Policy and *Q*-value Iteration: II Gokul Swamy

(slides partially copied from Sanjiban / Wen; all mistakes my own)

Recap

- 1. Policy Iteration and Q -value Iteration have monotonic improvement guarantees in the tabular setting, which we can prove via the PDL.
- 2. Scaling either method to larger problems requires function approximation for both policies and Q-functions.
- 3. However, these functions can be overly optimistic outside of their training distribution, leading to poor performance at test time (i.e. *distribution shift*).

Recap: Fitted *Q*-Iteration

Receive some dataset $\mathcal{D} = \{(s, a, r, s')\}$

Initialize $Q_0 \in \mathcal{F}_Q$, $t \leftarrow 0$ ̂

 $\mathbf{for} \ t \in 1,...,T$

 $Q_{t+1} \leftarrow \arg \min_{\Omega \subset \mathcal{X}}$ ̂ *Q*∈ℱ*^Q*

$[(Q(s, a) - (r + \max$ *a*′∈ *Q* ̂ *t* (*s*′ , *a*′))) 2 $max Q_t(s', a'))^2$ *a*′∈

Return *πT*

Recap: Approximate Policy Iteration

Initialize with arbitrary π_{0} , $t=0$

for $t \in 1,...,T$

Sample $\mathcal{D}_t = \{(s_h, a_h, Q)\}$

Fit $Q_t \leftarrow \arg \min_{Q \in \mathcal{R}}$ ̂ *Q*∈ℱ*^Q*

 $\pi_{t+1}(s) = \arg \max_{s \in \mathcal{A}}$ *a*∈ *Q* ̂ *t* $\max Q_t(s,a)$ *a*∈

if $\pi_{t+1} = \pi_t$; break;

$$
S_h, a_h, \hat{Q} = \sum_{\tau=h}^H r(s_\tau, a_\tau) \sim \pi_t
$$

Return *πT*

t $[(Q(s, a) - Q)]$ ̂ 2] *t*

Recap: Perils of FA in API No More Monotonic Improvement! 88888

> *limited data, inaccurate*

> > Sxd max *exploits this a*∈*a*

Outline for Today

2. Diagnosing the Failures of Function Approximation in API

- Iteration
-
- 3. Cure 1: *Conservatism*
- 4. Cure 2: *Pessimism*

1. Recap: Approximate Policy Iteration and Fitted Q-value

Outline for Today

2. Diagnosing the Failures of Function Approximation in

- Iteration
- **API**
- 3. Cure 1: *Conservatism*
- 4. Cure 2: *Pessimism*

1. Recap: Approximate Policy Iteration and Fitted Q-value

Q: what "*broke*" in the preceding example?

Q

̂

Diagnosis 3: Distribution Shift

ℝ Q^{n} *t*+1(*s*, *a*) *Q* ̂ *πt* $(s, a) \approx \pi_{t+1}$ $Q^{\pi_t}(s, a)$ d_{π_t}

limited data, inaccurate

Diagnosis 3: Distribution Shift

 $d_{\pi_t} \neq d_{\pi_{t+1}}$

$X = (s, a)$ $Y = Q$ ̂

$P_{\text{train}}(X) \neq P_{\text{test}}(X)$

Hard Q: what about the *Y*'s?

$Q_t \leftarrow \arg \min_{\Omega \subset \Omega}$ **゙゙゙゙゙゙゙゙゙゚゚゚**

Diagnosis 3: Distribution Shift

$Q_{t+1} \leftarrow \arg \min_{\Omega \subset \alpha}$ ̂ *Q*∈ℱ*^Q*

Q∈ℱ*^Q t* $[(Q(s,a)-Q)]$ API: $\hat{Q}_t \leftarrow \arg \min_{Q \in \mathcal{Z}} \mathbb{E}_{\mathcal{D}_t}[(Q(s, a) - \hat{Q})^2]$

(on-policy — X's and Y's change)

 $[(Q(s, a) - (r + max))$ *a*′∈ *Q* ̂ *t* (*s*′ , *a*′))) $\text{FQI: } \hat{Q}_{t+1} \leftarrow \arg \min_{Q \in \mathcal{F}} \mathbb{E}_{\mathcal{D}}[(Q(s, a) - (r + \max_{a' \in \mathcal{A}} \hat{Q}_t(s', a')))^2]$

(off-policy — X's change)

Q: what "*broke*" in the preceding example?

A: distribution shift!

