Policy and *Q*-value Iteration Gokul Swamy

(slides partially copied from Sanjiban / Wen; all mistakes my own)

Recap: Policy Gradients $\nabla_{\theta} J(\pi_{\theta}) = \sum \mathbb{E}_{s_h, a_h \sim \rho_h^{\pi_{\theta}}} [\nabla_{\theta} \log \pi_{\theta}(a_h | s_h) A^{\pi_{\theta}}(s_h, a_h)]$ h State-Action Likelihood Advantage

Distribution Gradient

Policy Gradients = *Advantage-Weighted MLE*!

P Question: How big of a step (η) can we take?

Function

 $\theta_{t+1} \leftarrow \pi_{\theta_{\star}} + \eta \nabla_{\theta} J(\pi_{\theta_{\star}})$

- 1. Recap: Policy Iteration and *Q*-value Iteration
- 2. Proving Monotonic Improvement of PI
- 3. What is *function approximation* in RL?
- 4. What breaks when we introduce function approximation into Policy and *Q*-value Iteration?
- 5. (Next time) The answer to the *P* Question!

Outline for Today

- **1.** Recap: Policy Iteration and *Q*-value Iteration
- 2. Proving Monotonic Improvement of PI
- 3. What is *function approximation* in RL?
- 4. What breaks when we introduce function approximation into Policy and *Q*-value Iteration?
- 5. (Next time) The answer to the *P* Question!

Outline for Today

 $\forall s \in \mathcal{S}, a \in \mathcal{A}, Q_{H}^{\star}(s, a) = r(s, a)$

for h = H - 1, ..., 1:

 $Q_h^{\star}(s,a) = r(s,a) + \gamma \sum_{a' \in \mathscr{A}} T(s'|s,a) \max_{a' \in \mathscr{A}} Q_{h+1}^{\star}(s',a')$ *s′*∈*S*

Return $\pi_h^{\star}(s) = \arg \max_{a \in \mathscr{A}} Q_h^{\star}(s, a)$

Q: why does this give us π^* ? A: proof by backwards induction!

Recap: Q-value Iteration

Recap: Q-value Iteration

0 -	14	14	13	14	14	14	14	2	1	0
	14	13	12	14	14	14	14	3	2	1
~ -	13	12	11	14	14	14	14	4	3	2
m -	12	11	10	9	8	7	6	5	4	3
4 -	13	12	11	14	14	14	14	6	5	4
<u>ں</u> -	14	13	12	14	14	14	14	7	6	5
φ-	14	14	13	14	14	14	14	8	7	6
5	14	14	14	13	12	11	10	9	8	7
∞ -	14	14	14	14	13	12	11	10	9	8
ი -	14	14	14	14	14	13	12	11	10	9
	ó	i	ź	3	4	5	6	ż	8	9

Time: 16

Recap: Policy Iteration

Initialize with arbitrary π_0 , t = 0

while true:

 $\forall s \in \mathcal{S}, a \in \mathcal{A}, \text{ compute } Q^{\pi_t}(s, a) / / Policy Evaluation (how?)$ $\pi_{t+1}(s) = \arg\max_{a \in \mathscr{A}} Q^{\pi_t}(s, a) \ / \ / \ Policy \ Improvement$ if $\pi_{t+1} = \pi_t$: break; $t \leftarrow t + 1$

Return π_t

Recap: Policy Iteration

0 -	0	0	0	0	0	0	0	0	0	0
н -	0	0	0	0	0	0	0	0	0	0
~ -	0	0	0	0	0	0	0	0	0	0
m -	0	0	0	0	0	0	0	0	0	0
4 -	0	0	0	0	0	0	0	0	0	0
<u>ں</u> -	0	0	0	0	0	0	0	0	0	0
9 -	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0
ω -	0	0	0	0	0	0	0	0	0	0
თ -	0	0	0	0	0	0	0	0	0	0
	ó	i	ź	ż	4	5	6	ż	8	9

lter: 0

0 -	_ →	→	→	→	→	→	→	→	→	Ť
ч -	→	→	→	→	→	→	\rightarrow	\rightarrow	\rightarrow	1
2	. →	→	→	→	→	→	\rightarrow	\rightarrow	\rightarrow	1
m -	. →	→	→	→	→	→	→	→	→	1
4 -	→	→	→	→	→	\rightarrow	\rightarrow	\rightarrow	\rightarrow	1
ഹ -	. →	→	→	→	→	\rightarrow	\rightarrow	\rightarrow	\rightarrow	1
· 9	. →	→	→	→	→	→	→	→	→	1
r -	. →	→	→	→	→	→	→	\rightarrow	\rightarrow	†
∞ -	. →	→	→	→	→	→	→	→	→	1
ი -	_ →	\rightarrow	→	→	→	→	→	→	→	Ť
	ò	i	ź	3	4	5	6	ż	8	9

Recap: Policy Evaluation

Option 1: $\forall s \in \mathcal{S}, a \in \mathcal{A}$, roll out π_t repeatedly and compute the average over trajectories of cumulative reward. **Option 2**:

 $\forall s \in \mathcal{S}, a \in \mathcal{A}, Q_{H}^{\pi_{t}}(s, a) = \mathbb{E}_{a \sim \pi_{t}(s)}[r(s, a)]$

for h = H - 1, ..., 1:

Option 2 is caches *Q*-values to save samples!

