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Today’s class
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Practical MBRL 

Learning Models: The DREAMER algorithm 

Leveraging Physics: Sim2Real 
Case study: OpenAI Dactyl Hand 



Modelling complex tasks from video input
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Challenges with learning complex models
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Challenge 1: Can’t see state, only get high-dimensional observations

Challenge 2: Planning with complex dynamics



Two strategies
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“Physics the sh*t out it!” “Be lazy and use ML”



How can we learn latent low-dimensional 
state from high-dimensional observations?



Idea: Use “auto-encoder” trick from 
computer vision



Reconstructed 
image

Image

X X̂ = F(X)F

“Coral”“Fish”

From MIT 6.8300/6.8301: Advances in Computer Vision
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Practical MBRL 

Learning Models: The DREAMER algorithm 

Leveraging Physics: Sim2Real 
Case study: OpenAI Dactyl Hand 

(Only observations, complex dynamics)



The DREAMER Algorithms
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2023



MineRL Diamond Challenge
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MineRL Diamond Challenge
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DreamerV3 solved this task!
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The 
DREAMER 
Algorithm
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2020



Look at the videos below
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Which of these are real vs model?



Look at the videos below
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They are all from a model!
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Collect 
Expert Data

Rollout 
Policy

Planner
Fit 

Model

Recap: Model-based RL
(Ross & Bagnell, 2012)
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Collect 
Expert Data

Rollout 
Policy

Planner
Fit 

Model

How does DREAMER fit a model?



Goal: Fit a Model given data
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Given Data: 
Observations, rewards, 

actions
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Given Data: 
Observations, rewards, 

actions

Predict: 
States,  

Dynamics Function, 
Reward Function

s1 s2 s3

Goal: Fit a Model given data
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Actions

Observations
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pθ(st |ot, st−1, at−1)

s1 s2 s3

State Encoder
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s1 s2 s3

qθ(rt |st)
Reward Decoder

ℓ = (rt − ̂rt)2
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qθ(ot |st)
Observation Decoder

s1 s2 s3ℓ = (ot − ̂ot)2
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qθ(st+1 |st, at)
Dynamics 
Function

s1 s2 s3

ℓ = KL(pθ(st |ot, st−1, at−1) | |qθ(st+1 |st, at))
Freeze gradients



Results: Learning World Model
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Results: Learning World Model
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Collect 
Expert Data

Rollout 
Policy

Planner
Fit 

Model

How does DREAMER do planning?



Goal: Learn a Policy using Actor-Critic
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πϕ(at |st)

Actor

Vψ(st)

Critic

From rollouts in the model 

qθ(st |st−1, at−1)



Recall: Actor-Critic for model-free RL
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Start with an arbitrary initial policy πϕ(a |s)

while not converged do

Roll-out  to collect trajectories πϕ(a |s) D = {si, ai, ri, si
+}N

i=1

Fit value function  using TD, i.e. minimize Vψ(si) (ri + γVψ(si
+) − Vψ(si))2

ϕ ← ϕ + α∇ϕJ(ϕ)

Compute gradient

∇ϕJ(ϕ) =
1
N [

T−1

∑
t=0

∇θlog πϕ(ai
t |si

t) ̂A(si, ai)]
Update parameters 

Compute advantage ̂A(si, ai) = r(si, ai) + γVψ(si
+) − Vψ(si)



Actor-Critic in Model-based RL
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Start with an arbitrary initial policy πϕ(a |s)

while not converged do

Roll-out  in the model  to collect trajectories πϕ(a |s) qθ(s′ |s, a) D = {si, ai, ri, si
+}N

i=1

Fit value function  using TD, i.e. minimize Vψ(si) (ri + γVψ(si
+) − Vψ(si))2

ϕ ← ϕ + α∇ϕJ(ϕ)

Compute gradient

∇ϕJ(ϕ) =
1
N [

T−1

∑
t=0

∇θlog πϕ(ai
t |si

t) ̂A(si, ai)]
Update parameters 

Compute advantage ̂A(si, ai) = r(si, ai) + γVψ(si
+) − Vψ(si)



Actor-Critic in Model-based RL
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Start with an arbitrary initial policy πϕ(a |s)

while not converged do

Roll-out  in the model  to collect trajectories πϕ(a |s) qθ(s′ |s, a) D = {si, ai, ri, si
+}N

i=1

Fit value function  using TD, i.e. minimize Vψ(si) (ri + γVψ(si
+) − Vψ(si))2

Directly backprop gradients through model to update policy!

ϕ ← ϕ + α∇ϕVψ(si)
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s1
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Rollout policy 
πϕ(at |st)

s1 s2 s3
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s1 s2 s3

qθ(rt |st)

Predict rewards  
(Freeze gradients)
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s1 s2 s3

Vψ(st)
Update critic
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s1 s2 s3

Update actor
πϕ(at |st)



DREAMER: Results
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DREAMER is a template  
for Model-based RL 

But there are many challenges as we 
scale to harder real-world applications

DREAMER V2, V3, etc



Today’s class
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Practical MBRL 

Learning Models: The DREAMER algorithm 

Leveraging Physics: Sim2Real 
Case study: OpenAI Dactyl Hand 

(Only observations, complex dynamics)
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Learning Dexterity

(Open AI)
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https://www.youtube.com/watch?v=jwSbzNHGflM


49

Train a policy in simulation Test in real world
(RL)

Sim Real
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Sim
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Sim
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Sim
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Real
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S , A , R , 𝒯
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S , A , R , 𝒯
Question: Is the current object pose and fingertip 

location sufficient to capture state?
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S , A , R , 𝒯
No!

This is merely the current observation of a POMDP

Need to keep a HISTORY

E.g. History of observations can reveal the weight of 
the object or how fast the index finger can move.
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S , A , R , 𝒯
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S , A , R , 𝒯



Sim2Real as Transferring MDPs
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̂S , A , R , �̂� S , A , R , 𝒯
RealSim

There will be a mismatch in state representations and transition

Our policy needs to be robust to this mismatch



Key Idea: Add in Randomization in Sim
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1. Randomize the observation



Key Idea: Add in Randomization in Sim
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1. Randomize the observation

2. Randomize the physics



Key Idea: Add in Randomization in Sim
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1. Randomize the observation

2. Randomize the physics

3. Unmodeled effects



Key Idea: Add in Randomization in Sim
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1. Randomize the observation

2. Randomize the physics

3. Unmodeled effects

4. Visual randomization



Today’s class
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Practical MBRL 

Learning Models: The DREAMER algorithm 

Leveraging Physics: Sim2Real 
Case study: OpenAI Dactyl Hand 

(Only observations, complex dynamics)


