
Review



Prelim

• In-class prelim, 75 minutes 

• Format 

• Multiple choice questions (similar to quizzes) 

• Written questions (similar to written assignments A1, A3) 

• Scope: Everything until last lecture (actor critic)
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Today’s plan

• Go through the greatest hits 

• Answer questions YOU have 

• Today we will spend more time on MDP, RL and less time on imitation 
learning
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Fundamentals: MDP



Markov Decision Process
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< S , A , C , 𝒯 >
A mathematical framework for modeling sequential decision making
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S , A , C , 𝒯
θt
·θt

τ 1
2

θ2 +
1
2

·θ2 +
1
2

τ2
θt+1 = θt + ·θtΔt

·θt+1 = ·θt + ··θtΔt

I··θt = mgl sin(θ) + τ
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S , A , C , 𝒯
θt ∈ ℝ12

τ ∈ ℝ12(All joints)

·θt ∈ ℝ12

(All joint vel)

x, y, ψ
(2d pos, heading)

Newton-Euler  
Equation

But need to know 
ground terrain 

(Which is typically 
unknown)

c1, c2, c3, c4
(Contact state of feet)

(12 torque)

Move at desired vel

Minimize torque

+
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S , A , C , 𝒯
State of car

State of all  
other agents

Steering 
Gas

Penalty for 
not reaching goal

Penalty for violating 
constraints  

(Safety, rules) 

Penalty for high 
control effort

Dynamics of car 
(Known)

Dynamics/intent 
of other agents 

(Unknown)

State of  
traffic lights

Transition of 
traffic light 
(Hidden 
variable) 



Vπ(st)
Read this as: Value of a policy at a given state and time

Vπ(st)

π st+1 π

= ct γct+1+ + γ2ct+2 +

st π

⋯

The “Value” Function



The Bellman Equation

Vπ(st) = c(st, π(st)) + γ𝔼st+1
Vπ(st+1)

Value of 
current state 

Value of 
future state 

Cost



Optimal policy

π* = arg min
π

𝔼s0
Vπ(s0)



Bellman Equation for the Optimal Policy

Vπ*(st) = min
at

[c(st, at) + γ𝔼st+1
Vπ*(st+1))]

Optimal 
Value

Optimal 
Value of  

Next State

Cost



We use  to denote optimal valueV*

V*(st) = min
at

[c(st, at) + γ𝔼st+1
V*(st+1))]

Optimal 
Value

Optimal 
Value of  

Next State

Cost



The Bellman Equation
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V*(st) = min
at

[c(st, at) + γ𝔼st+1
V*(st+1))]

Image courtesy Dan Klein



Qπ(st, at)

Qπ(st, at)

at
st+1 π

= ct γct+1+ + γ2ct+2 +

st π

⋯

The “Action Value” Function



Quiz: Express V in terms of Q?
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Vπ(st) Qπ(st, at)= 𝔼at∼π(st)

Express Q in terms of V?

Qπ(st, at) Vπ(st+1)= c(st, at) + 𝔼st+1



The Bellman Equation

Qπ(st, at) = c(st, at) + γ𝔼st+1
Qπ(st+1, π(st+1))

Value of 
current state 

Value of 
future state 

Cost



We use  to denote optimal valueQ*

Q*(st, at) = c(st, at) + min
at+1

[γ𝔼st+1
Q*(st+1, at+1))]

Optimal 
Value

Optimal 
Value of  

Next State

Cost



Everything you can do with V,  
you can do with Q!

Value Iteration, Policy Iteration, Approximate Value 
Iteration, Approximate Policy Iteration, …



You can also translate cost to reward
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V*(st) = min
at

[c(st, at) + γ𝔼st+1
V*(st+1))]

V*(st) = max
at

[r(st, at) + γ𝔼st+1
V*(st+1))]



Aπ(st, at) = Qπ(st, at) − Vπ(st)

The Advantage Function

How much better is it to take action  vs  action ?at π(st)
(given you roll-out with  from there on)  π
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Qπ(st, . ) Qπ(st, . )

Aπ(st, at) = Qπ(st, at) − Vπ(st)

The Advantage Function

Qπ(st, π(st))

at

100

π(st)
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Questions?



Questions
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1. Express V as Q? Express Q in terms of V?

2. If a genie offered you V* or Q*, which one would you take? Why?

3. What is Bellman Equation over infinite horizon?



Solving Known MDP (Planning)
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Value Iteration (Finite Horizon)

Initialize value function at last time-step

for  t = T − 2,…,0

Compute value function at time-step t

V*(s, t) = min
a [c(s, a) + γ∑

s′ 

𝒯(s′ |s, a)V*(s′ , t + 1)]

V*(s, T − 1) = min
a

c(s, a)
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Infinite Horizon Value Iteration

Initialize with any value function V*(s)

V*(s) = min
a [c(s, a) + γ∑

s′ 

𝒯(s′ |s, a)V*(s′ )]

Repeat until convergence
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Sometimes, it’s faster to 
iterate over policies than 

values



Policy Iteration (Infinite horizon)

29

Repeat forever

Evaluate policy

Improve policy

Init with some policy  π

Vπ(s) = c(s, π(s)) + γ𝔼s′ ∼𝒯(s,π(s))Vπ(s′ )]

π+(s) = arg min
a

c(s, a) + γ𝔼s′ ∼𝒯(s,a)Vπ(s′ )]



You can translate from V to Q!
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Q*(s, a) = c(s, a) + γ∑
s′ 

𝒯(s′ |s, a) min
a′ 

Q*(s′ , a′ )

V*(s) = min
a [c(s, a) + γ∑

s′ 

𝒯(s′ |s, a)V*(s′ )] Value iteration

Vπ(s) = c(s, π(s)) + γ𝔼s′ ∼𝒯(s,π(s))Vπ(s′ )]
π+(s) = arg min

a
c(s, a) + γ𝔼s′ ∼𝒯(s,a)Vπ(s′ )]

Policy iteration

Qπ(s, a) = c(s, a) + γ𝔼s′ ∼𝒯(s,a)Qπ(s′ , π(s′ )]
π+(s) = arg min

a
Qπ(s, a)



Linear Quadratic Regulator (LQR)
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V*(s, t) = min
a [c(s, a) + γ∑

s′ 

𝒯(s′ |s, a)V*(s′ , t + 1)]

How can we analytically do value iteration?