$Q_{h}^{\pi_{t}}(s,a) = \mathbb{E}_{a \sim \pi_{t}(s)}[r(s,a) + \gamma \sum T(s'|s,a)Q_{h+1}^{\pi_{t}}(s',a')]$ *s′*∈*S*

Recap: Policy Iteration

Initialize with arbitrary π_0 , t = 0

while true:

 $\forall s \in \mathcal{S}, a \in \mathcal{A}, \text{ compute } Q^{\pi_t}(s, a) / / Policy Evaluation (how?)$ $\pi_{t+1}(s) = \arg \max Q^{\pi_t}(s, a) / / Policy Improvement$ $a \in \mathscr{A}$ if $\pi_{t+1} = \pi_t$: break; $t \leftarrow t + 1$

Return π_t

Q: why is $J(\pi_{t+1}) \geq J(\pi_t)$ (monotonic improvement)?

- 1. Recap: Policy Iteration and *Q*-value Iteration
- 2. Proving Monotonic Improvement of PI
- 3. What is *function approximation* in RL?
- 4. What breaks when we introduce function approximation into Policy and *Q*-value Iteration?
- 5. (Next time) The answer to the *P* Question!

Outline for Today

Monotonic Improvement of PI

- Recall that defined $\pi_{t+1}(s) = \arg \max Q^{\pi_t}(s, a)$
- Thus, we know that $\forall s \in \mathcal{S}$, $\mathbb{E}_{a \sim \pi_{t+1}(s)}[Q^{\pi_t}(s,a)] = \max_{a \in \mathscr{A}} Q^{\pi_t}(s,a) \ge \mathbb{E}_{a \sim \pi_t(s)}[Q^{\pi_t}(s,a)]$

$a \in \mathcal{A}$

Q: How do we translate these *local* improvements to a guarantee of *global* improvement?

The Performance Difference Lemma (PDL)

 $J(\pi_{t+1}) - J(\pi_t) = \mathbb{E}_{\xi \sim \pi_{t+1}} \left[\sum_{h=1}^{H} \mathbb{E}_{a' \sim \pi_{t+1}(s_h)} [Q^{\pi_t}(s_h, a')] - \mathbb{E}_{a' \sim \pi_t(s_h)} [Q^{\pi_t}(s_h, a')] \right]$

> 0

$\geq 0, \forall s \in \mathcal{S}$

[Kakade and Langford, '02]

Proving the PDL $J(\pi_{t+1}) - J(\pi_t) = \mathbb{E}_{\xi \sim \pi_{t+1}} \left| \sum_{l=1}^{H} r(s_h, a_h) \right| - \mathbb{E}_{s_0}[V^{\pi_t}(s_0)]$ (same start $= \mathbb{E}_{\xi \sim \pi_{t+1}} \left| \sum_{h=1}^{H} r(s_h, a_h) - V^{\pi_t}(s_0) \right|$ state dist.) $= \mathbb{E}_{\xi \sim \pi_{t+1}} \left[\sum_{k=1}^{H} r(s_h, a_h) + V^{\pi_t}(s_{h+1}) - V^{\pi_t}(s_h) \right] (telescopes)$

 $J(\pi_{t+1}) - J(\pi_t) = \mathbb{E}_{\xi \sim \pi_{t+1}} \left[\sum_{h=1}^{H} r(s_h, a_h) + V^{\pi_t}(s_{h+1}) - V^{\pi_t}(s_h) \right]$ $= \mathbb{E}_{\xi \sim \pi_{t+1}} \left[\sum_{h}^{H} r(s_h, a_h) + V^{\pi_t}(s_{h+1}) - \mathbb{E}_{a' \sim \pi_t(s_h)}[Q^{\pi_t}(s_h, a')] \right]$

 $= \mathbb{E}_{\xi \sim \pi_{t+1}} \left[\sum_{h}^{H} \mathbb{E}_{a' \sim \pi_{t+1}(s_h)} [Q^{\pi_t}(s_h, a')] - \mathbb{E}_{a' \sim \pi_t(s_h)} [Q^{\pi_t}(s_h, a')] \right]$

Proving the PDL

Recap: Policy Iteration

Initialize with arbitrary π_0 , t = 0

while true:

 $\forall s \in \mathcal{S}, a \in \mathcal{A}, \text{ compute } Q^{\pi_t}(s, a) / / Policy Evaluation (how?)$ $\pi_{t+1}(s) = \arg \max Q^{\pi_t}(s, a) / / Policy Improvement$ $a \in \mathscr{A}$ if $\pi_{t+1} = \pi_t$: break; $t \leftarrow t + 1$

Return π_t

Q: why is $J(\pi_{t+1}) \geq J(\pi_t)$ (monotonic improvement)?

