
Policy and  -value Iteration: IIQ
Gokul Swamy

(slides partially copied from Sanjiban / Wen;
all mistakes my own)



Recap
1. Policy Iteration and -value Iteration have monotonic 

improvement guarantees in the tabular setting, which we can 
prove via the PDL.

2. Scaling either method to larger problems requires function 
approximation for both policies and -functions.

3. However, these functions can be overly optimistic outside of 
their training distribution, leading to poor performance at test 
time (i.e. distribution shift).

Q

Q



Recap: Fitted -IterationQ
Receive some dataset 

Initialize  , 

for 

Return 

𝒟 = {(s, a, r, s′ )}

Q̂0 ∈ ℱQ t ← 0

t ∈ 1,…, T

Q̂t+1 ← arg min
Q∈ℱQ

𝔼𝒟[(Q(s, a) − (r + max
a′ ∈𝒜

Q̂t(s′ , a′ )))2]

πT

𝔼𝒟 max
a′ ∈𝒜



Recap: Approximate Policy Iteration
Initialize with arbitrary , 

for 

Sample  

Fit 

if :  break;

Return 

π0 t = 0

t ∈ 1,…, T

𝒟t = {(sh, ah, Q̂ =
H

∑
τ=h

r(sτ, aτ)) ∼ πt}

Q̂t ← arg min
Q∈ℱQ

𝔼𝒟t
[(Q(s, a) − Q̂)2]

πt+1(s) = arg max
a∈𝒜

Q̂t(s, a)

πt+1 = πt

πT

𝔼𝒟t

max
a∈𝒜



Recap: Perils of FA in API

(s, a, Q̂) ∼ dπt

𝒮 × 𝒜

ℝ

Qπt+1(s, a)

Q̂πt(s, a) ≈ πt+1

limited data,
inaccurate 

 exploits thismax
a∈𝒜Qπt(s, a)

No More Monotonic Improvement! 😱😱😱 



Outline for Today
1. Recap: Approximate Policy Iteration and Fitted -value 

Iteration

2. Diagnosing the Failures of Function Approximation in API

3. Cure 1: Conservatism

4. Cure 2: Pessimism

Q



Outline for Today
1. Recap: Approximate Policy Iteration and Fitted -value 

Iteration

2. Diagnosing the Failures of Function Approximation in 
API

3. Cure 1: Conservatism

4. Cure 2: Pessimism

Q



🔑 Q: what “broke” in the 
preceding example?



Diagnosis 1: Finite Samples!

(s, a, Q̂) ∼ dπt

𝒮 × 𝒜

ℝ

Qπt+1(s, a)

Q̂πt(s, a) ≈ πt+1

Qπt(s, a)

(s, a, Q̂) ∼ dπt



Diagnosis 1: Finite Samples!

𝒮 × 𝒜

ℝ

Qπt+1(s, a)

Q̂πt(s, a) ≈ πt+1

Qπt(s, a)

limited data,
inaccurate 

 exploits thismax
a∈𝒜

dπt



Diagnosis 2: The !max

𝒮 × 𝒜

ℝ

Qπt+1(s, a)

Q̂πt(s, a) ≈ πt+1

Qπt(s, a)

limited data,
inaccurate 

 exploits thismax
a∈𝒜

dπt



Diagnosis 2: The !max

𝒮 × 𝒜

ℝ

Qπt+1(s, a)

Q̂πt(s, a) ≈ πt+1

Qπt(s, a)

limited data,
inaccurate 

dπt

not like we
get this point

 right either …



Diagnosis 3: Distribution Shift

𝒮 × 𝒜

ℝ

Qπt+1(s, a)

Q̂πt(s, a) ≈ πt+1

Qπt(s, a)

limited data,
inaccurate 

dπt



Diagnosis 3: Distribution Shift

X = (s, a) Y = Q̂

Ptrain(X) ≠ Ptest(X)

dπt
≠ dπt+1

Hard Q: what about the ’s?Y



Diagnosis 3: Distribution Shift

Q̂t+1 ← arg min
Q∈ℱQ

𝔼𝒟[(Q(s, a) − (r + max
a′ ∈𝒜

Q̂t(s′ , a′ )))2]FQI:

Q̂t ← arg min
Q∈ℱQ

𝔼𝒟t
[(Q(s, a) − Q̂)2]API:

(on-policy — ’s and ’s change)X Y

(off-policy — ’s change)X



🔑 Q: what “broke” in the 
preceding example?

A: distribution shift!





Outline for Today
1. Recap: Approximate Policy Iteration and Fitted -value 

Iteration

2. Diagnosing the Failures of Function Approximation in API

3. Cure 1: Conservatism

4. Cure 2: Pessimism

Q



The Performance Difference Lemma (PDL)

J(πt+1) − J(πt) = 𝔼ξ∼πt+1 [
H

∑
h

𝔼a′ ∼πt+1(sh)[Q
πt(sh, a′ )] − 𝔼a′ ∼πt(sh)[Q

πt(sh, a′ )]]πt+1 𝔼ξ∼πt+1
𝔼a′ ∼πt+1(sh)πt Qπt(sh, a′ ) Qπt(sh, a′ )𝔼a′ ∼πt(sh)

≥ 0,∀s ∈ 𝒮exact PI:

🔑 Insight: we only need to be better on , not !dπt+1
∀s ∈ 𝒮



Conservative Policy Iteration (CPI)
• Of course, we don’t actually have access to  before we 

actually compute , giving us a chicken-and-egg 
problem.

