Review

Prelim

• In-class prelim, 75 minutes

- Format
	- Multiple choice questions (similar to quizzes)
	- Written questions (similar to written assignments A1, A3)
- Scope: Everything until last lecture (actor critic)

Today's plan

- Go through the greatest hits
- Answer questions YOU have
- Today we will spend more time on MDP, RL and less time on imitation learning

Fundamentals: MDP

Markov Decision Process

A mathematical framework for modeling sequential decision making

 θ^2 + 1 2 ,

1 $\dot{\theta}^2$ + 1 2 *τ*2

 θ _{*t*+1} = θ ^{*t*} .
] .
2 θ _{*t*+1} = <u>。</u>
1 θ ^{*t*} + .
0

I .
A $\theta_t = mgl \sin(\theta) + \tau$

Newton-Euler Equation

Minimize torque $\mathrm{+}$

But need to know ground terrain (Which is typically unknown)

Move at desired vel

State of car

Steering Gas

State of all other agents

Penalty for not reaching goal

Penalty for violating constraints (Safety, rules)

Penalty for high control effort

Dynamics of car (Known)

Dynamics/intent of other agents (Unknown)

State of traffic lights

Transition of traffic light (Hidden variable)

Read this as: Value of a policy at a given state and time

Vπ (*st*) The "Value" Function

The Bellman Equation

Vπ $f(s_t) = c(s_t, \pi(s_t)) + \gamma \mathbb{E}_{s_{t+1}}$

Vπ (s_{t+1})

Value of current state

Value of future state

Cost

Optimal policy

$\pi^* = \arg \min$ *π s*0 *Vπ* (*s*0)

Bellman Equation for the Optimal Policy

*Vπ** $(s_t) = \min$ a_t $c(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1}}$ *Vπ** $(s_{t+1}))$]

Optimal Value

Optimal Value of Next State

Cost

We use *V** to denote optimal value

$V^*(s_t) = \min$ a_t

 $c(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1}} V^*(s_{t+1}))$]

Optimal Value

Optimal Value of Next State

Cost

The Bellman Equation

at $\left[c(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1}} V^*(s_{t+1})) \right]$

14

Image courtesy Dan Klein

Step 1: Take correct first action

Q^n (*st* , *at*) The "Action Value" Function

Quiz: Express V in terms of Q?

$)$ = $\mathbb{E}_{a_r \sim \pi(s_r)} Q^{\pi}$ $= \mathbb{E}_{a_t \sim \pi(s_t)} Q^{\pi}(s_t, a_t)$

$C(S_t, a_t) + E_{S_{t+1}} V^{\pi}$ $= c(s_t, a_t) + \mathbb{E}_{s_{t+1}} V^{\pi}(s_{t+1})$

16

Vπ (*st*

Express Q in terms of V?

The Bellman Equation

Qπ S_t , a_t) = $c(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1}}$

Qπ $(S_{t+1}, \pi(s_{t+1}))$

Value of future state

Value of current state

Cost

We use Q^* to denote optimal value

$Q^*(s_t, a_t) = c(s_t, a_t) + \min_{s \in S}$ a_{t+1} $\gamma \mathbb{E}_{s_{t+1}} Q^*(s_{t+1}, a_{t+1}))$

Optimal Value

Optimal Value of Next State

Cost

Everything you can do with V, you can do with Q!

Value Iteration, Policy Iteration, Approximate Value Iteration, Approximate Policy Iteration, …

You can also translate cost to reward $V^*(s_t) = \min$ a_t $c(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1}} V^*(s_{t+1}))$]

 $V^*(s_t) = \max_{a} |r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1}} V^*(s_{t+1}))$ a_t]

(*st* , *at*) − *V^π* (*st*)

The Advantage Function

Aπ (*st* , *at* $) = Q^{\pi}$

How much better is it to take action a_t vs action $\pi(s_t)$? (given you roll-out with *π* from there on)

Aπ (*st* , *at* $) = Q^{\pi}$ (*st* , *at*) − *V^π* $Q^{\pi}(s_t)$ (*st* , *π*(*st*))

The Advantage Function

100 90 10

Questions?