A: local improvements + PDL

- 1. Recap: Policy Iteration and *Q*-value Iteration
- 2. Proving Monotonic Improvement of PI
- 3. What is function approximation in RL?
- 4. What breaks when we introduce function approximation into Policy and *Q*-value Iteration?
- 5. (Next time) The answer to the *P* Question!

Outline for Today

Function Approximation in RL

- *tables* in memory.
- memory.
- e.g. policies: NN that maps from state to mean / variance of a Gaussian, often called an *actor*
- number, often called a *critic*

• For problems with small state / action spaces (i.e. *tabular* problems), we can represent policies, value functions, *Q* functions as *lookup*

• However, for problems with large or continuous state spaces, we instead need to fit functions to approximate these functions in

• e.g. *Q* functions: NN that maps from state / action pairs to a real

$\forall s \in \mathcal{S}, a \in \mathcal{A}, Q_H^{\star}(s, a) = r(s, a)$ for h = H - 1, ..., 1:

$$Q_h^{\star}(s,a) = r(s,a) + \gamma \sum_{s' \in \mathcal{S}} T(s' \mid s,a) \max_{a' \in \mathcal{A}} Q_{h+1}^{\star}(s',a')$$

Return $\pi_h^{\star}(s) = \arg \max_{a \in \mathscr{A}} Q_h^{\star}(s, a)$

Fitted Q-Iteration

Receive some dataset $\mathcal{D} = \{(s, a, r, s')\}$ Initialize $\hat{Q}_0 \in \mathcal{F}_{O'}, t \leftarrow 0$ for $t \in 1, ..., T$ $\hat{Q}_{t+1} \leftarrow \arg\min_{Q \in \mathcal{F}_Q} \mathcal{E}_{\mathcal{D}}[(Q(s,a) - (r + \max_{a' \in \mathcal{A}} \hat{Q}_t(s',a')))^2]$

Return π_T

source of pain 1 source of pain 2 $\hat{Q}_{t+1} \leftarrow \arg\min_{Q \in \mathcal{F}_O} \mathcal{E}_{\mathcal{D}}[(Q(s, a) - (r + \max_{a' \in \mathcal{A}} \hat{Q}_t(s', a')))^2]$

Fitted Q-Iteration

"target network"

Initialize with arbitrary π_0 , t = 0

while true:

 $\forall s \in \mathcal{S}, a \in \mathcal{A}, \text{ compute } Q^{\pi_t}(s, a)$ $\pi_{t+1}(s) = \arg\max_{a \in \mathscr{A}} Q^{\pi_t}(s, a)$ if $\pi_{t+1} = \pi_t$: break; $t \leftarrow t + 1$

Return π_t

Approximate Policy Iteration

Initialize with arbitrary π_0 , t = 0

for $t \in 1, ..., T$

Sample $\mathcal{D}_t = \{(s_h, a_h, \hat{Q} = \sum^H r(s_\tau, a_\tau)) \sim \pi_t\}$ $\tau = h$

Fit $\hat{Q}_t \leftarrow \arg\min_{Q \in \mathcal{F}_O} \mathbb{E}_{\mathcal{D}_t}[(Q(s, a) - \hat{Q})^2]$

$$\pi_{t+1}(s) = \arg\max_{a \in \mathscr{A}} \hat{Q}_t(s, a)$$

if $\pi_{t+1} = \pi_t$: break;

Return π_T

same sources of pain!

- 1. Recap: Policy Iteration and *Q*-value Iteration
- 2. Proving Monotonic Improvement of PI
- 3. What is *function approximation* in RL?
- 4. What breaks when we introduce function approximation into Policy and *Q*-value Iteration?
- 5. (Next time) The answer to the *P* Question!

Outline for Today

The Perils of Function Approximation in RL: No More Monotonic Improvement!

> limited data, inaccurate

> > max exploits this $a \in \mathcal{A}$ $\cdot S \times A$

Example 1: Gridworld

J*(x,y)

Value Iteration with a Quadratic

Iteration 17

Value Iteration with a Quadratic

1

Iteration 43

Value Iteration with a Quadratic

Car-on-the-Hill

Example 2: Mountain Car

Summary

- 1. Policy Iteration and *Q*-value Iteration have monotonic improvement guarantees in the tabular setting, which we can prove via the PDL.
- 2. Scaling either method to larger problems requires function approximation for both policies and *Q*-functions.
- 3. However, these functions can be overly optimistic outside of their training distribution, leading to poor performance at test time (i.e. covariate shift).
- 4. Stay tuned: *how do we fix this???*