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The story thus far ...
Decision-making

Perception

Models of humans

D Practical Robot Learning

Today-> D Offline RL
[ ] Sim-to-Real



Today's class

0 What is offline RL? Why do we need it for robots?

0 Paradigm 1: Offline RL via Pessimism
O Problem with Q-learning
0O Pessimism to the rescue

0 Paradigm 2: RL via Supervised Learning
0 Return-conditioned Supervised Learning
0 Problem in Stochastic MDPs



Why do we need offline RL tor
robots?’



Robots today still only work in CLOSED world

The Dream Reality



Generalize to variations of the OPEN world?




Why can't we do RL with
robots in the real world?



Machine learning's answer!

Big Data

Credit: Sergey Levine "Offline RL lecture”
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Efforts underway to scale up robotics data!

Institutions

- 22 robots, 21 different

jectories
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(c) # Trajectories per Embodiment

(b) # Scenes per Embodiment
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Hope: Data grows logarithmically with tasks

On the quest for shared priors
w/ machine learning

# Tasks

Interact with the physical world to learn bottom-up commonsense

T

Credit: Andy Zeng .e. "how the world works'
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Reality: Data grows linearly with tasks

On the quest for shared priors
w/ machine learning

Reality

Expectation
Data

Complexity in environment, embodiment, contact, etc.

\!

# Tasks

Interact with the physical world to learn bottom-up commonsense

T

_ ..e. "how the world works"
Credit: Andy Zeng
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But for today, let's pretend we can collect a
ton of data
that ‘covers tasks we care about



How can we learn optimal
from large data collected by
any policy?



Goal: Offline Reinforcement Learning

. big dataset
= © from past
~ interaction train for
occasionally many epochs
get more data v

Credit: Sergey Levine "Offline RL lecture”



Different paradigms of RL

Collect data with on-policy RL
MOost recently rollout data {(S;. a;. S, ri)
policy 7,

Train on
only this
data

rollout(s)

Credit: Sergey Levine "Offline RL lecture”
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Different paradigms of RL

off-policy RL

Collect data with

most recently rollout data {(s;.a;.s!.r;)]
policy .

Aggregate outier

this data In

a buffer & update
Train on rollout(s) Trk"" ].
Mk+1

buffer

Credit: Sergey Levine "Offline RL lecture”
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Different paradigms of RL

offline reinforcement learning
Data collected

¢ ) . 3 NN S - —
just once from (8, 80,8, 1)}
any policy in —_
Y ¥ Y buffer
buffer & D
d
. learn
Train on T I
butfer o
¢ data collected ONCe\ e= == == == =
\_ Wwith any policy / training phase

I — e ————— —

Credit: Sergey Levine "Offline RL lecture”
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Offline RL enables robots to learn:
from pre-collected datasets
without real-time interaction,
enabling safer training
and leveraging diverse experiences.



Today's class

& What is offline RL? Why do we need it for robots?
(Enables safer training, leverages diverse experience)
0 Paradigm 1: Offline RL via Pessimism
O Problem with Q-learning
0O Pessimism to the rescue

0 Paradigm 2: RL via Supervised Learning
0 Return-conditioned Supervised Learning
0 Problem in Stochastic MDPs
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Join by Web PollEv.com/sc2582

Join by Text Send sc2582 to 22333
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L et's begin with a simple
“offline” RL algorithm



We have already covered
a fundamental algorithm
in class that can learn
from offline data.

What is it?
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Q-learning for Offline RL

Collect data with a policy 74 and store in &

For every (st, a, 1, SH_I) e

Q*(Sta Clt) — Q*(Sta Clt) 1 CZ(I/'(St, Clt) + yme}x Q>I<(Sz-|-1a Cl/)— Q*(Sta Clt))
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Consider the following MDP




Let's say | collected some data from the MDP

Collect data with a policy z; that is pretty good, and store in &



What policy would Q-learning pick?

Assume we are In
tabular case

Initialize Q values
\R with O's

+1 -10  -10 -1

For every (St, a, 1, St+1) €Y
O*(spa;) = Q%(sp a) + a(r(s, ap) + ymax O%(s,, , a’)— Q*(s;, ay)
d



Think-Pair-Share!

Think (30 sec): What policy would Q-learning
pick in the tabular setting? Why? Ideas to fix it?

Pair: Find a partner

Share (45 sec): Partners exchange
ideas +1

50% /

-1

28



Credit: Sergey Levine "Offline RL lecture”

The Problem with Q-learning

Fundamental problem: counterfactual queries

Training data What the policy wants to do

ﬁ s this good? Bad?

