Generative World Models
v/s Sim2Real

Sanjiban Choudhury

Lornell Bowers C1S
Computer Science

Today's class

0 Practical MBRL

O Learning Models: The DREAMER algorithm

O Leveraging Physics: Sim2Real

Case study: OpenAl Dactyl Hand

Modelling complex tasks from video input

¥
LS

-~

.
’

‘B
/ .

/

< f\

Challenges with learning complex models

Challenge 1: Can't see state, only get high-dimensional observations

Challenge 2: Planning with complex dynamics

Two strategles

“Physics the sh*t out it!” “Be lazy and use ML"

How can we learn latent low-dimensional
state from high-dimensional observations?’

ldea: Use "auto-encoder’ trick from
computer vision

Reconstructed
image

VOO0 000 OO

From MIT 6.8300/6.8301: Advances in Computer Vision

State

O"‘Q»Q‘O‘Q

_
00O OO

Action

“Flip”

V)
=
.9
>
O,
—
Al

State

State

O"‘Q»Q‘O‘Q

_
00O OO

Action

“Flip”

10

Today's class

@ Practical MBRL

(Only observations, complex dynamics)

O Learning Models: The DREAMER algorithm

O Leveraging Physics: Sim2Real

Case study: OpenAl Dactyl Hand

11

The DREAMER Algorithms

Mastering Diverse Domains through World Models

Danijar Hafner!? Jurgis Pasukonis! Jimmy Ba? Timothy Lillicrap’

"DeepMind *University of Toronto

2023

13

MineRL Diamond Challenge

MineRL Diamond Challenge

Mine Stone
and Create
Stone Pickaxe

Mine
Iron Ore

Gather Create
Wood Wood Pickaxe

— —p —
Smelt Iron .
F?J:?\:t:e and Create Search Dignr:1n0en d
Iron Pickaxe

15

Episode Return

-
N
1

..
| B

n
. 4

DreamerV3 solved this task!

Minecraft Diamond

"DreamerV3
~First.Diamond
— Max from Scratch

Mean

T | 1 T T
10K 100K 1M 10M 100M
Environment Steps

10

The
DREAMER

Algorithm

DREAM TO CONTROL: LEARNING BEHAVIORS
BY LATENT IMAGINATION

Danijar Hafner * Timothy Lillicrap Jimmy Ba Mohammad Norouzi
University of Toronto = DeepMind University of Toronto Google Brain
Google Brain

2020

18

L ook at the videos below

@~ . amansl

Boxing Freeway Frostbite Collect Objects Watermaze

Sparse Cartpole Acrobot Swingup Hopper Hop Walker Run Quadruped Run

Which of these are real vs model?

19

L ook at the videos below

@~ . amansl

Boxing Freeway Frostbite Collect Objects Watermaze

Sparse Cartpole Acrobot Swingup Hopper Hop Walker Run Quadruped Run

They are all from a model!

20

Recap: Model-based RL

Collect
Expert Data

Fit
Model

(Ross & Bagnell, 2012)

Rollout
Policy

21

How does DREAMER fit a model?

Collect Planner
Expert Data

Rollout

Policy

22

Goal: Fit a Model given data

Given Data:
Observations, rewards,
actions

Goal: Fit a Model given data

d, d,
. o
Given Data: — —
Observations, rewards,
actions
Predict:
States,

Dynamics Function,

Reward Function

Observations

Actions

d

al.

25

‘ encode images

{) compute states

Po(S; |04 8,1, a;_1)

State Encoder

0

®
/

d

1

-

——\—lb .
A
0,

d

2

-
o S

/
&

20

d

1

£ = (r,— 1) _L_%._L_,E,Q

i, #
A A A
61.9(’% | St) . .

Reward Decoder

£ = (0,— 0,)*

qe(Ot | St)

Observation Decoder

qo(Si1 |55 a;)

Dynamics
Function

f — KL(pQ(St | Ot, St_la at—l) | | QH(St+1 | St’ at))

Freeze gradients

29

Model True

Results: Learning World Model

‘nput Images

30

Results: Learning World Model

Future Qutcomes

‘nput Images

- 38
h "
-
.)
-~ p -
» a'
~
1

ani| |8poW ani| | _mnos_.

