
Review

Prelim

• In-class prelim, 75 minutes

• Format

• Multiple choice questions (similar to quizzes)

• Written questions (similar to written assignments A1, A3)

• Scope: Everything until last lecture (actor critic)

2

Today’s plan

• Go through the greatest hits

• Answer questions YOU have

• Today we will spend more time on MDP, RL and less time on imitation
learning

3

Fundamentals: MDP

Markov Decision Process

5

< S , A , C , 𝒯 >
A mathematical framework for modeling sequential decision making

6

S , A , C , 𝒯
θt
·θt

τ 1
2

θ2 +
1
2

·θ2 +
1
2

τ2
θt+1 = θt + ·θtΔt

·θt+1 = ·θt + ··θtΔt

I··θt = mgl sin(θ) + τ

7

S , A , C , 𝒯
θt ∈ ℝ12

τ ∈ ℝ12(All joints)

·θt ∈ ℝ12

(All joint vel)

x, y, ψ
(2d pos, heading)

Newton-Euler
Equation

But need to know
ground terrain

(Which is typically
unknown)

c1, c2, c3, c4
(Contact state of feet)

(12 torque)

Move at desired vel

Minimize torque

+

8

S , A , C , 𝒯
State of car

State of all
other agents

Steering
Gas

Penalty for
not reaching goal

Penalty for violating
constraints

(Safety, rules)

Penalty for high
control effort

Dynamics of car
(Known)

Dynamics/intent
of other agents

(Unknown)

State of
traffic lights

Transition of
traffic light
(Hidden
variable)

Vπ(st)
Read this as: Value of a policy at a given state and time

Vπ(st)

π st+1 π

= ct γct+1+ + γ2ct+2 +

st π

⋯

The “Value” Function

The Bellman Equation

Vπ(st) = c(st, π(st)) + γ𝔼st+1
Vπ(st+1)

Value of
current state

Value of
future state

Cost

Optimal policy

π* = arg min
π

𝔼s0
Vπ(s0)

Bellman Equation for the Optimal Policy

Vπ*(st) = min
at

[c(st, at) + γ𝔼st+1
Vπ*(st+1))]

Optimal
Value

Optimal
Value of

Next State

Cost

We use to denote optimal valueV*

V*(st) = min
at

[c(st, at) + γ𝔼st+1
V*(st+1))]

Optimal
Value

Optimal
Value of

Next State

Cost

The Bellman Equation

14

V*(st) = min
at

[c(st, at) + γ𝔼st+1
V*(st+1))]

Image courtesy Dan Klein

Qπ(st, at)

Qπ(st, at)

at
st+1 π

= ct γct+1+ + γ2ct+2 +

st π

⋯

The “Action Value” Function

Quiz: Express V in terms of Q?

16

Vπ(st) Qπ(st, at)= 𝔼at∼π(st)

Express Q in terms of V?

Qπ(st, at) Vπ(st+1)= c(st, at) + 𝔼st+1

The Bellman Equation

Qπ(st, at) = c(st, at) + γ𝔼st+1
Qπ(st+1, π(st+1))

Value of
current state

Value of
future state

Cost

We use to denote optimal valueQ*

Q*(st, at) = c(st, at) + min
at+1

[γ𝔼st+1
Q*(st+1, at+1))]

Optimal
Value

Optimal
Value of

Next State

Cost

Everything you can do with V,
you can do with Q!

Value Iteration, Policy Iteration, Approximate Value
Iteration, Approximate Policy Iteration, …

You can also translate cost to reward

20

V*(st) = min
at

[c(st, at) + γ𝔼st+1
V*(st+1))]

V*(st) = max
at

[r(st, at) + γ𝔼st+1
V*(st+1))]

Aπ(st, at) = Qπ(st, at) − Vπ(st)

The Advantage Function

How much better is it to take action vs action ?at π(st)
(given you roll-out with from there on) π

0

100

10

1

0

0

100

10

1

0

Qπ(st, .) Qπ(st, .)