How do we know if

g ) Y
| | || : . . 1 . | | | - | L] | | : . . { = N
B 4 —— 2

we didn’t see it in
the data?

Q-learning can be incorrectly optimistic about
actions it has not see in the data
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Today's class

& What is offline RL? Why do we need it for robots?
(Enables safer training, leverages diverse experience)
0 Paradigm 1: Offline RL via Pessimism
& Problem with Q-learning (Incorrectly optimistic about unseen actions)
0O Pessimism to the rescue

0 Paradigm 2: RL via Supervised Learning
0 Return-conditioned Supervised Learning
0 Problem in Stochastic MDPs
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Pessimism



Pessimism as a policy constraint

Don't deviate too much from the data collecting policy

32



Pessimism as a policy constraint

"Don't deviate too much from the data collecting policy”

Collect data with a policy 7z and store in &
For (s,a,r,s") € D

Q(s,a) < r(s,a) + Earr . [Q(s",a")]

7Tnew(a‘s) — al'g m?X Earvw(a\s) [Q(Sa a)]

Typical Q-learning

Credit: Sergey Levine “Offline RL lecture”
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Pessimism as a policy constraint

"Don't deviate too much from the data collecting policy”

Collect data with a policy 7z and store in &
For (s,a,r,s") € D

Q(s,a) < r(s,a) + Earr . [Q(s",a")]

ﬂ-HeW(a‘S) — arg Hl?X Eafvw(a\s) [Q(S7 8.)] S.1. DKL(T‘-Hﬂ'ﬁ) < €

Typical Q-learning Add a constraint
on policy

Credit: Sergey Levine “Offline RL lecture”
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TD3+BC: Most simple and effective offline RL!

A Minimalist Approach to
Offline Reinforcement Learning

Scott Fujimoto':? Shixiang Shane Gu?
IMila, McGill University
2Google Research, Brain Team
scott.fujimoto@mail.mcgill.ca

T = argmaxli g q)~D —)\Q(S,W(S)) — (m(s) — a)z- )

T
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BC BRAC-p AWAC CQL Fisher-BRC = TD3+BC

£ HalfCheetah 2.0 0.1 235 22 217409 322422 | 102413
g Hopper 9.5 0.1 11.1 9.6 10.7 =0.1 11.4 0.2 11.0 0.1
~  Walker2d 1.2 0.2 0.8 5.1 2.7 1.2 0.6 +0.6 1.4 41.6
g HalfCheetah 36.6 +0.6 44.0 37.4 37.2 +0.3 41.3 +0.5 42.8 +0.3
3 Hopper 30.0 +0.5 31.2 720 4424108 994 +0.4 99.5 +1.0
= Walker2d 11.4 +6.3 72.7 30.1  57.5+8.3 79.5 +1.0 79.7 +1.8
g > HalfCheetah 347 +1.8 45.6 - 419 +1.1 43.3 +0.9 43.3 +0.5
S 'e« Hopper 19.7 +5.9 0.7 - 286409 35.6 +2.5 31.4 +3.0
> % Walker2d 8.3 41.5 0.3 . 158426 426470 | 252+5.1
g E HalfCheetah 67.6 +£13.2 43.8 36.8 27.1 3.9 96.1 +9.5 07.9 +4.4
3 £ Hopper 89.6 +27.6 1.1 809 1114 +1.2 90.6 +43.3 | 112.240.2
=" Walker2d 12.0 £5.8 03 427  68.1+131 103.6+46 | 101.1493
g HalfCheetah 1052 +1.7 38 785 824-+74  106.8 +3.0 105.7 +1.9
2 Hopper 111.5 +1.3 6.6 852 1112421 1123402 | 1122402
™ Walker2d 56.0 +24.9 02 570 1038476  79.94324 | 105.7+2.7

Total 595.3 +91.5 284.1 - 76434615 974.6+£108.3| 979.3+334 |
‘l

___

|
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Works on real self-driving problems!