31

How does DREAMER do planning?

Collect Fit
Expert Data Model

Rollout
Policy

32

Goal: Learn a Policy using Actor-Critic

my(a,| s, V(5

Actor Critic

From rollouts in the model

qo(S: | Si—1> A;_1)

33

Recall: Actor-Critic for model-free RL

Start with an arbitrary initial policy z,(a|s)

while not converged do

Roll-out 7y(a|s) to collect trajectories D = {s',a',r', st ¥,

Fit value function Vw(si) using TD, i.e. minimize (r + }/Vw(si) — Vl/,(si))2

Compute advantage A(s’, a’) = r(s’, a’) + VVW(SD — Vw(Si)

Compute gradient -

1 A
Vil (@) = - D Vylog my(af|sh Acs',a
=0
Update parameters ¢ —d+aV,Jp)

34

Actor-Critic in Model-based RL

Start with an arbitrary initial policy z,(a|s)

while not converged do

Roll-out Jtd)(a | s) in the model g,(s"| s, a) to collect trajectories D = (s’ a',r, Sj_}‘iil

Fit value function Vw(si) using TD, i.e. minimize (r + }/Vw(si) — Vl/,(si))2

Compute advantage A(s’, a’) = r(s’, a’) + }/Vw(Si) — Vw(Si)

Compute gradient -

1 A
Vil (@) = - D Vylog my(af|sh Acs',a
=0
Update parameters ¢ —d+aV,Jp)

35

Actor-Critic in Model-based RL

Start with an arbitrary initial policy z,(a|s)

while not converged do

Roll-out 7Z'¢(Cl | s) in the model g,(s"| s, a) to collect trajectories D = (s’ al,r, Si}‘;\il

Fit value function VW(Si) using TD, i.e. minimize (r + }/Vw(sfr) — Vl/,(si))2

Directly backprop gradients through model to update policy!
P — ¢+ aV¢Vw(si)

36

‘ encode images

S
A
=
Ol

‘ encode images

& Imagine ahead .

A
!
Ol

‘ Rollout policy
. o

‘ encode images
& Imagine ahead

@ predict rewards

4

7

Predict rewards
(Freeze gradients)

qe(rt | St)

®
)
@

encode images

Imagine ahead

&
A

predict rewards ‘
Update critic

g
predict values Vl//(S t)

9

encode images

\

!

': l — e ama—
L

.

Imagine ahead |

A

predict rewards

Update actor

predict values

5
!
*,
()

]

i

DREAMER: Results

Sparse Cartpole Acrobot Swingup Hopper Hop Walker Run Quadruped Run Freeway Frostbite Collect Objects Watermaze
Model-based Bl Dreamer (823) Model-free D4APG (786)
28 hours of interaction B PlaNet (332) 23 days of interaction Bl A3C (243)
1000
= SO0
o 000
$ 400
200 . I I I
OOOH'Uc.zh.aout-»\"Jx =T S C D TDE OCQG S0 N RO T Q0 o e 2O
T2 285 P2 2T 3 C 2% 2% AE 22 5 2222 52 a3 22 25 2 E e AS £
25 =23 0323 23538 &5 EE o 2F Sx 2 2 PR ELx §F 22 25 o €2
ESS9 O ES g 5892 u£.E ES585iE_S 3T ESE £ 53
SE O & g ~ = E§ U:n 5o 5 = S <
o o - O = = oA

43

DREAMER is a template
for Model-based RL

But there are many challenges as we
scale to harder real-world applications

DREAMER V2, V3, etc

Today's class

@ Practical MBRL

(Only observations, complex dynamics)

& Learning Models: The DREAMER algorithm

O Leveraging Physics: Sim2Real

Case study: OpenAl Dactyl Hand

45

L earning Dexterity

(Open Al)

Learning Dexterous In-Hand Manipulation

OpenAl; Marcin Andrychowicz, Bowen Baker, Maciek Chociej,
Rafal J6zetfowicz, Bob McGrew, Jakub Pachocki, Arthur Petron,
Matthias Plappert, Glenn Powell, Alex Ray, Jonas Schneider, Szymon Sidor,
Josh Tobin, Peter Welinder, Lilian Weng, Wojciech Zaremba

Initial
configuration

Goal

47

https://www.youtube.com/watch?v=jwSbzNHGflM

REAL-WORLD ENVIRONMENT

A Distributed workers collect
expearience an randomized
environmeanis at large scale.

