Policy and *Q*-value Iteration: II Gokul Swamy

(slides partially copied from Sanjiban / Wen; all mistakes my own)

Recap

- 1. Policy Iteration and *Q*-value Iteration have monotonic improvement guarantees in the tabular setting, which we can prove via the PDL.
- 2. Scaling either method to larger problems requires function approximation for both policies and *Q*-functions.
- 3. However, these functions can be overly optimistic outside of their training distribution, leading to poor performance at test time (i.e. *distribution shift*).

Recap: Fitted Q-Iteration

Receive some dataset $\mathcal{D} = \{(s, a, r, s')\}$

Initialize $\hat{Q}_0 \in \mathcal{F}_{O'} t \leftarrow 0$

for $t \in 1, ..., T$

Return π_T

$\hat{Q}_{t+1} \leftarrow \arg\min_{Q \in \mathcal{F}_O} \mathbb{E}_{\mathcal{Q}}[(Q(s,a) - (r + \max_{a' \in \mathscr{A}} \hat{Q}_t(s',a')))^2]$

Recap: Approximate Policy Iteration

Initialize with arbitrary π_0 , t = 0

for $t \in 1, ..., T$

Sample $\mathcal{D}_t = \{(s, t) \in \mathcal{D}_t \}$

 $\pi_{t+1}(s) = \arg\max_{a \in \mathscr{A}} \hat{Q}_t(s, a)$

if $\pi_{t+1} = \pi_t$: break;

Return π_T

$$S_h, a_h, \hat{Q} = \sum_{\tau=h}^H r(s_\tau, a_\tau)) \sim \pi_t$$

Fit $\hat{Q}_t \leftarrow \arg\min_{Q \in \mathcal{F}_0} \mathbb{E}_{\mathcal{D}_t}[(Q(s, a) - \hat{Q})^2]$

Recap: Perils of FA in API No More Monotonic Improvement!

> limited data, inaccurate

> > max exploits this $a \in \mathcal{A}$ $\cdot S \times A$

Outline for Today

- Iteration
- 3. Cure 1: Conservatism
- 4. Cure 2: Pessimism

1. Recap: Approximate Policy Iteration and Fitted *Q*-value

2. Diagnosing the Failures of Function Approximation in API

Outline for Today

- Iteration
- API
- 3. Cure 1: Conservatism
- 4. Cure 2: *Pessimism*

1. Recap: Approximate Policy Iteration and Fitted *Q*-value

2. Diagnosing the Failures of Function Approximation in

Q: what "broke" in the preceding example?

 \mathbb{R} $\hat{Q}^{\pi_t}(s,a) \approx \pi_{t+1}$ $Q^{\pi_t}(s,a)$ $Q^{\pi_{t+1}}(s,a)$ u_{π_t}

Diagnosis 3: Distribution Shift

limited data, inaccurate

Hard Q: what about the *Y*'s?

Diagnosis 3: Distribution Shift

 $d_{\pi_t} \neq d_{\pi_{t+1}}$

$X = (s, a) \quad Y = Q$

$P_{\text{train}}(X) \neq P_{\text{test}}(X)$

Diagnosis 3: Distribution Shift

API: $\hat{Q}_t \leftarrow \arg\min_{Q \in \mathcal{F}_O} \mathbb{E}_{\mathcal{D}_t}[(Q(s, a) - \hat{Q})^2]$

(on-policy - X's and Y's change)

FQI: $\hat{Q}_{t+1} \leftarrow \arg\min_{Q \in \mathcal{F}_O} \mathbb{E}_{\mathcal{D}}[(Q(s, a) - (r + \max_{a' \in \mathcal{A}} \hat{Q}_t(s', a')))^2]$

(off-policy - X's change)

Q: what "broke" in the preceding example?

A: distribution shift!

