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Overall Course Plan

2

Foundations (up until last class) 

Advanced Algorithms and Applications  
(till end of course) 
 
Topics: Generative world models, Offline RL, Visual Representations,  
RLHF, Human motion forecasting, … 
Lecturers: Sanjiban, Tapo, Killian Weinberger, Kuan Fang, Tapo, Lerrel 
Pinto, Pulkit Agarwal



Today’s class
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Deriving MBRL loss  

Practical MBRL 

The DREAMER algorithm
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Collect 
Expert Data

Rollout 
Policy

Planner
Fit 

Model

Model Learning with Planner in Loop
(Ross & Bagnell, 2012)

Aggregate 
Data

Train on  
50% expert data 

and  
50% learner data



Model Learning with Planner in Loop
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Collect data from an expert 𝒟expert = {(s, a, s′ )}

Initialize empty data buffer  𝒟learner ← {}
For    i = 1,…, N

Execute policy  in the real world and collect datâπi
𝒟i = {(s, a, s′ )}

Train a new model on 50% expert + 50% learner data
M̂i+1 ← Train(0.5 * 𝒟expert+0.5 * 𝒟learner)

Aggregate data  𝒟learner ← 𝒟learner ∪ 𝒟i

Select the best policy in ̂π1:N+1

Fit a model . Compute a policy  in the model via planningM̂1 ̂π1

Train a new policy  in the model ̂πi+1 M̂i+1



How do we derive this 
algorithm?
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What is the goal of learning models?
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Is it to perfectly 
approximate the 

world?

Model M̂

World M*



What is the goal of learning models?

8Model M̂

Policy ̂π

Is it to perfectly 
approximate the 

world?

Model M̂

World M*

Or … is to find a 
policy that does 
well in the world?
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Vπ⋆

M*(s0) − V ̂π
M*(s0)

Goal: Find model-based policy that bounds 
performance difference to the optimal policy in 

the real world

Optimal 
Policy

Model-based  
policy
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Performance Difference via 
Planning in Model Lemma

ft.  
Simulation Lemma



Let’s say the following is the true MDP

R=0.0

R=0.0

R=-10^6



Correctly predicts all  
transitions but the first

Candidate Model A



Candidate Model B
INOCRRECTLY predicts 

all  
transitions but gets the 

first right



Which model is better? What does MBRL learn?



Today’s class
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Deriving MBRL loss  

Practical MBRL 

The DREAMER algorithm

(Sim. lemma, PD via PM lemma)



The story so far …
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Robots have to act in the world 

Hence, we learned various algorithms for 
decision making 

But we assumed that we can observe the “state”



The story so far …
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But in the real world, no one tells you the 
“state” 

All you see are observations 

How do we learn from observations?



Models.



Models: From Simple to Complex
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Simple Complex



Models: From Simple to Complex
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Simple Complex

Physics Models

Known state 

Strong prior  
on dynamics



Models: From Simple to Complex
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Simple Complex

Physics Models

Known state 

Unknown 
 dynamics

Known state 

Strong prior  
on dynamics

Motion Models



Models: From Simple to Complex
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Simple Complex

Physics Models

Known state 

Unknown 
 dynamics

Known state 

Strong prior  
on dynamics

Motion Models

Unknown  
state 

Unknown 
 dynamics

Open World Models



Activity!
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Modelling Tamago Sushi



Think-Pair-Share!
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Think (30 sec): How would you model making tamago sushi? 

Pair: Find a partner 

Share (45 sec): Partners exchange  
       ideas 



Challenges with learning complex models
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Challenge 1: Can’t see state, only get high-dimensional observations

Challenge 2: Planning with complex dynamics



How can we learn latent low-dimensional 
state from high-dimensional observations?



Idea: Use “auto-encoder” trick from 
computer vision



Reconstructed 
image

Image

X X̂ = F(X)F

“Coral”“Fish”

From MIT 6.8300/6.8301: Advances in Computer Vision
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Action 
“Flip”

St

State
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Action 
“Flip”

St

State

Previous 
State

St−1



Today’s class
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Deriving MBRL loss  

Practical MBRL 

The DREAMER algorithm

(Sim. lemma, PD via PM lemma)

(Only observations, complex dynamics)



The DREAMER Algorithms
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2023



MineRL Diamond Challenge
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MineRL Diamond Challenge
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DreamerV3 solved this task!
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The 
DREAMER 
Algorithm
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2020



Look at the videos below
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Is this from the actual simulator or predictions made by a model?



Look at the videos below
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Predictions by a model!
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Collect 
Expert Data

Rollout 
Policy

Planner
Fit 

Model

Recap: Model-based RL
(Ross & Bagnell, 2012)
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Collect 
Expert Data

Rollout 
Policy

Planner
Fit 

Model

How does DREAMER fit a model?



Goal: Fit a Model given data
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Given Data: 
Observations, rewards, 

actions
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Given Data: 
Observations, rewards, 

actions

Predict: 
States,  

Dynamics Function, 
Reward Function

s1 s2 s3

Goal: Fit a Model given data
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Actions

Observations
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pθ(st |ot, st−1)

s1 s2 s3

State Encoder



48

s1 s2 s3

qθ(rt |st)
Reward Decoder

ℓ = (rt − ̂rt)2
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qθ(ot |st)
Observation Decoder

s1 s2 s3ℓ = (ot − ̂ot)2
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qθ(st+1 |st, at)
Dynamics 
Function

s1 s2 s3



Results: Learning World Model
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Results: Learning World Model
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Collect 
Expert Data

Rollout 
Policy

Planner
Fit 

Model

How does DREAMER do planning?



Goal: Learn a Policy using Actor-Critic
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πϕ(at |st)

Actor

Vψ(st)

Critic

From rollouts in the model 

qθ(st |st−1, at−1)



Recall: Actor-Critic
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Start with an arbitrary initial policy πϕ(a |s)

while not converged do

Roll-out  in the model  to collect trajectories πϕ(a |s) qθ(s′ |s, a) D = {si, ai, ri, si
+}N

i=1

ϕ ← ϕ + α∇ϕJ(ϕ)

Fit value function  using TD, i.e. minimize Vψ(si) (ri + γVψ(si
+) − Vψ(si))2

Compute gradient

∇ϕJ(ϕ) =
1
N [

T−1

∑
t=0

∇θlog πϕ(ai
t |si

t) ̂A(si, ai)]
Update parameters 

Compute advantage ̂A(si, ai) = r(si, ai) + γVψ(si
+) − Vψ(si)
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s1
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Rollout policy 
πϕ(at |st)

s1 s2 s3
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s1 s2 s3

qθ(rt |st)

Predict rewards  
(Freeze gradients)
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s1 s2 s3

Vψ(st)
Update critic
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s1 s2 s3

Update actor
πϕ(at |st)



DREAMER: Results
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DREAMER is a template  
for Model-based RL 

But there are many challenges as we 
scale to harder real-world applications



DREAMER V2: 

Tackling the world of Atari Games
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2021



Atari was hard for Model Based RL
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DreamerV2 beats all model free!
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Montezuma’s Revenge: 
 

A really challenging 
Atari Game!



Challenge: Dreamer V1  
predicts a single mode of 

dynamics



Dreamer V1 predicts single mode dynamics
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Idea: Predict multiple discrete modes!
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