
Imitation Learning from
Privileged Information in Sim2Real

Sanjiban Choudhury

1

Today’s class

2

Sim2Real: The double-edged sword
Case study: OpenAI Dactyl Hand

Teacher->Student distillation
Case study: Visual Dexterity

Imitation Learning with Privileged Information

 Sim2Real: Double-edged sword

3

The Good The Danger

We can run reinforcement
learning to compute optimal

policies!

(1) Exploration is safe
(2) Leverage privileged

information

Mismatch between simulation
and reality

(1) Observation mismatch
(2) Transition mismatch

4

Today’s Robot:
Dextrous Manipulation

5

How babies learn to manipulate

Most robots today!

6

Learning Dexterity

(Open AI)

7

8

https://www.youtube.com/watch?v=jwSbzNHGflM

9

Train a policy in simulation Test in real world
(RL)

Sim Real

Activity!

Think-Pair-Share!

11

Think (30 sec): How will you train a policy in sim? (Input/output/
method). What is a challenge in transferring it to real?

Pair: Find a partner

Share (45 sec): Partners exchange
 ideas

Lets see what
OpenAI did!

13

SimStep 1

Setup
parallelized
simulator

14

Sim

Step 2

Why this input? Why LSTM?

Train RL
policy in

sim

15

S , A , R , 𝒯
Let’s setup the MDP for the problem!

16

S , A , R , 𝒯
Question: Is the current object pose and fingertip

location sufficient to capture state?

17

S , A , R , 𝒯
No!

This is merely the current observation of a POMDP

Need to keep a HISTORY

E.g. History of observations can reveal the weight of
the object or how fast the index finger can move.

18

S , A , R , 𝒯
20 dimensional

19

S , A , R , 𝒯

20

Sim

Step 3
Train model to map

camera images
to policy input in sim

21

Real
Step 4: Transfer to Real

Sim2Real as Transferring MDPs

22

̂S , A , R , 𝒯̂ S , A , R , 𝒯
RealSim

There will be a mismatch in state representations and transition

Our policy needs to be robust to this mismatch

Key Idea: Add in Randomization in Sim

23

1. Randomize the observation

Key Idea: Add in Randomization in Sim

24

1. Randomize the observation

2. Randomize the physics

Key Idea: Add in Randomization in Sim

25

1. Randomize the observation

2. Randomize the physics

3. Unmodeled effects

Key Idea: Add in Randomization in Sim

26

1. Randomize the observation

2. Randomize the physics

3. Unmodeled effects

4. Visual randomization

Today’s class

27

Sim2Real: The double-edged sword
Case study: OpenAI Dactyl Hand

Teacher->Student distillation
Case study: Visual Dexterity

Imitation Learning with Privileged Information

28

What if we made the problem
much much harder?

29

30

Upside down object manipulation

From 12 cameras to 1 camera

Generalize to lots of different objects

31

Activity!

Think-Pair-Share!

33

Think (30 sec): Why can’t we apply OpenAI strategy to this
setting? What are the challenges?

Pair: Find a partner

Share (45 sec): Partners exchange
 ideas

The Challenge

34

Doing RL purely based on observation data (point clouds) is very
challenging

The policy needs to learn 2 things simultaneosly:

1. What are good visual features?

2. What are good actions?

35

Can we train the RL using

privileged information that is

present in sim during training?

36

Teacher Policy

Student Policy Action

+ ActionStudent Policy

Physics Simulation

Rendering

Physics Simulation

Physics Simulation

Imitation Learning

Reinforcement Learning

Finetune

+ ActionStudent Policy
Real World

robot state (position) object pose goal orientation

robot state (velocity) object velocity

1. Teacher Policy Training

2.2 Student Policy Training - Stage 2

3. Real-world Deployment

2.1 Student Policy Training - Stage 1

SE(3)
Transformation

SE(3)
Transformation

SE(3)
Transformation

Imitation Learning

Fig. 6 Teacher and two-stage student training framework. First, a teacher policy is trained
using reinforcement learning with privileged state information. Then, a student policy is trained
to imitate the teacher using synthetic and complete point clouds as input. The student policy is
further fine-tuned using rendered point clouds. During deployment, the student policy can be
directly used to control real robots.

26

Policy

RL with provileged information

But if we train a policy using
privileged information in sim,

how will we run it in real
where we don’t have privileged

information?

37

38

Can we train the RL using

privileged information that is

present in sim during training?

Can we imitate the RL policy with

a policy that only has access to

real sensor information?

