Offline Reinforcement Learning

Sanjiban Choudhury

The story thus far ... Decision-making

Practical Robot Learning Today-> Offline RL Sim-to-Real

Today's class

- □ What is offline RL? Why do we need it for robots?
- Paradigm 1: Offline RL via Pessimism
 Problem with Q-learning
 Pessimism to the rescue
- Paradigm 2: RL via Supervised Learning
 Return-conditioned Supervised Learning
 Problem in Stochastic MDPs

Why do we need offine RL for robots?

Robots today still only work in CLOSED world

The Dream

Reality

Generalize to variations of the OPEN world?

Why can't we do RL with robots in the real world?

Machine learning's answer!

Big Data

Credit: Sergey Levine "Offline RL lecture"

Big Models

Efforts underway to scale up robotics data!

1M trajectories, 22 robots, 21 different institutions

Open-X Embodiment Dataset

Hope: Data grows logarithmically with tasks

On the quest for shared priors w/ machine learning

Interact with the **physical** world to learn bottom-up commonsense 1 i.e. "how the world works"

Credit: Andy Zeng

Reality: Data grows linearly with tasks

Data

Interact with the **physical** world to learn **bottom-up commonsense**

Credit: Andy Zeng

On the quest for shared priors w/ machine learning

i.e. "how the world works"

But for today, let's pretend we can collect a ton of data that "covers" tasks we care about

How can we learn optimal from large data collected by any policy?

Goal: Offline Reinforcement Learning

occasionally get more data

Credit: Sergey Levine "Offline RL lecture"

big datasets from past interaction

train for many epochs

Different paradigms of RL

Collect data with most recently policy π_k

Train on only this data

Credit: Sergey Levine "Offline RL lecture"

on-policy RL

Different paradigms of RL

Collect data with most recently policy π_k Aggregate this data in a buffer \mathscr{D} Train on buffer

Credit: Sergey Levine "Offline RL lecture"

off-policy RL

Data collected just once from any policy in buffer \mathscr{D}

> Train on buffer

Credit: Sergey Levine "Offline RL lecture"

offline reinforcement learning

Offline RL enables robots to learn: from pre-collected datasets without real-time interaction, enabling safer training

and leveraging diverse experiences.

Today's class

- What is offline RL? Why do we need it for robots?
- Paradigm 1: Offline RL via Pessimism **Problem** with Q-learning • Pessimism to the rescue
- Paradigm 2: RL via Supervised Learning Return-conditioned Supervised Learning Problem in Stochastic MDPs

(Enables safer training, leverages diverse experience)

Join by Web **PollEv.com/sc2582** Join by Text Send **sc2582** to **22333**

Let's begin with a simple "offline" RL algorithm

We have already covered a fundamental algorithm in class that can learn from offline data.

What is it?

Collect data with a policy π_{β} and store in \mathscr{D}

For every $(s_t, a_t, r_t, s_{t+1}) \in \mathscr{D}$

Q-learning for Offline RL

 $Q^*(s_t, a_t) = Q^*(s_t, a_t) + \alpha(r(s_t, a_t) + \gamma \max_{y} Q^*(s_{t+1}, a') - Q^*(s_t, a_t))$

Consider the following MDP

Let's say I collected some data from the MDP

Collect data with a policy π_{β} that is pretty good, and store in \mathscr{D}

What policy would Q-learning pick? Assume we are in **S**0 tabular case **50**% 50% Initialize Q values **S**2 **S**1 with 0's -10 -10 For every $(s_t, a_t, r_t, s_{t+1}) \in \mathscr{D}$ $Q^*(s_t, a_t) = Q^*(s_t, a_t) + \alpha(r(s_t, a_t) + \gamma \max_{y} Q^*(s_{t+1}, a') - Q^*(s_t, a_t))$

Think-Pair-Share!

Think (30 sec): What policy would Q-learning pick in the tabular setting? Why? Ideas to fix it?

Pair: Find a partner

Share (45 sec): Partners exchange ideas

S0

-10 -10

50%

S1

50%

S2

Fundamental problem: counterfactual queries

Training data

Credit: Sergey Levine "Offline RL lecture"

The Problem with Q-learning

What the policy wants to do

Is this good? Bad?

How do we know if we didn't see it in the data?