Questions

1. Express V as Q? Express Q in terms of V?

2. If a genie offered you V^* or Q^* , which one would you take? Why?

3. What is Bellman Equation over infinite horizon?

Solving Known MDP (Planning)

Value Iteration (Finite Horizon)

Initialize value function at last time-step

 $c(s, a) + \gamma \sum \mathcal{T}(s' | s, a)V^*(s', t + 1)$ *s*′]

Compute value function at time-step t

$$
V^*(s,t)=\min_a
$$

$$
c(s,a)
$$

Time: 16

$$
V^*(s, T-1) = \min_a c(s, a)
$$

for $t = T - 2,...,0$

Infinite Horizon Value Iteration

Initialize with any value function $V^*(s)$

c(*s*, *a*) + *γ*∑ *s*′ $(S'|s,a)V^*(s')$]

Repeat until convergence

$V^*(s) = \min$ $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$

Sometimes, it's faster to iterate over policies than values

Policy Iteration (Infinite horizon) Repeat forever Evaluate policy Improve policy Init with some policy *π Vπ* $f(s) = c(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, \pi(s))}$ *Vπ* (*s*′)] $\pi^{+}(s) = \arg \min$ *a* $c(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)}$ *Vπ* (*s*′)]

$$
a) + \gamma \sum_{s'} \mathcal{T}(s' \mid s, a) \min_{a'} Q^*(s',
$$

 $f(s, a) = c(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)}$ $Q^{\pi}(s', \pi(s'))$

You can translate from V to Q! $Q^*(s, a) = c(s, a)$ $V^*(s) = \min$ $\begin{array}{c} \overline{a} \\ a \end{array}$ $c(s, a) + \gamma \sum$ *s*′ $(s' | s, a) V^*(s')$] Value iteration

 $V^{\pi}(s) = c(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, \pi(s))} V^{\pi}(s')$] $\pi^{+}(s) = \arg \min$ *a* $c(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s,a)} V^{\pi}(s')$] Policy iteration

 $\pi^+(s) = \arg \min Q^{\pi}(s, a)$ *a*

 $(s'|s,a)V^{*}(s',t+1)$]

Linear Quadratic Regulator (LQR) $V^*(s,t) = \min$ $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ *c*(*s*, *a*) + *γ*∑ *s*′ (Quadratic) (Quadratic) (Linear) (Quadratic)

1 2 x_{t+1}^T

How can we *analytically* do value iteration?

1 2

 $x_t^T V_t x_t$ $x_t^T Q x_t + u_t^T R u_t$ $x_{t+1} = A_t x_t + B_t u_t$ $\qquad \qquad - x_{t+1}^T V_{t+1} x_{t+1}$

The LQR Algorithm

For t = T-1, …, 1 $Initalize$ $V_T = Q$

Compute gain matrix $K_t = (R + B^T V_{t+1} B)^{-1} B^T V_{t+1} A$

Update value $V_t = Q + K_t^T R K_t + (A + BK_t)$

${}^{T}V_{t+1}(A + BK_{t}$)

LQR Converges

Q is positive semi-definite R is positive definite

xTQx ≥ 0

uTRu > 0 for $u \neq 0$

State costs are always non-negative

Control cost are always positive

Questions?

Questions

1. Why might we prefer policy iteration over value iteration?

2. How can I apply LQR if my MDP is not linear and quadratic?

Unknown MDP (Reinforcement Learning)

Why is it hard to solve unknown MDP? $Q^*(s, a) = r(s, a) + \gamma \sum$ *s*′ (*s*′|*s*, *a*) max *a*′ Just run Value iIteration? Don't know, Need to collect data! 1. Collect a batch of data 2. Fit a function approximator to Q Solution:

 $Q^*(s', a') \quad \forall (s, a)$

Recap: Fitted *Q*-Iteration

Receive some dataset $\mathcal{D} = \{(s, a, r, s')\}$

Initialize $\hat{Q}_0 \in \mathcal{F}_Q$, $t \leftarrow 0$ ̂

for $t \in 1,...,T$

 $\mathcal{Q}_{t+1} \leftarrow \arg \min_{\Omega \subset \mathcal{X}}$ ̂ *Q*∈ℱ*^Q*

$\mathbb{E}_{\mathscr{D}}[(Q(s,a)-(r+max))$ *a*′∈ *Q* ̂ *t* (*s*′ , *a*′))) 2 $\mathbb{E}_{\mathcal{D}}[(Q(s, a) - (r + \max_{i \in \mathcal{A}} Q_i(s', a')))^2]$ *a*′∈

Return *πT*

The problem of Function Approximation!