39

Teacher Policy

Student Policy Action

+ ActionStudent Policy

Physics Simulation

Rendering

Physics Simulation

Physics Simulation

Imitation Learning

Reinforcement Learning

Finetune

+ ActionStudent Policy
Real World

robot state (position) object pose goal orientation

robot state (velocity) object velocity

1. Teacher Policy Training

2.2 Student Policy Training - Stage 2

3. Real-world Deployment

2.1 Student Policy Training - Stage 1

SE(3)
Transformation

SE(3)
Transformation

SE(3)
Transformation

Imitation Learning

Fig. 6 Teacher and two-stage student training framework. First, a teacher policy is trained
using reinforcement learning with privileged state information. Then, a student policy is trained
to imitate the teacher using synthetic and complete point clouds as input. The student policy is
further fine-tuned using rendered point clouds. During deployment, the student policy can be
directly used to control real robots.

26

40

Teacher Policy

Student Policy Action

+ ActionStudent Policy

Physics Simulation

Rendering

Physics Simulation

Physics Simulation

Imitation Learning

Reinforcement Learning

Finetune

+ ActionStudent Policy
Real World

robot state (position) object pose goal orientation

robot state (velocity) object velocity

1. Teacher Policy Training

2.2 Student Policy Training - Stage 2

3. Real-world Deployment

2.1 Student Policy Training - Stage 1

SE(3)
Transformation

SE(3)
Transformation

SE(3)
Transformation

Imitation Learning

Fig. 6 Teacher and two-stage student training framework. First, a teacher policy is trained
using reinforcement learning with privileged state information. Then, a student policy is trained
to imitate the teacher using synthetic and complete point clouds as input. The student policy is
further fine-tuned using rendered point clouds. During deployment, the student policy can be
directly used to control real robots.

26

41

Teacher Policy

Student Policy Action

+ ActionStudent Policy

Physics Simulation

Rendering

Physics Simulation

Physics Simulation

Imitation Learning

Reinforcement Learning

Finetune

+ ActionStudent Policy
Real World

robot state (position) object pose goal orientation

robot state (velocity) object velocity

1. Teacher Policy Training

2.2 Student Policy Training - Stage 2

3. Real-world Deployment

2.1 Student Policy Training - Stage 1

SE(3)
Transformation

SE(3)
Transformation

SE(3)
Transformation

Imitation Learning

Fig. 6 Teacher and two-stage student training framework. First, a teacher policy is trained
using reinforcement learning with privileged state information. Then, a student policy is trained
to imitate the teacher using synthetic and complete point clouds as input. The student policy is
further fine-tuned using rendered point clouds. During deployment, the student policy can be
directly used to control real robots.

26

42

Teacher Policy

Student Policy Action

+ ActionStudent Policy

Physics Simulation

Rendering

Physics Simulation

Physics Simulation

Imitation Learning

Reinforcement Learning

Finetune

+ ActionStudent Policy
Real World

robot state (position) object pose goal orientation

robot state (velocity) object velocity

1. Teacher Policy Training

2.2 Student Policy Training - Stage 2

3. Real-world Deployment

2.1 Student Policy Training - Stage 1

SE(3)
Transformation

SE(3)
Transformation

SE(3)
Transformation

Imitation Learning

Fig. 6 Teacher and two-stage student training framework. First, a teacher policy is trained
using reinforcement learning with privileged state information. Then, a student policy is trained
to imitate the teacher using synthetic and complete point clouds as input. The student policy is
further fine-tuned using rendered point clouds. During deployment, the student policy can be
directly used to control real robots.

26

Today’s class

43

Sim2Real: The double-edged sword
Case study: OpenAI Dactyl Hand

Teacher->Student distillation
Case study: Visual Dexterity

Imitation Learning with Privileged Information

44

How should we imitate experts
that have privileged

information?

Imitate

Learner
w/ limited sensing

Expert
can see further

Imitating Experts with Privileged Information

47

Just do Behavior Cloning?
1. Collect data from experts (who have privileged information)

s*0 , a*0 , s*1 , a*1 , …, s*T

2. Train a policy that maps history to action

h*t = {o*t , a*t−1, o*t−1, …, o*t−k} π : h*t → a*t

Why history?

Quiz!

49

Solution: Interactively query expert

ht

a*t

Solution: Interactively query expert

e.g DAGGER

1. Roll out learner

2. Query Expert

3. Aggregate Data
and repeat!

52

Incredibly successful idea that
has worked across a lot of

application!