Q-learning can be incorrectly optimistic about actions it has not see in the data

Today's class

- What is offline RL? Why do we need it for robots?
- Paradigm 1: Offline RL via Pessimism **Problem** with Q-learning (Incorrectly optimistic about unseen actions) **D** Pessimism to the rescue
- Paradigm 2: RL via Supervised Learning Return-conditioned Supervised Learning Problem in Stochastic MDPs

(Enables safer training, leverages diverse experience)

Pessimism

Don't deviate too much from the data collecting policy

Pessimism as a policy constraint

Collect data with a policy π_{β} and store in \mathscr{D} For $(s, a, r, s') \in \mathcal{D}$ $Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + E_{\mathbf{a}' \sim \pi_{\text{new}}}[Q(\mathbf{s}', \mathbf{a}')]$ $\pi_{\text{new}}(\mathbf{a}|\mathbf{s}) = \arg\max_{\pi} E_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})}[Q(\mathbf{s}, \mathbf{a})]$

Typical Q-learning

Credit: Sergey Levine "Offline RL lecture"

Pessimism as a policy constraint "Don't deviate too much from the data collecting policy"

 $\pi_{\beta}(\mathbf{a}|\mathbf{s})$

Collect data with a policy π_{β} and store in \mathscr{D} For $(s, a, r, s') \in \mathcal{D}$

 $Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + E_{\mathbf{a}' \sim \pi_{\text{new}}}[Q(\mathbf{s}', \mathbf{a}')]$ $\pi_{\text{new}}(\mathbf{a}|\mathbf{s}) = \arg\max_{\pi} E_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})}[Q(\mathbf{s}, \mathbf{a})] \text{ s.t. } D_{\text{KL}}(\pi || \pi_{\beta}) \leq \epsilon$ Add a constraint Typical Q-learning

Credit: Sergey Levine "Offline RL lecture"

Pessimism as a policy constraint "Don't deviate too much from the data collecting policy"

on policy

 $\pi_{\beta}(\mathbf{a}|\mathbf{s})$

TD3+BC: Most simple and effective offline RL!

A Minimalist Approach to **Offline Reinforcement Learning**

Scott Fujimoto^{1,2} Shixiang Shane Gu² ¹Mila, McGill University ²Google Research, Brain Team scott.fujimoto@mail.mcgill.ca

$$\pi = \operatorname*{argmax}_{\pi}$$

$$\pi = \operatorname*{argmax}_{\pi} \mathbb{E}_{(s,a)\sim\mathcal{D}} \left[\lambda Q(s,\pi(s)) - (\pi(s) - a)^2 \right],$$

$$\mathbb{E}_{(s,a)\sim\mathcal{D}}[Q(s,\pi(s))].$$

		BC	BRAC-p	AWAC	CQL	Fisher-BRC	TD3+BC
Random	HalfCheetah	2.0 ± 0.1	23.5	2.2	21.7 ± 0.9	32.2 ±2.2	10.2 ± 1.3
	Hopper	9.5 ±0.1	11.1	9.6	10.7 ±0.1	11.4 ±0.2	11.0 ±0.1
	Walker2d	1.2 ±0.2	0.8	5.1	2.7 ±1.2	0.6 ±0.6	1.4 ±1.6
Medium	HalfCheetah	36.6 ±0.6	44.0	37.4	37.2 ± 0.3	41.3 ±0.5	42.8 ±0.3
	Hopper	30.0 ± 0.5	31.2	72.0	44.2 ± 10.8	99.4 ±0.4	99.5 ±1.0
	Walker2d	$11.4 \pm \! 6.3$	72.7	30.1	57.5 ± 8.3	79.5 ±1.0	79.7 ±1.8
Medium Replay	HalfCheetah	34.7 ±1.8	45.6	-	41.9 ±1.1	43.3 ±0.9	43.3 ±0.5
	Hopper	$19.7 \pm \! 5.9$	0.7	-	28.6 ± 0.9	35.6 ±2.5	31.4 ±3.0
	Walker2d	8.3 ±1.5	-0.3	-	15.8 ± 2.6	42.6 ±7.0	25.2 ±5.1
Medium Expert	HalfCheetah	67.6 ±13.2	43.8	36.8	27.1 ±3.9	96.1 ±9.5	97.9 ±4.4
	Hopper	89.6 ± 27.6	1.1	80.9	111.4 ±1.2	90.6 ±43.3	112.2 ± 0.2
	Walker2d	$12.0 \pm \! 5.8$	-0.3	42.7	68.1 ±13.1	103.6 ±4.6	101.1 ±9.3
Expert	HalfCheetah	105.2 ±1.7	3.8	78.5	82.4 ±7.4	106.8 ±3.0	105.7 ±1.9
	Hopper	111.5 ±1.3	6.6	85.2	111.2 ±2.1	112.3 ±0.2	112.2 ± 0.2
	Walker2d	56.0 ± 24.9	-0.2	57.0	103.8 ±7.6	79.9 ±32.4	105.7 ±2.7
	Total	595.3 ±91.5	284.1	-	764.3 ±61.5	974.6 ±108.3	979.3 ±33.4

Works on real self-driving problems!