Imitation Is Not Enough: Robustifying Imitation with
Reinforcement Learning for Challenging Driving Scenarios

Yiren Lu!, Justin Fu', George Tucker?, Xinlei Pan', Eli Bronstein!, Rebecca Roelofs?, Benjamin Sapp’,
Brandyn White!, Aleksandra Faust®, Shimon Whiteson', Dragomir Anguelov!, Sergey Levine®*

Demonstrations Rewards more
more effective effective

'

Tasks/scenarios sorted by frequency (descending order)

<

# of demos
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Works on real self-driving problems!

Imitation Is Not Enough: Robustifying Imitation with
Reinforcement Learning for Challenging Driving Scenarios

Yiren Lu!, Justin Fu!, George Tucker?, Xinlei Pan', Eli Bronstein®, Rebecca Roelofs?, Benjamin Sapp?,
Brandyn White', Aleksandra Faust?, Shimon Whiteson', Dragomir Anguelov', Sergey Levine®*

https://waymo.com /research /imitation-is-not-enough-robustifying-imitation-with-reinforcement-learning/
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Many more sophisticated offline RL methods

Instead of

Conservative Q-Learning nstrainin I
for Offline Reinforcement Learning constra g po Cy'

compute pessimistic

Aviral Kumar', Aurick Zhou', George Tucker?, Sergey Levine':? Q Va | U eS
1UC Berkeley, 2?Google Research, Brain Team
aviralk@berkeley.edu

Adversarially Trained Actor Critic for Offline Reinforcement Learning O D tl m iZ et h e b est
Ching-An Cheng“! Tengyang Xie”? Nan Jiang? Alekh Agarwal’ WO rSt C a Se
performance
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Today's class

& What is offline RL? Why do we need it for robots?
(Enables safer training, leverages diverse experience)
& Paradigm 1: Offline RL via Pessimism
i Pr()blem W|th Q—learning (Incorrectly optimistic about unseen actions)
i Pessimism to the rescue (Constrain policy to not deviate from data)

0 Paradigm 2: RL via Supervised Learning
0 Return-conditioned Supervised Learning
0 Problem in Stochastic MDPs
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Reinforcement Learning is
Hard ...



Many horror stories of RL!

Bootstrapping Distribution shift

Iteration 101

Upper half of state
's BAD

Lower half of state
iIs GOOD

Nightmares of A
Policy Optimization ¥




Need many tricks to make Q-learning work in practice!

Rainbow: Combining Improvements in Deep Reinforcement Learning

Matteo Hessel Joseph Modayil Hado van Hasselt Tom Schaul Georg Ostrovski
DeepMind DeepMind DeepMind DeepMind DeepMind
Will Dabney Dan Horgan Bilal Piot Mohammad Azar David Silver
DeepMind DeepMind DeepMind DeepMind DeepMind

Double Q Learning
Prioritized Replay
Dueling Networks

Multi-step Learning

Distributional RL
Noisy Nets

DQN

- = no double
- = N0 priority
- =  no dueling
no multi-step
no distribution
- = N0 NOISY
- Rainbow

50

100 150 200

Millions of frames



Can we just go back to good
old supervised learning?



Ing success stories

Supervised Learn
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What if | did supervised learning (BC) here?

46



What if | did supervised learning (BC)
only on the top % rollouts?

47



An embarrassingly simply algorithm: BC%

1. Collect offline dataset using whatever behavior policy

2. Get the top % trajectories based on returns

3. Do BC on just that!

48



Does this even work

|
|

17

Dataset Environment
Medium HalfCheetah
Medium Hopper
Medium Walker
Medium Reacher
Medium-Replay  HalfCheetah
Medium-Replay  Hopper
Medium-Replay  Walker
Medium-Replay Reacher

Average

' 10%BC

25%BC 40%BC 100%BC CQL
42.9 43.0 43.1 43.1 44.4
65.9 65.2 65.3 63.9  58.0
788 | 80.9 78.8 773 79.2
51.0 48.9 58.2 58.4  26.0
40.8 40.9 41.1 4.3 46.2
70.6 58.6 31.0 27.6  48.6
704 67.8 67.2 36.9 26.7
| 33.1 16.2 10.7 5.4 19.0
| 56.7 52.7 49.4 390.5 435
|
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An embarrassingly simply algorithm: BC%

1. Collect offline dataset using whatever behavior policy
2. Get the top % trajectories based on returns

3. Do BC on just that!

Challenge with BC%:
What happens as | vary % from small to high values?

50



Can we have a more
principled approach?

51



ldea: T

rain a policy conditioned on the returns

52



RVS: WHAT IS ESSENTIAL FOR OFFLINE RL VIA
SUPERVISED LEARNING?