Aπ(st, at) = Qπ(st, at) − Vπ(st)

The Advantage Function

Qπ(st, π(st))

at

100

π(st)

1090

Questions?

Questions

24

1. Express V as Q? Express Q in terms of V?

2. If a genie offered you V* or Q*, which one would you take? Why?

3. What is Bellman Equation over infinite horizon?

Solving Known MDP (Planning)

26

Value Iteration (Finite Horizon)

Initialize value function at last time-step

for t = T − 2,…,0

Compute value function at time-step t

V*(s, t) = min
a [c(s, a) + γ∑

s′

𝒯(s′ |s, a)V*(s′ , t + 1)]

V*(s, T − 1) = min
a

c(s, a)

27

Infinite Horizon Value Iteration

Initialize with any value function V*(s)

V*(s) = min
a [c(s, a) + γ∑

s′

𝒯(s′ |s, a)V*(s′)]

Repeat until convergence

28

Sometimes, it’s faster to
iterate over policies than

values

Policy Iteration (Infinite horizon)

29

Repeat forever

Evaluate policy

Improve policy

Init with some policy π

Vπ(s) = c(s, π(s)) + γ𝔼s′ ∼𝒯(s,π(s))Vπ(s′)]

π+(s) = arg min
a

c(s, a) + γ𝔼s′ ∼𝒯(s,a)Vπ(s′)]

You can translate from V to Q!

30

Q*(s, a) = c(s, a) + γ∑
s′

𝒯(s′ |s, a) min
a′

Q*(s′ , a′)

V*(s) = min
a [c(s, a) + γ∑

s′

𝒯(s′ |s, a)V*(s′)] Value iteration

Vπ(s) = c(s, π(s)) + γ𝔼s′ ∼𝒯(s,π(s))Vπ(s′)]
π+(s) = arg min

a
c(s, a) + γ𝔼s′ ∼𝒯(s,a)Vπ(s′)]

Policy iteration

Qπ(s, a) = c(s, a) + γ𝔼s′ ∼𝒯(s,a)Qπ(s′ , π(s′)]
π+(s) = arg min

a
Qπ(s, a)

Linear Quadratic Regulator (LQR)

31

V*(s, t) = min
a [c(s, a) + γ∑

s′

𝒯(s′ |s, a)V*(s′ , t + 1)]

How can we analytically do value iteration?

(Quadratic)(Linear)(Quadratic)(Quadratic)

1
2

xT
t Vtxt xT

t Qxt + uT
t Rut

1
2

xT
t+1Vt+1xt+1xt+1 = Atxt + Btut

θ

·θ

The LQR Algorithm

For t = T-1, …, 1

Compute gain matrix
Kt = (R + BTVt+1B)−1BTVt+1A

Initialize VT = Q

Update value
Vt = Q + KT

t RKt + (A + BKt)TVt+1(A + BKt)

LQR Converges

xTQx ≥ 0

Q is positive semi-definite R is positive definite

uTRu > 0
State costs are

always non-negative
Control cost are
always positive

for u ≠ 0

Questions?

Questions

35

1. Why might we prefer policy iteration over value iteration?

2. How can I apply LQR if my MDP is not linear and quadratic?

Unknown MDP
(Reinforcement Learning)

Why is it hard to solve unknown MDP?

37

Q*(s, a) = r(s, a) + γ∑
s′

𝒯(s′ |s, a) max
a′

Q*(s′ , a′) ∀(s, a)
Just run Value iIteration?

Don’t know,
Need to collect data!

1. Collect a batch of data 2. Fit a function approximator to Q
Solution:

38

Recap: Fitted -IterationQ
Receive some dataset

Initialize ,

for

Return

𝒟 = {(s, a, r, s′)}

Q̂0 ∈ ℱQ t ← 0

t ∈ 1,…, T

Q̂t+1 ← arg min
Q∈ℱQ

𝔼𝒟[(Q(s, a) − (r + max
a′ ∈𝒜

Q̂t(s′ , a′)))2]

πT

𝔼𝒟 max
a′ ∈𝒜

The problem of Function Approximation!