Outline for Today

- Iteration
- 3. Cure 1: Conservatism
- 4. Cure 2: Pessimism

1. Recap: Approximate Policy Iteration and Fitted *Q*-value

2. Diagnosing the Failures of Function Approximation in API

The Performance Difference Lemma (PDL)

 $J(\pi_{t+1}) - J(\pi_t) = \mathbb{E}_{\xi \sim \pi_{t+1}} \left[\sum_{h}^{H} \mathbb{E}_{a' \sim \pi_{t+1}(s_h)} [Q^{\pi_t}(s_h, a')] - \mathbb{E}_{a' \sim \pi_t(s_h)} [Q^{\pi_t}(s_h, a')] \right]$

exact PI: $\geq 0, \forall s \in \mathcal{S}$

 $\not>$ Insight: we only need to be better on $d_{\pi_{n-1}}$, not $\forall s \in \mathcal{S}!$ *t*+1

Conservative Policy Iteration (CPI)

actually compute π_{t+1} , giving us a chicken-and-egg problem.

• *Insight*: take a small step such that $d_{\pi_t} \approx d_{\pi_{t+1}}$. This means that our function approximators don't have to *extrapolate* and deal with too many OOD inputs!

• Of course, we don't actually have access to $d_{\pi_{t+1}}$ before we

Conservative Policy Iteration (CPI)

Initialize with arbitrary π_0 , t = 0

for $t \in 1, ..., T$

Sample $\mathcal{D}_t = \{(s_h, a)\}$

- Fit $\hat{Q}_t \leftarrow \arg\min_{Q \in \mathcal{F}_O} \mathbb{E}_{\mathcal{F}_o}$
- $\hat{\pi}_{t+1}(s) = \arg\max_{a \in \mathscr{A}} \hat{Q}_t(s, a), \pi_{t+1} \leftarrow (1 \alpha)\pi_t + \alpha \hat{\pi}_{t+1}$

if $\pi_{t+1} = \pi_t$: break;

Return π_T

$$a_h, \hat{Q} = \sum_{\tau=h}^{H} r(s_\tau, a_\tau)) \sim \pi_t \}$$

$$\mathcal{D}_t[(Q(s,a)-\hat{Q})^2]$$

API is CPI with $\alpha = 1!$

Conservative Policy Iteration (CPI)

- monotonic improvement via PDL! See AJKS for proof.
- A different way of seeing this: API is CPI with $\alpha = 1$. This "learning rate" is too large to ensure we learn stably.
- Practical Deep RL algorithms like TRPO/PPO are built upon the conceptual bedrock of CPI.

• For a small enough α , we have $d_{\pi_t} \approx d_{\pi_{t+1}}$. Thus, if we mix in just the right amount of the greedy policy $\hat{\pi}_{t+1}$, we can guarantee

Conservatism, Visually limited data, \mathbb{R} inaccurate $\alpha = 1$ $\hat{Q}^{\pi_t}(s,a)$ $Q^{\pi_t}(s,a)$

 d_{π_t}

- Fundamentally, we're using this update to ensure that $d_{\pi_t} \approx d_{\pi_{t+1}}$ and our function approximators don't have to extrapolate too frequently.

• The update $\pi_{t+1} \leftarrow (1 - \alpha)\pi_t + \alpha \hat{\pi}_{t+1}$ would require us to keep around a history of *all* greedy policies (i.e. all deep networks we've trained over iterations of the algorithm).

• *Q*: can we implement the same principle in a different way?

How to take "small" steps? $\nabla_{\theta} J(\pi_{\theta}) = \sum \mathbb{E}_{s_h, a_h \sim \rho_h^{\pi_{\theta}}} [\nabla_{\theta} \log \pi_{\theta}(a_h | s_h) A^{\pi_{\theta}}(s_h, a_h)]$ h State-Action Likelihood Advantage Distribution

Gradient

Function

 $\theta_{t+1} \leftarrow \theta_t + \alpha \nabla_{\theta} J(\pi_{\theta})$

How to take "small" steps? $\theta_{t+1} \leftarrow \theta_t + \alpha \nabla_{\theta} J(\pi_{\theta})$

This is taking a small step in *parameter* space rather than in policy space — i.e. *not* the CPI principle!

