Model-based Reinforcement Learning

Sanjiban Choudhury

Do not worry about prelims!

We will grade on a curve (and try to be lenient!)

It's only 20% of the grade

Instead focus on final project (20%) and in-class quiz (10%) [This is totally in your control to get full marks!]

Will be posting doc with full instructions + partner finding today

Deliverables: Project proposal (in 2 weeks), final project, video, peer review

Groups of upto 3

Expectations (next slide)

Final Project

Final project expecations

We have the following expectations for the final project: * You should apply a concept that you learned in class * Your project should be well-scoped so it is achievable in the short time that you have * Your project should have some degree of science. It can't just be "I tried X algorithm on Y environment and here are the results". * Instead, clearly state a hypothesis that you are testing E.g. We expect warm starting RL from BC in this environment would lead to faster convergence because it reduces the need to explore.

n What is model-based RL?

□ How NOT to learn a model?

DAgger for model-based RL

Today's class

All the RL you learned up until now is Nodel-Free RL

RL Learn model Plan with model

"Just pretend I'm not here..."

Model Based Reinforcement Learning

Learn Model

Use *any* planning algorithm you like: Value iteration / Policy iteration / LQR / A* search / RRTs ...

What is a model?

What is a model?

What is a model?

Models are simulators of the real world dynamics

Why model-based RL?

What happens if we run model-free RL in the real world?

All practical robotics rely on evaluating policies in a simulator before deploying

Models work very well in theory

Alekh Agarwal Microsoft alekha@microsoft.com

> Lin F. Yang University of California, Los Angeles linyang@ee.ucla.edu

Model-Based Reinforcement Learning with a Generative Model is Minimax Optimal

> Sham Kakade University of Washington sham@cs.washington.edu

April 7, 2020

17

Models work in *practice*

Hafner et al. 2023

Learning Models.

What is the machine learning setup for learning models?

> Goal: We want to fit a model $\hat{M}(s, a)$ to the real world dynamics $M^*(s, a)$

What is the Input? Output? Loss? Model Class? Data?

Example: Helicopter Aerobatics

(Super cool work by Pieter Abeel et al. <u>https://people.eecs.berkeley.edu/~pabbeel/autonomous_helicopter.html</u>)

Suppose I want to learn a helicopter model. What is input / output / loss?

When poll is active respond at **PollEv.com/sc2582**

Send sc2582 to 22333

Think-Pair-Share

Think (30 sec): What model will you use for learning? What planner would you use to execute a maneuver?

Pair: Find a partner

Learn Model

Share (45 sec): Partners exchange ideas

What did Abeel and Ng do?

Part 1: Learn a Model

Plan with Learned Model

Write down a physics model and learn parameters

$$\begin{split} \dot{u} &= vr - wq + A_x u + g_x + w_u, \\ \dot{v} &= wp - ur + A_y v + g_y + D_0 + w_v, \\ \dot{w} &= uq - vp + A_z w + g_z + C_4 u_4 + D_4 + w_w, \\ \dot{p} &= qr(I_{yy} - I_{zz})/I_{xx} + B_x p + C_1 u_1 + D_1 + w_p, \\ \dot{q} &= pr(I_{zz} - I_{xx})/I_{yy} + B_y q + C_2 u_2 + D_2 + w_q, \\ \dot{r} &= pq(I_{xx} - I_{yy})/I_{zz} + B_z r + C_3 u_3 + D_3 + w_r. \end{split}$$

Part 2: Plan with Learned Model

Plan with Learned Model

Use LQR by *linearizing* the model

What is model-based RL?

D How NOT to learn a model?

DAgger for model-based RL

Today's class

Learn a model, plan with learned model

Question: How do you collect data for learning model?

(Super cool work by Pieter Abeel et al. <u>https://people.eecs.berkeley.edu/~pabbeel/autonomous_helicopter.html</u>)

Train a model on state actions visited by the expert!

Strategy

Model Based RL v1.0

If I **perfectly** fit a model (i.e. training/validation error zero), this should work, right?