Scott Emmons', Benjamin Eysenbach?, Ilya Kostrikov', Sergey Levine'

1UC Berkeley, 2Carnegie Mellon University
emmons@berkeley.edu
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The ldea

states S,
‘\ /!
actions > a3'
outcomes w, W,
0 g B

(a) replay butter

\ /.83
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The ldea

@I )

2’

mm,
S,, W,

(b) traiming dataset

55



The ldea

state s

dropout| | dropout

concat— —>:|—> —>|:|—> .

action a

fc layer fc layer
outcome w

(c) network architecture

50



IMax

The Algorithm

For all For all timesteps .
trajectories:  1n that trajectory: K orogltlcg%tllég?/ed
"
T€D 1<t<|T]

Algorithm 1 RvS-Learning

1

2:

S

A A

. Input: Dataset of trajectories, D = {7}
Initialize policy my(a | s,w).
: while not converged do
Randomly sample trajectories: 7 ~ D.
Sample time index for each trajetory, t ~ |1, H], and
sample a corresponding outcome: w ~ f(w | 7¢.1).
Compute loss: L(6) < D, 4, ) 108 To(as | st w)

Update policy parameters: 6 < 6 +nVL(0)
end while
return Conditional policy mg(a | s,w)

57



What are some choices for “outcomes ?

Option 1: What is the future state the agent ended up at?

RvS-G (Goal conditioned)

Option 2: What is the total return that the agent got?

RvS-R (Return conditioned)

58



A very popular idea

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind
Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling

Felipe Codevilla, Matthias Muller, Antonio Lopez, Vladlen Koltun, and Alexey Dosovitskiy. End-to-end driving

via conditional imitation learning

Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned imitation learning.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence modeling

problem

Aviral Kumar, Xue Bin Peng, and Sergey Levine. Reward-conditioned policies
Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression: Simple and
scalable off-policy reinforcement learning

Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaskowski, and Jurgen Schmidhuber. ™ Training

agents using upside-down reinforcement learning 59



Decision Transformer: Reinforcement
Learning via Sequence Modeling

Lili Chen*!, Kevin Lu*!, Aravind Rajeswaran?, Kimin Lee!,
Aditya Grover?, Michael Laskin', Pieter Abbeel!, Aravind Srinivas’', Igor Mordatch™?
*equal contribution Tequal advising
1UC Berkeley “Facebook AI Research °Google Brain
{lilichen, kzll}@berkeley.edu
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return

state

linear decoder

action

Introducing Decision Transformers on
Hugging Face &

Published March 28, 2022

ab

Ugdate en GitH
' LEdward Beeching Thomas Simonini
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Test Time

Start at initial state s,

Specity the desired target return R,

a, = Transformer(R,, sy)

Execute action, observe reward and next state (ry, 5)
Decrement the target return R; = Ry — r;

a, = Transformer(R,, sy, dy, R;, ;)

o4



Performance

b
-
o

un
-

Seems to work!

meesm Decision Transformer (Ours) m=ss  TD Learning == Behavior Cloning

Atari OpenAl Gym Key-To-Door
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Today's class

& What is offline RL? Why do we need it for robots?
(Enables safer training, leverages diverse experience)
& Paradigm 1: Offline RL via Pessimism
i Pr()blem W|th Q—learning (Incorrectly optimistic about unseen actions)
i Pessimism to the rescue (Constrain policy to not deviate from data)

0 Paradigm 2: RL via Supervised Learning T solicy to conditioned or
@ Return-conditioned Supervised Learning retum, Inference with a high return)
O Problem in Stochastic MDPs
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Consider the following MDP




Consider the following MDP

What is the optimal action? What will RvS pick?



Think-Pair-Share!

Think (30 sec): What is the optimal action? What would RvS
play?

Pair: Find a partner

Share (45 sec):
Partners exchange
ideas




The Problem

No matter how much data it is
trained on, RvS will always gamble

and take a; some of the time

rather than a, all ot the time o0

Can prove that RvS tails to assign credit correctly when it
got reward due to an action vs due to environment

Can't tell when it just got lucky

/1



Today's class

& What is offline RL? Why do we need it for robots?
(Enables safer training, leverages diverse experience)
& Paradigm 1: Offline RL via Pessimism
i Pr()blem W|th Q—learning (Incorrectly optimistic about unseen actions)
i Pessimism to the rescue (Constrain policy to not deviate from data)

& Paradigm 2: RL via Supervised Learning - ~
o _ _ (Train policy to conditioned on
@ Return-conditioned Supervised Learning retum, Inference with a high return)
& Problem in Stochastic MDPs  (Fails to account for luck)

(2