,
L
L]

e 7

—— ©

Sim Real

Train a policy in simulation Test in real world

(RL)

49

/

A Distributed workers collect
experience on randomized

environments at large scale.

S

im

50

/

A Distributed workers collect
experience on randomized

environments at large scale.

/

B We train a control policy using reinforcement learning.

It chooses the next action based on fingertip positions

and the object pose.

G

>

y

|
P —L
r."\ .

>

-~

Observed
Robot States

?

~ -

»

%

Actions

51

/

A Distributed workers collec
experience onran domized

/)

B We train a control policy using reinforcement learning.
It chooses the next action based on fingertip positions
and the object pose.

. " o »
A *}/
Observed %
Robot States Actions
R J

/

C We train a convolutional neural network to predict the Slm

object pose given three simulated camera images.

Object Pose

/

D We combine the pose estimation network
and the control policy to transfer to the real world.

Object Pose

(:’(Sv

Fingertip
L ocations

[¢

v
¥

4

Jfof
A

b ¢

-

Actions

Fingertip
Locations

Question: Is the current object pose and fingertip
location sufficient to capture state?

55

Object Pose

¥
——

o'

Fingertip

Locations

This is merely the current observation of a POMDP

Need to keep a HISTORY

E.g. History of observations can reveal the weight of
the object or how fast the index finger can move.

50

Actions

57

The reward given at timestep ¢ 1s 7, = d; — d¢.1, where d; and d; ; are the rotation angles between
the desired and current object orientations before and after the transition, respectively. We give an

additional reward of 5 whenever a goal 1s achieved and a reward of —20 (a penalty) whenever the
object 1s dropped. More information about the simulation environment can be found in Appendix C.1.

58

Sim2Real as Transferring MDPs

Sim

Real

There will be a mismatch in state representations and transition

Our policy needs to be robust to this mismatch

59

Key ldea: Add in Randomization in Sim

1. Randomize the observation

Observation noise. To better mimic the kind of noise we expect to experience in reality, we add
Gaussian noise to policy observations. In particular, we apply a correlated noise which 1s sampled
once per episode as well as an uncorrelated noise sampled at every timestep.

60

Key ldea: Add in Randomization in Sim

1. Randomize the observation

2. Randomize the physics

Physics randomizations. Physical parameters like friction are randomized at the beginning of
every episode and held fixed. Many parameters are centered on values found during model calibration
in an effort to make the simulation distribution match reality more closely. Table 1 lists all physics
parameters that are randomized.

o1

Key ldea: Add in Randomization in Sim

1. Randomize the observation
2. Randomize the physics

3. Unmodeled effects

Unmodeled effects. The physical robot experiences many effects that are not modeled by our

simulation. To account for imperfect actuation, we use a simple model of motor backlash and
introduce action delays and action noise before applying them in simulation. Our motion capture

setup sometimes loses track of a marker temporarily, which we model by freezing the position of
a simulated marker with low probability for a short period of time 1n simulation. We also simulate

marker occlusion by freezing its simulated position whenever it 1s close to another marker or the

object. To handle additional unmodeled dynamics, we apply small random forces to the object.

Details on the concrete implementation are available in Appendix C.2.

62

Key ldea: Add in Randomization in Sim

1. Randomize the observation

Visual appearance randomizations. We randomize the following aspects of the rendered scene:
camera positions and intrinsics, lighting conditions, the pose of the hand and object, and the materials
and textures for all objects in the scene. Figure 4 depicts some examples of these randomized

environments. Details on the randomized properties and their ranges are available in Appendix C.2. 2 _ R a n d O m | Z e t h e p h yS | CS

3. Unmodeled effects

4. Visual randomization

63

Today's class

@ Practical MBRL

(Only observations, complex dynamics)

& Learning Models: The DREAMER algorithm

& Leveraging Physics: Sim2Real

Case study: OpenAl Dactyl Hand

o4