 $\mathscr{D} = \{(s, a, r, s')\}$

\blacksquare \hat{Q}_0 Exerging in approximation are $\frac{150}{25}$ $\frac{25}{2}$ $\frac{25}{2}$ $\frac{25}{2}$ amplified! Why? $t \in 1,...,T$ ̂

 π_T

 $\hat{Q}_{t+1} \leftarrow \arg \min_{\Omega \subset \mathcal{X}}$ *Q*∈ℱ*^Q* $\mathbb{E}_{\mathcal{D}}[(Q(s, a) - (r + \max_{a \in \mathcal{A}}$ *a*′∈ *Q t* (*s*′ , *a*′))) 2 $\mathscr{D}[(Q(s,a) - (r + \max Q_t(s', a')))^2]$ *a*′∈

Let's work out an example

Recap: Approximate Policy Iteration

Initialize with arbitrary π_0 , $t=0$

for $t \in 1,...,T$

Sample $\mathcal{D}_t = \{(s_h, a_h, \hat{Q})\}$

Fit $Q_t \leftarrow \arg \min_{\Omega \subset \mathcal{C}}$ ̂ *Q*∈ℱ*^Q*

 $\pi_{t+1}(s) = \arg \max_{s \in \mathcal{A}}$ *a*∈ *Q* ̂ $\hat{\mathcal{Q}}_t(s,a)$ *a*∈

if $\pi_{t+1} = \pi_t$: break;

$$
S_h, a_h, \hat{Q} = \sum_{\tau=h}^H r(s_\tau, a_\tau) \sim \pi_t
$$

 $\mathbb{E}_{\mathcal{D}_t}[(Q(s, a) - \hat{Q})]$ ̂ 2 $\mathbb{E}_{\mathcal{D}_t}[(Q(s,a)-Q)^2]$

Return *πT*

Performance Difference Lemma (PDL)

Vπ⁺ $(s_0) - V^{\pi}(s_0) =$

T−1 Z _{*s*} ← *d* π ⁺ $t=0$ *Aπ* (*st* , *π*+)

Problem with Approximate Policy Iteration

Vπ⁺ $(s_0) - V^{\pi}(s_0) =$

T−1 Z ^{*st*∼ d_t ^{$π$}} $t=0$ *Aπ* $\big(\mathcal{S}_t\big)$, *π*+)

- PDL requires accurate Q_{θ}^{π} on states that π^{+} will visit! $(d^{\pi^{+}}_{t})$ $\frac{d}{d\theta}$ on states that π^+ will visit! $(d_t^{\pi^+})$
	- But we only have states that π visits (d_i^{π}) *π t*
	- If π^+ changes drastically from π , then $|d_t^{\pi^+} d_t^{\pi}|$ is big! $\frac{d\pi}{dt} - d_t^{\pi}$

$\nabla_{\theta} J = E_{s \sim d^{\pi_{\theta}}(s), a \sim \pi_{\theta}(a|s)} [\nabla_{\theta} \log \pi_{\theta}(a|s) Q^{\pi_{\theta}}(s, a)]$

$\nabla_{\theta} J = E_{d^{\pi_{\theta}}(s)} E_{\pi_{\theta}(a|s)} [\nabla_{\theta} \log(\pi_{\theta}(a|s) A^{\pi_{\theta}}(s,a)]$

Policy Gradients

Questions?

Unknown MDP (Imitation Learning)

Behavior Cloning

Expert runs away after demonstrations

The Big Problem with BC

Train

T−1 $\sum_{s_t \sim d_t} \mathbb{E} \mathcal{E}(s_t, \pi(s_t))$ *t*=0

Test

The Goal

T−1 ∑ *st* ∼*d^π t*=0 *t* $[\mathcal{C}(s_t, \pi(s_t))]$

Can we bound this to $O(\epsilon T)$?

For $i=1,...,N$ Initialize with a random policy π_1 # Can be BC $\mathscr{D}_i = \{s_0, \pi^*(s_0), s_1, \pi^*(s_1), \dots\}$ Initialize empty data buffer $\mathcal{D} \leftarrow \{\}$ Aggregate data ← ∪ *ⁱ* Select the best policy in $\pi_{1:N+1}$

DAgger (Dataset Aggregation)

- Execute policy π_i in the real world and collect data $\mathscr{D}_i = \{s_0, a_0, s_1, a_1, \ldots\}$ # Also called a rollout
- Query the expert for the optimal action on learner states
	-
	-
- Train a new learner on this dataset $\pi_{i+1} \leftarrow \text{Train}(\mathcal{D})$