Experts picks action a to go to the goal

Model agrees with world, i.e. train error zero!

What if the model is optimistic? Predicts a short cut to the goal by taking action a'

In reality the shortcut ends in death ...

Training just on expert data may result in optimistic models

Training on Expert Data

(From Ross and Bagnell, 2012)

38

Train a model on state actions visited by the expert!

Train a model on state actions visited by the learner!

Strategy

Improve model where policy goes

Collect more data along current policy's trajectory

Don't we know an algorithm that does this?

41

DAGGER for Model-based RL!!

Model Based RL v2.0

If I **perfectly** fit a model (i.e. training/val error zero), this should work, right?

can't get to trophy, but can get to \$1

Training just on learner data may result in pessimistic models

What is model-based RL?

Mow NOT to learn a model? DAgger for model-based RL

Today's class

Learn a model, plan with learned model

Don't train on only **expert** data (too **optimistic**), Don't train on only **learner** data (too **pessimistic**)

Train a model on state actions visited by the expert!

Train a model on state actions visited by the learner!

Train a model on state actions visited by both the expert and the learner!

Strategy

Model Learning with Planner in Loop (Ross & Bagnell, 2012)

50% learner data

Training on 50% learner, 50% expert (Not too optimistic or pessimistic)

Model Learning with Planner in Loop Collect data from an expert $\mathcal{D}_{expert} = \{(s, a, s')\}$ Fit a model \hat{M}_1 . Compute a policy $\hat{\pi}_1$ in the model via planning Initialize empty data buffer $\mathcal{D}_{\text{learner}} \leftarrow \{\}$ For i = 1, ..., NExecute policy $\hat{\pi}_i$ in the real world and collect data $\mathcal{D}_i = \{(s, a, s')\}$ Aggregate data $\mathscr{D}_{\text{learner}} \leftarrow \mathscr{D}_{\text{learner}} \cup \mathscr{D}_{i}$ Train a new model on 50% expert + 50% learner data $\hat{M}_{i+1} \leftarrow \text{Train}(0.5 * \mathscr{D}_{\text{expert}} + 0.5 * \mathscr{D}_{\text{learner}})$ Train a new policy π_{i+1} in the model M_{i+1} Select the best policy in $\pi_{1:N+1}$

Model Learning with Planner in Loop Collect data from an expert $\mathcal{D}_{expert} = \{(s, a, s')\}$ Fit a model \hat{M}_1 . Compute a policy $\hat{\pi}_1$ in the model via planning Initialize empty data buffer $\mathcal{D}_{\text{learner}} \leftarrow \{\}$ For i = 1, ..., NExecute policy $\hat{\pi}_i$ in the real world and collect data $\mathcal{D}_i = \{(s, a, s')\}$ Aggregate data $\mathscr{D}_{\text{learner}} \leftarrow \mathscr{D}_{\text{learner}} \cup \mathscr{D}_{i}$ Train a new model on 50% expert + 50% learner data $\hat{M}_{i+1} \leftarrow \text{Train}(0.5 * \mathscr{D}_{\text{expert}} + 0.5 * \mathscr{D}_{\text{learner}})$ Train a new policy π_{i+1} in the model M_{i+1} Select the best policy in $\pi_{1:N+1}$

Model learning on both expert and learner data works!

(From Ross & Bagnell, 2012)

What is model-based RL?

Mow NOT to learn a model?

DAgger for model-based RL

Today's class

Why is 50-50 the right thing to do?

Performance Dífference vía Planning in Model Lemma

A good model is one such that if

we plan with the model

we get a good policy

Policy $\hat{\pi}$

A good model gives a good policy that has bounded performance difference

A good model gives a good policy that has bounded performance difference in the real world

Learner in real-world vs model

Expert in real-world vs model

in model

Fit model on Sole + learner data!

Learner in real-world vs model

Optimize policy in model!

Fit model on expert data!

Expert in real-world vs model

Learner vs Expe in model