(Quadratic)(Linear)(Quadratic)(Quadratic)

1
2

xT
t Vtxt xT

t Qxt + uT
t Rut

1
2

xT
t+1Vt+1xt+1xt+1 = Atxt + Btut



θ

·θ

The LQR Algorithm

For t = T-1, …, 1

Compute gain matrix
Kt = (R + BTVt+1B)−1BTVt+1A

Initialize VT = Q

Update value
Vt = Q + KT

t RKt + (A + BKt)TVt+1(A + BKt)



LQR Converges

xTQx ≥ 0

Q is positive semi-definite R is positive definite

uTRu > 0
State costs are  

always non-negative
Control cost are  
always positive

for u ≠ 0



Questions?



Questions
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1. Why might we prefer policy iteration over value iteration?

2. How can I apply LQR if my MDP is not linear and quadratic?



Unknown MDP 
(Reinforcement Learning)



Why is it hard to solve unknown MDP?
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Q*(s, a) = r(s, a) + γ∑
s′ 

𝒯(s′ |s, a) max
a′ 

Q*(s′ , a′ ) ∀(s, a)
Just run Value iIteration?

Don’t know, 
Need to collect data!

1. Collect a batch of data 2. Fit a function approximator to Q
Solution:
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Recap: Fitted -IterationQ
Receive some dataset 

Initialize  , 

for 

Return 

𝒟 = {(s, a, r, s′ )}

Q̂0 ∈ ℱQ t ← 0

t ∈ 1,…, T

Q̂t+1 ← arg min
Q∈ℱQ

𝔼𝒟[(Q(s, a) − (r + max
a′ ∈𝒜

Q̂t(s′ , a′ )))2]

πT

𝔼𝒟 max
a′ ∈𝒜



The problem of Function Approximation!
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approximate dynamic programming 85

Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
-1 0-1 vel

-0.5-0.5
-1 -0.5 0 0.5 -1

0pospos 0
pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.

Iteration 11 Iteration 101 Iteration 201
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Figure 8.1.5: Training with
neural network.
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Errors in approximation are 
amplified! Why?

Recap: Fitted -IterationQ
Receive some dataset 

Initialize  , 

for 

Return 

𝒟 = {(s, a, r, s′ )}

Q̂0 ∈ ℱQ t ← 0

t ∈ 1,…, T

Q̂t+1 ← arg min
Q∈ℱQ

𝔼𝒟[(Q(s, a) − (r + max
a′ ∈𝒜

Q̂t(s′ , a′ )))2]

πT

𝔼𝒟 max
a′ ∈𝒜



Let’s work out 
an example
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Recap: Approximate Policy Iteration
Initialize with arbitrary , 

for 

Sample  

Fit 

if :  break;

Return 

π0 t = 0

t ∈ 1,…, T

𝒟t = {(sh, ah, Q̂ =
H

∑
τ=h

r(sτ, aτ)) ∼ πt}

Q̂t ← arg min
Q∈ℱQ

𝔼𝒟t
[(Q(s, a) − Q̂)2]

πt+1(s) = arg max
a∈𝒜

Q̂t(s, a)

πt+1 = πt

πT

𝔼𝒟t

max
a∈𝒜



Performance Difference Lemma (PDL) 
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Vπ+(s0) − Vπ(s0) =
T−1

∑
t=0

𝔼st∼dπ+
t

Aπ(st, π+)



Problem with Approximate Policy Iteration
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PDL requires accurate  on states that  will visit! ( )Qπ
θ π+ dπ+

t

Vπ+(s0) − Vπ(s0) =
T−1

∑
t=0

𝔼st∼dπ+
t

Aπ(st, π+)

But we only have states that  visits ( )π dπ
t

If  changes drastically from , then is big!π+ π |dπ+

t − dπ
t |



Policy Gradients

44



Questions?



Unknown MDP 
(Imitation Learning)



Behavior Cloning
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Expert runs 
away after 

demonstrations 
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The Big Problem with BC
Train

T−1

∑
t=0

𝔼st∼dπ⋆
t

[ℓ(st, π(st))]
T−1

∑
t=0

𝔼st∼dπ
t
[ℓ(st, π(st))]

Test



The Goal
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T−1

∑
t=0

𝔼st∼dπ
t
[ℓ(st, π(st))]

Can we bound this to  ?O(ϵT)



DAgger (Dataset Aggregation)
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For    i = 1,…, N

Initialize with a random policy π1 # Can be BC

Execute policy  in the real world and collect dataπi
# Also called a rollout 𝒟i = {s0, a0, s1, a1, …}

Query the expert for the optimal action on learner states
𝒟i = {s0, π⋆(s0), s1, π⋆(s1), …}

Train a new learner on this dataset πi+1 ← Train(𝒟)

Initialize empty data buffer  𝒟 ← {}

Aggregate data  𝒟 ← 𝒟 ∪ 𝒟i

Select the best policy in π1:N+1