39

approximate dynamic programming 85

Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
-1 0-1 vel

-0.5-0.5
-1 -0.5 0 0.5 -1

0pospos 0
pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.

Iteration 11 Iteration 101 Iteration 201

12 50
11 2 25 2 20

0 -10010 1 -25 1 -200 19 -50 -300
-1 -1 0-1 0 -1 0 -1-1

-0.5-0.5 -0.5-0.5 -0.5-0.5
-1

00 00
-1 -1 00

0.50.5 -20.50.5 -2 0.50.5 -2

Figure 8.1.5: Training with
neural network.

approximate dynamic programming 85

Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
-1 0-1 vel

-0.5-0.5
-1 -0.5 0 0.5 -1

0pospos 0
pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.

Iteration 11 Iteration 101 Iteration 201

12 50
11 2 25 2 20

0 -10010 1 -25 1 -200 19 -50 -300
-1 -1 0-1 0 -1 0 -1-1

-0.5-0.5 -0.5-0.5 -0.5-0.5
-1

00 00
-1 -1 00

0.50.5 -20.50.5 -2 0.50.5 -2

Figure 8.1.5: Training with
neural network.

Errors in approximation are
amplified! Why?

Recap: Fitted -IterationQ
Receive some dataset

Initialize ,

for

Return

𝒟 = {(s, a, r, s′)}

Q̂0 ∈ ℱQ t ← 0

t ∈ 1,…, T

Q̂t+1 ← arg min
Q∈ℱQ

𝔼𝒟[(Q(s, a) − (r + max
a′ ∈𝒜

Q̂t(s′ , a′)))2]

πT

𝔼𝒟 max
a′ ∈𝒜

Let’s work out
an example

41

Recap: Approximate Policy Iteration
Initialize with arbitrary ,

for

Sample

Fit

if : break;

Return

π0 t = 0

t ∈ 1,…, T

𝒟t = {(sh, ah, Q̂ =
H

∑
τ=h

r(sτ, aτ)) ∼ πt}

Q̂t ← arg min
Q∈ℱQ

𝔼𝒟t
[(Q(s, a) − Q̂)2]

πt+1(s) = arg max
a∈𝒜

Q̂t(s, a)

πt+1 = πt

πT

𝔼𝒟t

max
a∈𝒜

Performance Difference Lemma (PDL)

42

Vπ+(s0) − Vπ(s0) =
T−1

∑
t=0

𝔼st∼dπ+
t

Aπ(st, π+)

Problem with Approximate Policy Iteration

43

PDL requires accurate on states that will visit! ()Qπ
θ π+ dπ+

t

Vπ+(s0) − Vπ(s0) =
T−1

∑
t=0

𝔼st∼dπ+
t

Aπ(st, π+)

But we only have states that visits ()π dπ
t

If changes drastically from , then is big!π+ π |dπ+

t − dπ
t |

Policy Gradients

44

Questions?

Unknown MDP
(Imitation Learning)

Behavior Cloning

47

Expert runs
away after

demonstrations

48

The Big Problem with BC
Train

T−1

∑
t=0

𝔼st∼dπ⋆
t

[ℓ(st, π(st))]
T−1

∑
t=0

𝔼st∼dπ
t
[ℓ(st, π(st))]

Test

The Goal

49

T−1

∑
t=0

𝔼st∼dπ
t
[ℓ(st, π(st))]

Can we bound this to ?O(ϵT)

DAgger (Dataset Aggregation)

50

For i = 1,…, N

Initialize with a random policy π1 # Can be BC

Execute policy in the real world and collect dataπi
Also called a rollout 𝒟i = {s0, a0, s1, a1, …}

Query the expert for the optimal action on learner states
𝒟i = {s0, π⋆(s0), s1, π⋆(s1), …}

Train a new learner on this dataset πi+1 ← Train(𝒟)

Initialize empty data buffer 𝒟 ← {}

Aggregate data 𝒟 ← 𝒟 ∪ 𝒟i

Select the best policy in π1:N+1