Imitation Is Not Enough: Robustifying Imitation with Reinforcement Learning for Challenging Driving Scenarios

Yiren Lu¹, Justin Fu¹, George Tucker², Xinlei Pan¹, Eli Bronstein¹, Rebecca Roelofs², Benjamin Sapp¹, Brandyn White¹, Aleksandra Faust², Shimon Whiteson¹, Dragomir Anguelov¹, Sergey Levine^{2,3}

Works on real self-driving problems!

Imitation Is Not Enough: Robustifying Imitation with Reinforcement Learning for Challenging Driving Scenarios

Yiren Lu¹, Justin Fu¹, George Tucker², Xinlei Pan¹, Eli Bronstein¹, Rebecca Roelofs², Benjamin Sapp¹, Brandyn White¹, Aleksandra Faust², Shimon Whiteson¹, Dragomir Anguelov¹, Sergey Levine^{2,3}

https://waymo.com/research/imitation-is-not-enough-robustifying-imitation-with-reinforcement-learning/

Many more sophisticated offline RL methods

Conservative Q-Learning for Offline Reinforcement Learning

Aviral Kumar¹, Aurick Zhou¹, George Tucker², Sergey Levine^{1,2} ¹UC Berkeley, ²Google Research, Brain Team aviralk@berkeley.edu

Adversarially Trained Actor Critic for Offline Reinforcement Learning

Ching-An Cheng^{*1} Tengyang Xie^{*2} Nan Jiang² Alekh Agarwal³

Instead of constraining policy, compute pessimistic Q values

Optimize the best worst case performance

Today's class

- What is offline RL? Why do we need it for robots?
- Paradigm 1: Offline RL via Pessimism **Problem** with Q-learning (Incorrectly optimistic about unseen actions) Solution Pessimism to the rescue (Constrain policy to not deviate from data)
- Paradigm 2: RL via Supervised Learning Return-conditioned Supervised Learning Problem in Stochastic MDPs

(Enables safer training, leverages diverse experience)

Reinforcement Learning is Hard ...

Many horror stories of RL!

Nightmares of Policy Optimization

Bootstrapping

Distribution shift

Need many tricks to make Q-learning work in practice!

Rainbow: Combining Improvements in Deep Reinforcement Learning

Matteo Hessel DeepMind

Joseph Modayil DeepMind

Hado van Hasselt DeepMind

Tom Schaul DeepMind

Will Dabney DeepMind

Dan Horgan DeepMind

Bilal Piot DeepMind

Mohammad Azar DeepMind

Double Q Learning Prioritized Replay Dueling Networks Multi-step Learning Distributional RL Noisy Nets

Georg Ostrovski DeepMind

> David Silver DeepMind

- no priority
- no dueling
- no multi-step
- no distribution
- no noisy
- Rainbow

150 200 50 100 U Millions of frames

Can we just go back to good old supervised learning?

Supervised Learning success stories

What if I did supervised learning (BC) here?

-5

What if I did supervised learning (BC) only on the top % rollouts?

An embarrassingly simply algorithm: BC%

1. Collect offline dataset using whatever behavior policy

2. Get the top % trajectories based on returns

3. Do BC on just that!

Does this even work ?!?

Dataset	Environment			
Medium	HalfCheetah			
Medium	Hopper			
Medium	Walker			
Medium	Reacher			
Medium-Replay	HalfCheetah			
Medium-Replay	Hopper			
Medium-Replay	Walker			
Medium-Replay	Reacher			
Average				

A legit

				/
10%BC	25%BC	40%BC	100%BC	CQL
42.9	43.0	43.1	43.1	44.4
65.9	65.2	65.3	63.9	58.0
78.8	80.9	78.8	77.3	79.2
51.0	48.9	58.2	58.4	26.0
40.8	40.9	41.1	4.3	46 . 2
70.6	58.6	31.0	27.6	48.6
70.4	67.8	67.2	36.9	26.7
33.1	16.2	10.7	5.4	19.0
56.7	52.7	49.4	39.5	43.5

An embarrassingly simply algorithm: BC%

- 1. Collect offline dataset using whatever behavior policy
 - 2. Get the top % trajectories based on returns
 - 3. Do BC on just that!

Challenge with BC%: What happens as I vary % from small to high values?

Can we have a more principled approach?

Idea: Train a policy *conditioned* on the returns

$\pi(a \mid s, R)$

RVS: WHAT IS ESSENTIAL FOR OFFLINE RL VIA SUPERVISED LEARNING?