Outline for Today

2. Diagnosing the Failures of Function Approximation in API

- Iteration
-
- **3. Cure 1:** *Conservatism*
- 4. Cure 2: *Pessimism*

1. Recap: Approximate Policy Iteration and Fitted Q-value

The Performance Difference Lemma (PDL)

 $J(\pi_{t+1}) - J(\pi_t) = \mathbb{E}_{\xi \sim \pi_{t+1}}$ *H* ∑ *h* $(\pi_{t+1}) - J(\pi_t) = \mathbb{E}_{\xi \sim \pi_{t+1}} \left[\sum_{l} \mathbb{E}_{a' \sim \pi_{t+1}(s_h)}[Q^{\pi_t}(s_h, a')] - \mathbb{E}_{a' \sim \pi_t(s_h)}[Q^{\pi_t}(s_h, a')] \right]$

a' ∼ π _{t+1}(s_h) $[Q^{\pi_t}$ (S_h, a') – $\mathbb{E}_{a' \sim \pi_t(S_h)}$ [*Qπ^t* π _{*t*} $) = \mathbb{E}_{\xi \sim \pi_{t+1}} \left[\sum_{a' \sim \pi_{t+1}(s_h)} Q^{\pi_t}(s_h, a') \right] - \mathbb{E}_{a' \sim \pi_t(s_h)} Q^{\pi_t}(s_h, a')$

exact PI: $\geq 0, \forall s \in S$

P Insight: we only need to be better on $d_{\pi_{t+1}}$, not $\forall s \in \mathcal{S}!$

Conservative Policy Iteration (CPI)

actually compute π_{t+1} , giving us a chicken-and-egg problem.

• *Insight*: take a small step such that $d_{\pi_t} \approx d_{\pi_{t+1}}$. This means that our function approximators don't have to *extrapolate* and deal with too many OOD inputs!

• Of course, we don't actually have access to $d_{\pi_{t+1}}$ before we

Conservative Policy Iteration (CPI)

Initialize with arbitrary π_{0} , $t=0$

for $t \in 1,...,T$

Sample $\mathcal{D}_t = \{(s_h, a_h, Q)\}$

- Fit $Q_t \leftarrow \arg \min_{Q \in \mathcal{R}}$ ̂ *Q*∈ℱ*^Q*
- $\hat{\pi}_{t+1}(s) = \arg \max_{s \in S} Q_t(s, a),$ ̂ *a*∈ *Q* ̂

if $\pi_{t+1} = \pi_t$; break;

$$
u_h, \hat{Q} = \sum_{\tau=h}^H r(s_\tau, a_\tau) \sim \pi_t
$$

Return *πT*

$$
\mathcal{D}_t[(Q(s,a)-\hat{Q})^2]
$$

 $\pi_t(s, a), \pi_{t+1} \leftarrow (1 - a)\pi_t + a\hat{\pi}_{t+1}$ $\ddot{}$

API is CPI with α = 1*!*

Conservative Policy Iteration (CPI)

• For a small enough α , we have $d_{\pi_t} \approx d_{\pi_{t+1}}$. Thus, if we mix in just the right amount of the $greedy$ $policy$ $\hat{\pi}_{t+1}$, we can guarantee ̂ *t*+1

- monotonic improvement via PDL! See AJKS for proof.
- A different way of seeing this: API is CPI with $\alpha = 1$. This "learning rate" is too large to ensure we learn stably.
- Practical Deep RL algorithms like TRPO/PPO are built upon the conceptual bedrock of CPI.

- The update $\pi_{t+1} \leftarrow (1 \alpha)\pi_t + \alpha \hat{\pi}_{t+1}$ would require us to keep around a history of *all* greedy policies (i.e. all deep networks we've trained over iterations of the algorithm). $\ddot{}$
- Fundamentally, we're using this update to ensure that $d_{\pi_t} \approx d_{\pi_{t+1}}$ and our function approximators don't have to extrapolate too frequently.
- *• Q:* can we implement the same principle in a different way?

