“move to the ~  Optimize instruction sequences using
turnip’ | 2 az . .
,_ ' behavior cloning loss
“move up” C3 &3
c* = argminz: la, — a.l|?
“move forward to A~ ¢ t
the drawer” Cq %)
Cs as
move down Ce ag

Myers’, Zheng”, Mees, Levinet, Fang?. Policy Adaptation via Language Optimization: Decomposing Tasks for Few-Shot Imitation. CoRL 2024
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Policy Adaptation via Language Optimization

VLM A
propose 1 A ~ T[('lst' c; 0)
T 7 ~ freeze
move up C1 al
“move to the ~_ Optimize instruction sequences using
turnip” €2 a - -
— behavior cloning loss
“move up” C3 &3
c*,ut = argminz la, — a.ll?
" C,u t
move forward to A~
the drawer” Cy a . e .
Jointly optimize the temporal segmentation
Cs d5 o ' '
similar to prompt tuning in NLP
“move down" ‘ Cq d6

Myers’, Zheng”, Mees, Levinet, Fang?. Policy Adaptation via Language Optimization: Decomposing Tasks for Few-Shot Imitation. CoRL 2024
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Given only 5 demos, PALO is able to robustly solve unseen, temporally extended tasks.

pour the contents of the scoop sweep the skittles into the bin put the beet toy/purple thing pry out the pot in the drawer
into the bowl after putting the mushroom in into the drawer using the ladle
the container

move the gripper forward and move the.gripper down towards move the gripper down move the.gripper right towards he
down towards the‘scoop the mushroorn towards the drawer handle - ladle *

Myers’, Zheng”, Mees, Levinet, Fang?. Policy Adaptation via Language Optimization: Decomposing Tasks for Few-Shot Imitation. CoRL 2024
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The Plan for Today

e Task Decomposition for Open-World Robotic Control

e API Calls for Open-World Robotic Control

e Affordance Representations for Open-World Robotic Control
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Tools for physical understanding

physics simulator

motion planner Lack
| Semantic
reinforcement learning Understanding

imitation learning
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Tools for semantic understanding

Lack large language models
Physical

S el VISion language models
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API Calls by LLMs

LLMs can solve new tasks, but struggle with basic functionality, such as arithmetic.

Goal: Enable LLMs to call third-party APIs.

The New England Journal of Medicine is a registered
trademark of [QA(“Who is the publisher of The New
England Journal of Medicine?”) — Massachusetts
Medical Society] the MMS.

Out of 1400 participants, 400 (or [Calculator(400 / 1400)
— 0.29] 29%) passed the test.

The name derives from “la tortuga”, the Spanish word for
[MT(“tortuga”) — turtle] turtle.

The Brown Act is California’s law [WikiSearch(“Brown
Act”) — The Ralph M. Brown Act is an act of the
California State Legislature that guarantees the public's
right to attend and participate in meetings of local
legislative bodies.] that requires legislative bodies, like
city councils, to hold their meetings open to the public.

Schick et al. 2023.
CS 4756: Robot Learning (Fall 2024)

Improve performance with
in-context examples

Your task is to add calls to a Question Answering APl to a
piece of text. The questions should help you get
information required to complete the text. You can call the
API by writing "[QA(question)]" where "question” is the
question you want to ask. Here are some examples of API
calls:

Input: Joe Biden was born in Scranton, Pennsylvania.

Output: Joe Biden was born in [QA("Where was Joe
Biden born?")] Scranton, [QA("In which state is
Scranton?")] Pennsylvania.

Input: Coca-Cola, or Coke, is a carbonated soft drink
manufactured by the Coca-Cola Company.

Output: Coca-Cola, or [QA("What other name is
Coca-Cola known by?")] Coke, is a carbonated soft drink
manufactured by [QA("Who manufactures Coca-Cola?")]
the Coca-Cola Company.

Input: x

Output:

25



Code as Policies

User

Large <+—--- Stack the blocks on the empty bowl. @ * Generate control flows
Language

Model APIs N\ .
Control APls Generate calls of

l Policy Code perception and control

block_names = detect_objects("blocks") /\F)ls
bowl_names = detect_objects("bowls")
for bowl_name in bowl_names:
if is_empty(bowl_name):

empty_bowl = bowl_name

break
objs_to_stack = [empty_bowl]|+ block_names
stack_objects(objs_to_stack)

l def is_empty(name):

* Run the program

def stack_objects(obj_names):
n_objs = len(obj_names)
for i in range(n_objs - 1):
obj0 = obj_names[i + 1]
obj1 = obj_names[i]
(objo, obj1)

Liang et al. 2023.
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Code as Policies

Move the sky-colored block in between
Put the blocks in a horizontal line near the the red block and the second block from

top the left
Put the red block to the left of the Place the blocks in bowls with non-
rightmost bowl matching colors

Move the fruits to the green plate and bottles to the blue plate

CS 4756: Robot Learning (Fall 2024)

Arrange the blocks in a square around the
middle Make the square bigger Move the red block 5cm to the bottom

Put the blocks in a vertical line 20cm and

g = -
10cm below the blue bowl! Put the apple and the.coke Intheir correspondingbins  ——=
Wait until you see an egg and put it on the Draw a pyramid as a triangle on the
green plate Draw a 5¢cm hexagon around the middle ground

27



Embodied Chain-of-Thought

Train a vision-language-action policy to autoregressively generate textual reasoning
In response to commands and observations before it chooses a robot action.