•🔑 Insight: take a small step such that . This 
means that our function approximators don’t have to 
extrapolate and deal with too many OOD inputs!

dπt+1

πt+1

dπt
≈ dπt+1



Conservative Policy Iteration (CPI)
Initialize with arbitrary , 

for 

Sample  

Fit 

, 

if :  break;

Return 

π0 t = 0

t ∈ 1,…, T

𝒟t = {(sh, ah, Q̂ =
H

∑
τ=h

r(sτ, aτ)) ∼ πt}

Q̂t ← arg min
Q∈ℱQ

𝔼𝒟t
[(Q(s, a) − Q̂)2]

̂πt+1(s) = arg max
a∈𝒜

Q̂t(s, a) πt+1 ← (1 − α)πt + α ̂πt+1

πt+1 = πt

πT
API is CPI with !α = 1



Conservative Policy Iteration (CPI)
• For a small enough , we have  . Thus, if we mix in 

just the right amount of the greedy policy , we can guarantee 
monotonic improvement via PDL! See AJKS for proof.

• A different way of seeing this: API is CPI with . This 
“learning rate” is too large to ensure we learn stably.

• Practical Deep RL algorithms like TRPO/PPO are built upon 
the conceptual bedrock of CPI.

α dπt
≈ dπt+1

̂πt+1

α = 1



Conservatism, Visually

𝒮 × 𝒜

ℝ

Q̂πt(s, a)

Qπt(s, a)

limited data,
inaccurate 

dπt
d ̂πt+1

dπt+1

α = 1
α



How to take “small”steps?
• The update  would require us to 

keep around a history of all greedy policies (i.e. all deep 
networks we’ve trained over iterations of the algorithm).

• Fundamentally, we’re using this update to ensure that
 and our function approximators don’t have to 

extrapolate too frequently.

• Q: can we implement the same principle in a different way?

πt+1 ← (1 − α)πt + α ̂πt+1

dπt
≈ dπt+1



How to take “small”steps?

∇θJ(πθ) =
H

∑
h

𝔼sh,ah∼ρπθ
h

[∇θlog πθ(ah |sh)Aπθ(sh, ah)]Aπθ(sh, ah)
Advantage
Function

∇θlog πθ(ah |sh)
Likelihood
Gradient

𝔼sh,ah∼ρπθ
h

State-Action
Distribution

θt+1 ← θt + α∇θJ(πθt
)



How to take “small”steps?

θt+1 = max
θ

⟨∇θJ(πθt
), θ − θt⟩

s.t.(θ − θt)T(θ − θt) ≤ δ

θt+1 ← θt + α∇θJ(πθt
)

This is taking a small step in parameter space rather than in 
policy space — i.e. not the CPI principle!



How to take “small”steps?

θt+1 = max
θ

⟨∇θJ(πθt
), θ − θt⟩

s.t.(θ − θt)T(θ − θt) ≤ δ

🔑 Idea: We can update this constraint to enforce 
we are taking a small step in policy space!



How to take “small”steps?

θt+1 = max
θ

⟨∇θJ(πθt
), θ − θt⟩

🔑 Idea: We can update this constraint to enforce 
we are taking a small step in policy space!

s.t.DKL(dθt
| |dθ) ≤ δ

DKL(dθt
| |dθ) ≈ (θ − θt)TFθt

(θ − θt)

Fθt
= 𝔼πθt

[∇θlog πθt
(a |s)T ∇θlog πθt

(a |s)]



How to take “small”steps?

θt+1 = max
θ

⟨∇θJ(πθt
), θ − θt⟩

🔑 Idea: The Natural Policy Gradient!

s.t. (θ − θt)TFθt
(θ − θt) ≤ δ

θt+1 ← θt + αF−1
θt

∇θJ(πθt
)⇒



How to take “small”steps?

PPO and TRPO are approximations of NPG!

∇θJ(πθ) =
H

∑
h

𝔼sh,ah∼ρπθ
h

[∇θlog πθ(ah |sh)Aπθ(sh, ah)]Aπθ(sh, ah)
Advantage
Function

∇θlog πθ(ah |sh)
Likelihood
Gradient

𝔼sh,ah∼ρπθ
h

State-Action
Distribution

θt+1 ← θt + αF−1
θt

∇θJ(πθt
)

Fθt
= 𝔼πθt

[∇θlog πθt
(a |s)T ∇θlog πθt

(a |s)]



Outline for Today
1. Recap: Approximate Policy Iteration and Fitted -value 

Iteration

2. Diagnosing the Failures of Function Approximation in API

3. Cure 1: Conservatism

4. Cure 2: Pessimism

Q



Pessimism
• Conservatism is applying a step-size constraint in policy space, keeping 

the -function fitting the same.

• Alternatively, we could change the way we approximate the  to induce 
policies that don’t go OOD.

•🔑 Idea: be as pessimistic as possible on unseen state/action pairs. The 
optimal policy under this  won’t want to ever leave the training 
distribution! 

• We therefore don’t need to iteratively collect new on-policy data via 
interaction. This is the core idea of offline reinforcement learning.

Q̂

Q̂

Q̂



Pessimism, Visually

𝒮 × 𝒜

ℝ

Qπt(s, a)

limited data,
inaccurate 

dπt

Q̂pess(s, a)

dπt+1



Summary
1. Function approximation causes problems in RL due to the 

shift between the training and the testing distributions.

2. We can address this problem in one of two ways:

A. Take small steps (conservatism). We can do this by 
mixing or following the natural policy gradient.

B. Assume the worst case thing happens OOD (pessimism).