Privileged Information: Self-driving

[Chen et al. 2020]

Privileged Information: UAV Navigation

[Zhang et al. 2016]

Privileged Information: Legged Locomotion

[Lee et al. 2020]

Teacher
Policy

Student
Policy

Imitate

Privileged Information: Motion Planning

add {ft, Q
⇡OR} to data

Sample a world �

from database P (�)

Roll-in with policy ⇡mix

to get history t

Execute a random action at

and featurize (t, at) as ft

Roll out with oracle ⇡OR

at

Fig. 6. An overview of SAIL in search based planning where a learner ⇡̂ is trained to imitate a clairvoyant oracle ⇡OR. There are 4 key steps. Step 1: A
world map � is sampled from database representing P (�) along with start goal pair (vs, vg). Step 2: A mixture policy ⇡mix, of the learner and oracle is
used to roll-in on � to a timestep t to get history t which is the combination of open list, closed list and invalid edges. Step 3: A random vertex at from
the open list is chosen and (t, at) is featurized as ft. Step 4: A clairvoyant oracle ⇡OR is given full access to world map � to compute the cumulative
cost to go Q⇡OR . The pair (ft, Q⇡OR) is added to data to update the learner. This process is repeated to train a sequence of learners.

allows us a better roll-in procedure where the oracle and
learner are interleaved. We adapt the AGGREVATE framework
to present an algorithm, Search as Imitation Learning (SAIL).

Algorithm 5 SAIL (P (�), P (vs, vg), k)

1: Initialize D ;, ⇡̂1 to any policy in ⇧
2: for i = 1 to N do

3: Initialize sub dataset Di ;
4: Collect mk data points as follows:
5: for j = 1 to m do

6: Sample world map � ⇠ P (�)
7: Sample (vs, vg) ⇠ P (vs, vg)
8: Invoke clairvoyant oracle planner

to compute Q
⇡OR(�, v) 8 v 2 V

9: Sample uniformly k timesteps {t1, t2, . . . , tk}
where each ti 2 {1, . . . , T}

10: Rollout search with
⇡mix,i = �i⇡OR + (1� �i)⇡̂i

11: At each t 2 {t1, t2, . . . , tk} pick a random
action at to get corresponding (t, v)

12: Query oracle for Q
OR (�, at)

13: Di Di [{ t, at, t, Q
OR (�, at)}

14: Aggregate datasets: D D
S

Di

15: Train cost-sensitive classifier ⇡̂i+1 on D
16: Return best ⇡̂i on validation

Alg. 5, describes the SAIL framework which iteratively
trains a sequence of policies (⇡̂1, ⇡̂2, . . . , ⇡̂N). For training
the learner, we collect a dataset D as follows - At every
iteration i, the agent executed m different searches (Alg. 1).
For every search, a different world � and the pair (vs, vg) is
sampled from a database. The agent then rolls-out a search
with a mixture policy ⇡mix,i which blends the learner’s cur-
rent policy, ⇡̂i and the oracle’s policy, ⇡OR using blending
parameter �i. During the search execution, at every timestep
in a set of k uniformly sampled timesteps, we select a random

action from the set of feasible actions and collect a datapoint
{ t, at, t, Q

OR (�, at)}. The policy ⇡mix,i is rolled out till the
end of the episode and all the collected data is aggregated with
dataset D. At the end of N iterations, the algorithm returns
the best performing policy on a set of held-out validation
environment or alternatively, a mixture of (⇡̂1, ⇡̂2, . . . , ⇡̂N).
Fig. 6 illustrates the SAIL framework.

Note that while the oracle is invoked once per �, we obtain
k datapoints - this is critical for speeding up training. We
also note that even though the time complexity of Select
is O (|Ot|) at timestep t, SAIL can have better overall com-
plexity if it can achieve a squared reduction in number of
expansions compared to uninformed search as discussed more
in Appendix G.

VI. EXPERIMENTS ON INFORMATIVE PATH PLANNING

In this section, we extensively evaluate our approach on
a set of 2D and 3D informative path planning problems
across a spectrum of synthetic and real world environments.
We examine a class of informative path planning problem
where a robot, equipped with a range limited sensor, pos-
sibly constrained by time and fuel resources, is tasked with
3D reconstruction of structures in the world. We choose a
variety of environments to highlight the importance of adaptive
behaviours for information gathering. Our implementation is
open sourced for both MATLAB and C++ (https://bitbucket.
org/sanjiban/matlab learning info gain).

A. Problem Details
We consider both 2D and 3D informative path planning

problems. The world map � is represented as a 2D or 3D
binary grid, i.e. a grid cell is either occupied or free. The
candidate set of sensing locations V is generated by uniformly
randomly sampling nodes in the configuration space of the
robot. For 2D problems, the configuration space of the robot
is SE(2), for 3D it is SE(3). We assume for simplicity that
the robot can teleport between any two nodes vi and vj and

add {ft, Q
⇡OR} to data

Sample a world �

from database P (�)

Roll-in with policy ⇡mix

to get history t

Execute a random action at

and featurize (t, at) as ft

Roll out with oracle ⇡OR

at

Fig. 6. An overview of SAIL in search based planning where a learner ⇡̂ is trained to imitate a clairvoyant oracle ⇡OR. There are 4 key steps. Step 1: A
world map � is sampled from database representing P (�) along with start goal pair (vs, vg). Step 2: A mixture policy ⇡mix, of the learner and oracle is
used to roll-in on � to a timestep t to get history t which is the combination of open list, closed list and invalid edges. Step 3: A random vertex at from
the open list is chosen and (t, at) is featurized as ft. Step 4: A clairvoyant oracle ⇡OR is given full access to world map � to compute the cumulative
cost to go Q⇡OR . The pair (ft, Q⇡OR) is added to data to update the learner. This process is repeated to train a sequence of learners.

allows us a better roll-in procedure where the oracle and
learner are interleaved. We adapt the AGGREVATE framework
to present an algorithm, Search as Imitation Learning (SAIL).