Input Generated Embodied Chain-of-Thought Robot Action
7\ 7\ 7\ VY P £\ 7\ <
T 7 T T T T
TASK: SUBTASK REASONING: MOVE REASONING: GRIPPER ACTION:
Place the The watermelon is the first The watermelon is POS: [Ax, A8, AGrip] = ...
watermelon on the object the robot needs to behind the robot, so it [156, 55]
towel interact with. The robot is not needs to move
v yet close to the watermelon, backward
PLAN: so the robot needs to move VISIBLE OBJECTS:
‘ Watermelon
1. Move to watermelon closer [126, 146, 141, 125],
2. Firmly grasp it ; MOVE: Towel [20, 59, 218, 198],
USER: "Put the 3. Move to towel Move backward Spoon [114, 93, 141, 125]
watermelon on the towel” 4. Place watermelon on SUBTASK:
towel Move to the watermelon

Zawalski et al. 2024.
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Embodied Chain-of-Thought

a synthetic data generation pipeline that leverages numerous foundation models to
extract features from robot demonstrations to put into corresponding textual

1. Describe scene
Prismatic-VLM (7

Please describe the scene. c
[ Proprio 1: [Ax, A8, AGrip]

Robot Trajectory from Dataset

3. Compute motion primitives

Task Instruction Proprio = Primitives [

Put the watermelon on the towel

\

I

I

State Info |
= ]JJ |

[ Proprio 1: [Ax, A8, AGrip] |
I

I

I

I

I

I

I

I

This scene has a watermelon,
spoon, towel, and mushroom.

{right, down, down, ...}

2. Extract bounding boxes
Grounding DINO @

4. Compute gripper position
OWL + SAM )

Observations

black robotic arm

(
|
|
|
|
|
|
|
|
|
|
|
|
\
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5. Generate plans + subtasks

Gemini LLM (1T

Explain the plan, subtask, and
movement for each step, given:

Task Desc. Moves

Plan: Go to watermelon, grasp, go
to towel, release

Subtasks:

1. The robot needs to grasp the
watermelon, so first must move to it

2. The robot is at the watermelon, so
it can now grasp it

30

Moves:

1. The watermelon is right of the
robot, so it must move <right>

2. The watermelon is below the
robot, so it must move <down>




The Plan for Today

e Task Decomposition for Open-World Robotic Control

e API Calling for Open-World Robotic Control

e Affordance Representations for Open-World Robotic Control
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Bridge Semantic and Physical Reasoning with Affordances

physical semantic

reasoning — reasoning

@ spatially grounded visual affordances
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Transporter Policy

Rearrange deep features to infer spatial displacements from visual input for
parameterizing robot actions

a i b
v

Zeng, etal. 2022

T |

0,
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CLIP

Pair the texts and images, minimize the InfoNCE loss.

L I C)=;p(x, c) log pl()zlc;)

p(x[c)

1, A | Dol [l | e f(x7 C) X P(x)

f(x,c) ]

A.TN EInfoNCE =—E |:]'Og Z f(x, C)
x'eX ’

Learning Transferable Visual Models From Natural Language Supervision. Radford et al. 2021
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InNfoNCE

Given a context vector ¢, draw one positive sample from the conditional distribution
p(x|c), and N — 1 negative samples from the unconditional distribution p(x).

Let all samples to be X = {x;}}_,. The probability of x; to be the positive sample is:

O o 0 DS
— » — p xk C i#k p xl _ p xk
=1 p(x;))

van den Oord, et al. 2018
34
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InNfoNCE

Given a context vector ¢, draw one positive sample from the conditional distribution
p(x|c), and N — 1 negative samples from the unconditional distribution p(x).

Let all samples to be X = {x;}}_,. The probability of x; to be the positive sample is:

p(k — “pOS"|X C) _ p(xklc) Hi:/_—k p(xl) _ f@ (xk’ C)
| ?]=1 p(xjlc) Hiij p(x;) Z?Ll fo(xj, c)

p(x|c)
p(x)

fo(x,c)

van den Oord, et al. 2018
35
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InNfoNCE

The InfoNCE loss optimizes the negative log probability of classifying the positive
sample correctly:

fo(x,c)
LinfoNcg = —Ellog Zx:gf:(;’ C)]
folx,0) o p}f’é'g)

van den Oord, et al. 2018
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CLIPort

CLIPort combines the broad semantic understanding of CLIP with the spatial
precision of Transporter.