How to take "small"steps? $\nabla_{\theta}J(\pi_{\theta})=$ *H* ∑ *sh*,*ah*∼*ρ h πθ* $\int_{h}^{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a_h | s_h) A^{\pi_{\theta}}(s_h, a_h)]$ *Advantage Likelihood State-Action* \mathbf{S}_h , $a_h \sim \rho_h^{\pi} \theta$ [[] ∇_{θ} log_{*π* $_{\theta}$} $(a_h | s_h)$ _{*n*} $(a_h | s_h)$ *Gradient Distribution*

Function

 θ _{*t*+1} ← θ _{*t*} + $\alpha \nabla_{\theta} J(\pi_{\theta})$

 $\theta_{t+1} = \max_{\theta}$ *θ* $\langle \nabla_{\theta} J(\pi_{\theta_t}), \theta - \theta_t \rangle$ s.t. $(\theta - \theta_t)$) $T(\theta - \theta_t)$) ≤ *δ*

How to take "small"steps? θ _{*t*+1} ← θ _{*t*} + $\alpha \nabla_{\theta} J(\pi_{\theta})$

This is taking a small step in *parameter* space rather than in *policy* space — i.e. *not* the CPI principle!

 $\theta_{t+1} = \max_{\theta}$ *θ* $\langle \nabla_{\theta} J(\pi_{\theta_t}), \theta - \theta_t \rangle$ s.t. $(\theta - \theta_t)$) $T(\theta - \theta_t)$) ≤ *δ*

 Idea: We can update this constraint to enforce we are taking a small step in policy space!

 $\theta_{t+1} = \max_{\theta}$ *θ*

 $D_{KL}(d_{\theta_t} | | d_{\theta}) \approx (\theta - \theta_t)$ ${}^{T}F_{\theta_{t}}(\theta - \theta_{t})$

 $F_{\theta_t} =$ π_{θ_t} $[\nabla_{\theta} \log \pi_{\theta_t}(a | s)]$

P Idea: We can update this constraint to enforce we are taking a small step in policy space!

 $\langle \nabla_{\theta} J(\pi_{\theta_t}), \theta - \theta_t \rangle$

 $s.t. D_{KL}(d_{\theta_t} | | d_{\theta}) \le \delta$

 $T\nabla_{\theta}loglog n_{\theta_t}$ (*a*|*s*)]

 $\theta_{t+1} = \max_{\theta}$ *θ* s.t. $(\theta - \theta_t)$)

$\theta_{t+1} \leftarrow \theta_t + \alpha F_{\theta_t}^{-1}$

Idea: The *Natural* Policy Gradient!

 $\langle \nabla_{\theta} J(\pi_{\theta_t}), \theta - \theta_t \rangle$

 $T_{\theta_t}(\theta - \theta_t) \leq \delta$

 \Rightarrow $\theta_{t+1} \leftarrow \theta_t + \alpha F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t})$

PPO and TRPO are approximations of NPG!

How to take "small"steps? $\nabla_{\theta}J(\pi_{\theta})=$ *H* ∑ *sh*,*ah*∼*ρ h πθ* $\int_{h}^{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a_h | s_h) A^{\pi_{\theta}}(s_h, a_h)]$ *Advantage Likelihood State-Action Function* \mathbf{S}_h , $a_h \sim \rho_h^{\pi} \theta$ [[] ∇_{θ} log_{*π* $_{\theta}$} $(a_h | s_h)$ _{*n*} $(a_h | s_h)$ *Gradient Distribution*

 $F_{\theta_t} =$ π_{θ_t} $[\nabla_{\theta} \log \pi_{\theta_t}(a | s)]$

 $\theta_{t+1} \leftarrow \theta_t + \alpha F_{\theta_t}^{-1}$

$T\nabla_{\theta}loglog n_{\theta_t}$ (*a*|*s*)]

 $\theta_t^{-1} \nabla_{\theta} J(\pi_{\theta_t})$

Outline for Today

2. Diagnosing the Failures of Function Approximation in API

- Iteration
-
- 3. Cure 1: *Conservatism*
- **4. Cure 2:** *Pessimism*

1. Recap: Approximate Policy Iteration and Fitted Q-value

Pessimism

• Conservatism is applying a step-size constraint in policy space, keeping

• *Idea*: be as *pessimistic* as possible on unseen state/action pairs. The

- the Q-function fitting the same. ̂
- Alternatively, we could change the way we approximate the Q to induce policies that don't go OOD.
- optimal policy under this Q won't want to ever leave the training distribution! ̂
- We therefore don't need to iteratively collect new on-policy data via interaction. This is the core idea of *offline reinforcement learning*.

Pessimism, Visually

limited data,

 d_{π_t}

Summary

- 1. Function approximation causes problems in RL due to the shift between the training and the testing distributions.
- 2. We can address this problem in one of two ways:
	- A. Take small steps (*conservatism*). We can do this by mixing or following the *natural policy gradient.*
	- B. Assume the worst case thing happens OOD (*pessimism*).