Scott Emmons¹, Benjamin Eysenbach², Ilya Kostrikov¹, Sergey Levine¹ ¹UC Berkeley, ²Carnegie Mellon University emmons@berkeley.edu

(a) replay buffer

(b) training dataset

(c) network architecture

The Algorithm

Algorithm 1 RvS-Learning

- 1: Input: Dataset of traject
- 2: Initialize policy $\pi_{\theta}(a \mid s)$
- 3: while not converged do
- 4: Randomly sample tra
- 5: Sample time index f sample a corresponding
- 6: Compute loss: $\mathcal{L}(\theta)$
- 7: Update policy param
- 8: end while
- 9: return Conditional polic

For all achieved outcomes:

$$\mathbb{E}_{\omega \sim f(\omega \mid \tau_{t:H})}[\log \pi_{\theta}(a_t \mid s_t, \omega)].$$

tories,
$$\mathcal{D} = \{\tau\}$$

 (π, ω) .

ajectories:
$$\tau \sim \mathcal{D}$$
.
For each trajetory, $t \sim [1, H]$, and
outcome: $\omega \sim f(\omega \mid \tau_{t:H})$.
 $\leftarrow \sum_{(s_t, a_t, \omega)} \log \pi_{\theta}(a_t \mid s_t, \omega)$
neters: $\theta \leftarrow \theta + \eta \nabla_{\theta} \mathcal{L}(\theta)$

$$\operatorname{cy} \pi_{ heta}(a \mid s, \omega)$$

What are some choices for "outcomes"?

- Option 1: What is the future state the agent ended up at?
 - RvS-G (Goal conditioned)

Option 2: What is the total return that the agent got? RvS-R (Return conditioned)

A very popular idea

Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling

via conditional imitation learning

problem

Aviral Kumar, Xue Bin Peng, and Sergey Levine. Reward-conditioned policies

scalable off-policy reinforcement learning

agents using upside-down reinforcement learning

- Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind
- Felipe Codevilla, Matthias Muller, Antonio Lopez, Vladlen Koltun, and Alexey Dosovitskiy. End-to-end driving
- Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned imitation learning.
- Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence modeling
- Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression: Simple and
- Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaskowski, and Jurgen Schmidhuber. "Training

Decision Transformer: Reinforcement Learning via Sequence Modeling

Lili Chen^{*,1}, Kevin Lu^{*,1}, Aravind Rajeswaran², Kimin Lee¹, Aditya Grover², Michael Laskin¹, Pieter Abbeel¹, Aravind Srinivas^{†,1}, Igor Mordatch^{†,3} *equal contribution [†]equal advising ¹UC Berkeley ²Facebook AI Research ³Google Brain {lilichen, kzl}@berkeley.edu

Introducing Decision Transformers on Hugging Face 😂

Published March 28, 2022

Update on GitHub

Section Section Edward Beeching

Test Time

Start at initial state s_0 Specify the desired target return R_0 $a_0 = \text{Transformer}(R_0, s_0)$ Execute action, observe reward and next state (r_0, s_1) Decrement the target return $R_1 = R_0 - r_0$ $a_1 = \text{Transformer}(R_0, s_0, a_0, R_1, s_1)$

Today's class

- What is offline RL? Why do we need it for robots?
- Paradigm 1: Offline RL via Pessimism **Problem** with Q-learning (Incorrectly optimistic about unseen actions) **More Pessimism to the rescue** (Constrain policy to not deviate from data)
- Paradigm 2: RL via Supervised Learning Return-conditioned Supervised Learning Problem in Stochastic MDPs

(Enables safer training, leverages diverse experience)

(Train policy to conditioned on return, Inference with a high return)

Consider the following MDP

What is the optimal action? What will RvS pick?

Consider the following MDP

Think-Pair-Share!

Think (30 sec): What is the optimal action? What would RvS play?

Pair: Find a partner

Share (45 sec): Partners exchange ideas

70

No matter how much data it is trained on, RvS will always gamble and take a_1 some of the time 50% rather than a_2 all of the time

Can't tell when it just got lucky

Can prove that RvS fails to assign credit correctly when it got reward due to an action vs due to environment

r = 1

71

Today's class

- What is offline RL? Why do we need it for robots?
- Paradigm 1: Offline RL via Pessimism **Ore Problem with Q-learning (Incorrectly optimistic about unseen actions)** Solution Pessimism to the rescue (Constrain policy to not deviate from data)
- Paradigm 2: RL via Supervised Learning Return-conditioned Supervised Learning Problem in Stochastic MDPs

(Enables safer training, leverages diverse experience)

(Train policy to conditioned on return, Inference with a high return) (Fails to account for luck)