Algorithm 5 SAIL (P (�), P (vs, vg), k)

1: Initialize D ;, ⇡̂1 to any policy in ⇧
2: for i = 1 to N do

3: Initialize sub dataset Di ;
4: Collect mk data points as follows:
5: for j = 1 to m do

6: Sample world map � ⇠ P (�)
7: Sample (vs, vg) ⇠ P (vs, vg)
8: Invoke clairvoyant oracle planner

to compute Q
⇡OR(�, v) 8 v 2 V

9: Sample uniformly k timesteps {t1, t2, . . . , tk}
where each ti 2 {1, . . . , T}

10: Rollout search with
⇡mix,i = �i⇡OR + (1� �i)⇡̂i

11: At each t 2 {t1, t2, . . . , tk} pick a random
action at to get corresponding (t, v)

12: Query oracle for Q
OR (�, at)

13: Di Di [{ t, at, t, Q
OR (�, at)}

14: Aggregate datasets: D D
S

Di

15: Train cost-sensitive classifier ⇡̂i+1 on D
16: Return best ⇡̂i on validation

Alg. 5, describes the SAIL framework which iteratively
trains a sequence of policies (⇡̂1, ⇡̂2, . . . , ⇡̂N). For training
the learner, we collect a dataset D as follows - At every
iteration i, the agent executed m different searches (Alg. 1).
For every search, a different world � and the pair (vs, vg) is
sampled from a database. The agent then rolls-out a search
with a mixture policy ⇡mix,i which blends the learner’s cur-
rent policy, ⇡̂i and the oracle’s policy, ⇡OR using blending
parameter �i. During the search execution, at every timestep
in a set of k uniformly sampled timesteps, we select a random

action from the set of feasible actions and collect a datapoint
{ t, at, t, Q

OR (�, at)}. The policy ⇡mix,i is rolled out till the
end of the episode and all the collected data is aggregated with
dataset D. At the end of N iterations, the algorithm returns
the best performing policy on a set of held-out validation
environment or alternatively, a mixture of (⇡̂1, ⇡̂2, . . . , ⇡̂N).
Fig. 6 illustrates the SAIL framework.

Note that while the oracle is invoked once per �, we obtain
k datapoints - this is critical for speeding up training. We
also note that even though the time complexity of Select
is O (|Ot|) at timestep t, SAIL can have better overall com-
plexity if it can achieve a squared reduction in number of
expansions compared to uninformed search as discussed more
in Appendix G.

VI. EXPERIMENTS ON INFORMATIVE PATH PLANNING

In this section, we extensively evaluate our approach on
a set of 2D and 3D informative path planning problems
across a spectrum of synthetic and real world environments.
We examine a class of informative path planning problem
where a robot, equipped with a range limited sensor, pos-
sibly constrained by time and fuel resources, is tasked with
3D reconstruction of structures in the world. We choose a
variety of environments to highlight the importance of adaptive
behaviours for information gathering. Our implementation is
open sourced for both MATLAB and C++ (https://bitbucket.
org/sanjiban/matlab learning info gain).

A. Problem Details
We consider both 2D and 3D informative path planning

problems. The world map � is represented as a 2D or 3D
binary grid, i.e. a grid cell is either occupied or free. The
candidate set of sensing locations V is generated by uniformly
randomly sampling nodes in the configuration space of the
robot. For 2D problems, the configuration space of the robot
is SE(2), for 3D it is SE(3). We assume for simplicity that
the robot can teleport between any two nodes vi and vj and

Learned
Search Heuristic

Optimal
Value Function

[Choudhury et al. ‘2018]

Imitate

Privileged Information: LLM Agents

57

Train weak student models (LLAMA-8B) to beat strong teachers
(GPT-4!)

Privileged Information: LLM Agents

58

Today’s class

59

What are the challenges with sim2real?
Case study: OpenAI Dactyl Hand

Teacher->Student distillation
Case study: Visual Dexterity

Imitation Learning with Privileged Information

Counter Example to DAGGER w/ privileged information

60

You have a student agent in a dark room
with a door and a security lock

The passcode for the security lock is
written in a blackboard on the wall. There is also a light switch.

Teacher knows the passcode (privileged information)

What is the optimal student policy? What will DAGGER learn?