 $\theta_{t+1} = \max_{\theta} \langle \nabla_{\theta} J(\pi_{\theta_t}), \theta - \theta_t \rangle$ $\mathrm{s.t.}(\theta - \theta_t)^T(\theta - \theta_t) \leq \delta$

 $\theta_{t+1} = \max_{\theta} \langle \nabla_{\theta} J(\pi_{\theta_t}), \theta - \theta_t \rangle$ $\text{s.t.}(\theta - \theta_t)^T(\theta - \theta_t) \leq \delta$

Idea: We can update this constraint to enforce we are taking a small step in policy space!

 $D_{KL}(d_{\theta_t} | | d_{\theta}) \approx (\theta - \theta_t)^T F_{\theta_t}(\theta - \theta_t)$

Idea: We can update this constraint to enforce we are taking a small step in policy space!

 $\theta_{t+1} = \max_{\theta} \langle \nabla_{\theta} J(\pi_{\theta_t}), \theta - \theta_t \rangle$

s.t. $D_{KL}(d_{\theta} \mid \mid d_{\theta}) \leq \delta$

 $F_{\theta_t} = \mathbb{E}_{\pi_{\theta_t}} [\nabla_{\theta} \log \pi_{\theta_t} (a \mid s)^T \nabla_{\theta} \log \pi_{\theta_t} (a \mid s)]$

$\Rightarrow \theta_{t+1} \leftarrow \theta_t + \alpha F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t})$

Idea: The Natural Policy Gradient!

 $\theta_{t+1} = \max_{\theta} \langle \nabla_{\theta} J(\pi_{\theta_t}), \theta - \theta_t \rangle$

s.t. $(\theta - \theta_t)^T F_{\theta_t}(\theta - \theta_t) \leq \delta$

How to take "small" steps? $\nabla_{\theta} J(\pi_{\theta}) = \sum \mathbb{E}_{s_h, a_h \sim \rho_h^{\pi_{\theta}}} [\nabla_{\theta} \log \pi_{\theta}(a_h | s_h) A^{\pi_{\theta}}(s_h, a_h)]$ h State-Action Likelihood Advantage Function Distribution Gradient

PPO and TRPO are approximations of NPG!

$F_{\theta_{t}} = \mathbb{E}_{\pi_{\theta_{t}}} [\nabla_{\theta} \log \pi_{\theta_{t}}(a \mid s)^{T} \nabla_{\theta} \log \pi_{\theta_{t}}(a \mid s)]$

 $\theta_{t+1} \leftarrow \theta_t + \alpha F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t})$

Outline for Today

- Iteration
- 3. Cure 1: Conservatism
- 4. Cure 2: Pessimism

1. Recap: Approximate Policy Iteration and Fitted *Q*-value

2. Diagnosing the Failures of Function Approximation in API

Pessimism

- the \hat{Q} -function fitting the same.
- policies that don't go OOD.
- optimal policy under this \hat{Q} won't want to ever leave the training distribution!
- We therefore don't need to iteratively collect new on-policy data via interaction. This is the core idea of *offline reinforcement learning*.

• Conservatism is applying a step-size constraint in policy space, keeping

• Alternatively, we could change the way we approximate the \hat{Q} to induce

• *Idea*: be as *pessimistic* as possible on unseen state / action pairs. The

Pessimism, Visually

 d_{π_t}

limited data,

Summary

- 1. Function approximation causes problems in RL due to the shift between the training and the testing distributions.
- 2. We can address this problem in one of two ways:
 - A. Take small steps (*conservatism*). We can do this by mixing or following the *natural policy gradient*.
 - B. Assume the worst case thing happens OOD (*pessimism*).