“pack all the yellow and blue “put the green letter R shape “pack the white tape

“unfold the cloth” “sweep the beans
bibcksintathehtownbarx’ in the right R shape hole” in the brown box” daRfisde into the yellow zone”
=1 t=1
3 .
: * o=
£
e
~ - - -
L
n_ - -
w - - -
O
8
Q- - -

Zeng, etal. 2022
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VoxPoser: Composable 3D Value Maps for Manipulation

Given the RGB-D observation of the environment and a language instruction,
1. prompt LLMs to generate code to compute a value maps
2. plan for motion trajectories to maximize the values

/
\ def affordance_map():

e i msize = (100,100,100)
W Vision _a| mop - np.zeros(msize)
O : handles = detect('handle')
rﬂT::‘T i > Language L k = lambda x: x.pos[2]
= S Model handles. sort(key=k)

top_handle = handles[-1]

X,Y¥,z = top_handle.pos

map[x,y,z] = 1 " o

return smooth(map) Affordance Maps
def constraint_map(Q): G

msize = (100,100,100)

E=i map = np.zeros(msize)

Open the top drawer. ~ L-arge vasesos detecilivaseld

vase = vases[0] el
Please alsowatch —> Language —»| xyz - vase.occupancy_grid |~

out for that vase! Model map[xyz] = -1

return smooth(map)

View #2

= -

T ) \ﬁew#zg

(a) 3D Value Map Composition

Constraint Maps (b) Motion Planning

Huang, et al. 2023
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VoxPoser: Composable 3D Value Maps for Manipulation

require e largecarmount of

in-context.examples

Huang, et al. 2023

CS 4756: Robot Learning (Fall 2024)



Set-of-Mark Prompting

Simply overlaying IDs on image . .
regions unleashes visual ‘ o | -
grounding and corrects answers
for GPT-4V

L ] e " ) e

we .. & S

User What is on the left side of the right laptop? User What is on the left side of the right laptop?
GPT-4V  On the left side of the right laptop, there is a GPT-4V  On the left side of the right laptop
cup or mug. X (numbered as 9), there is a lamp, which is
numbered as 12. ./
User I want to find a seat close to windows, User Iwant to find a seat close to windows,
where can | sit? where can | sit?
You can sit on either of the two black You can sit on the chair numbered as 7. It's
GPT-4V  chairs in front of the white desks, as they GPT-4V  the closest seat to the windows
\ are closest to the windowed wall. X ) \e. (represented by the area numbered as 1). \9

Set-of-Mark Prompting Unleashes Extraordinary Visual Grounding in GPT-4V. Yang et al. 2023
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MOKA: Marking Open-world Keypoint Affordances

Use a set of keypoints to specify the motion trajectory for solving the task.

Separate semantics and motions

Predictable on 2D images.
Can specify diverse motions.

Agnostic to the embodiment.

®
© grasp O function @ target © waypoints Fang, Liu, Abbeel, Levine. RSS 2024
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MOKA: Marking Open-world Keypoint Affordances

Challenge: Directly predicting keypoint coordinates requires fine-grained spatial reasoning.

© grasp O functon @ target O waypoints Fang, Liu, Abbeel, Levine. RSS 2024
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MOKA: Marking Open-world Keypoint Affordances

To facilitate reasoning for the VLM, MOKA annotates a set of marks on the input image.

@ grasp O function @ target © waypoints
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MOKA: Marking Open-world Keypoint Affordances

Without any training on any robot data, the VLM can solve the commanded manipulation task.

@ grasp O function @ target @ waypoints @ = T marks
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MOKA: Marking Open-world Keypoint Affordances

Without any training on any robot data, the VLM can solve the commanded manipulation task.

The prediction is robust to different instructions, poses, and objects.

I different instructions, different poses |

Use the broom to sweep the trash |~ Sweeping the trash from left to Get the trash to the right side.
to the right side of the table. . right with the broom. There is a broom you can use.

SEETORIEYETS

25 47561 Robok Learsing (Fall 2024)



KALIE: Keypoint Affordance Learning from Imagined Environments

How can we fine-tune VLM for robotic control without extensive robot data?

collected fine-tune

@ VLM . | —
~ frozen = :

J

synthetic

LoRA
trained

&

Fang, Liu, Abbeel, Levine. RSS 2024

CS 4756: Robot Learning (Fall 2024)



KALIE: Keypoint Affordance Learning from Imagined Environments

Directly applying generative models to generate new images will result in artifacts and

misaligned information.

input w/0 original w/0 context

How can we generates synthetic data with high diversity while staying faithful to the task
semantics and keypoint annotation?

(€547 561 Rokot Learning (Fall 20724)



KALIE: Keypoint Affordance Learning from Imagined Environments

KALIE uses a context image as additional inputs to the diffusion model, which specifies the
geometric properties of the object to be inpainted.

diffusion model g

expert data context transformed context  transformed mask synthetic data
(s,)) ¢ f(m;*c) f(m,) +m; (s,Yy)

CS 4756: Robot Learning (Fall 2024)




KALIE: Keypoint Affordance Learning from Imagined Environments

® Employ conditional diffusion models to diversify the training data.

® Fine-tune the VLM to predict affordances through low-rank adaptation.

collected data

synthetic data

CS 4756: Robot Learning (Fall 2024)



The Plan for Today

e Task Decomposition for Open-World Robotic Control

e API Calling for Open-World Robotic Control

e Affordance Representations for Open-World Robotic Control
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