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Recap: Policy Gradients

∇θJ(πθ) =
H

∑
h

𝔼sh,ah∼ρπθ
h

[∇θlog πθ(ah |sh)Aπθ(sh, ah)]Aπθ(sh, ah)
Advantage
Function

∇θlog πθ(ah |sh)
Likelihood
Gradient

𝔼sh,ah∼ρπθ
h

State-Action
Distribution

θt+1 ← πθt
+ η∇θJ(πθt

)

🔑 Question: How big of a step ( ) can we take?η

Policy Gradients = Advantage-Weighted MLE!



Outline for Today
1. Recap: Policy Iteration and -value Iteration

2. Proving Monotonic Improvement of PI

3. What is function approximation in RL?

4. What breaks when we introduce function approximation 
into Policy and -value Iteration?

5. (Next time) The answer to the 🔑 Question!
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Recap: -value IterationQ

for :

Return 

∀s ∈ 𝒮, a ∈ 𝒜, Q⋆
H(s, a) = r(s, a)

h = H − 1,…,1

Q⋆
h (s, a) = r(s, a) + γ ∑

s′￼∈𝒮

T(s′￼|s, a) max
a′￼∈𝒜

Q⋆
h+1(s′￼, a′￼)

π⋆
h (s) = arg max

a∈𝒜
Q⋆

h (s, a)

Q: why does this give us ?π⋆

A: proof by backwards induction!



Recap: -value IterationQ



Recap: Policy Iteration
Initialize with arbitrary , 

while true:

 compute  // Policy Evaluation (how?)

 // Policy Improvement

if :  break;

Return 

π0 t = 0

∀s ∈ 𝒮, a ∈ 𝒜, Qπt(s, a)

πt+1(s) = arg max
a∈𝒜

Qπt(s, a)

πt+1 = πt

t ← t + 1

πt



Recap: Policy Iteration



Recap: Policy Evaluation
Option 1: roll out  repeatedly and compute 
the average over trajectories of cumulative reward.
Option 2:

∀s ∈ 𝒮, a ∈ 𝒜, πt

for :

∀s ∈ 𝒮, a ∈ 𝒜, Qπt
H(s, a) = 𝔼a∼πt(s)[r(s, a)]

h = H − 1,…,1

Qπt
h (s, a) = 𝔼a∼πt(s)[r(s, a) + γ ∑

s′￼∈𝒮

T(s′￼|s, a)Qπt
h+1(s′￼, a′￼)]

Option 2 is caches -values to save samples!Q



Recap: Policy Iteration
Initialize with arbitrary , 

while true:

 compute  // Policy Evaluation (how?)

 // Policy Improvement

if :  break;

Return 

π0 t = 0

∀s ∈ 𝒮, a ∈ 𝒜, Qπt(s, a)

πt+1(s) = arg max
a∈𝒜

Qπt(s, a)

πt+1 = πt

t ← t + 1

πt

Q: why is 
(monotonic improvement)?

J(πt+1) ≥ J(πt)
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Monotonic Improvement of PI
Recall that defined 

Thus, we know that 

πt+1(s) = arg max
a∈𝒜

Qπt(s, a)

∀s ∈ 𝒮,
𝔼a∼πt+1(s)[Qπt(s, a)] = max

a∈𝒜
Qπt(s, a) ≥ 𝔼a∼πt(s)[Qπt(s, a)]

Q: How do we translate these local improvements
to a guarantee of global improvement?



The Performance Difference Lemma (PDL)

J(πt+1) − J(πt) = 𝔼ξ∼πt+1 [
H

∑
h

𝔼a′￼∼πt+1(sh)[Q
πt(sh, a′￼)] − 𝔼a′￼∼πt(sh)[Q

πt(sh, a′￼)]]
≥ 0,∀s ∈ 𝒮

≥ 0

πt+1 𝔼ξ∼πt+1
𝔼a′￼∼πt+1(sh)πt Qπt(sh, a′￼) Qπt(sh, a′￼)𝔼a′￼∼πt(sh)

[Kakade and Langford, ’02]



Proving the PDL

J(πt+1) − J(πt) = 𝔼ξ∼πt+1 [
H

∑
h

r(sh, ah)] − 𝔼s0
[Vπt(s0)]

= 𝔼ξ∼πt+1 [
H

∑
h

r(sh, ah) − Vπt(s0)]
= 𝔼ξ∼πt+1 [

H

∑
h

r(sh, ah) + Vπt(sh+1) − Vπt(sh)]

(same start
state dist.)

(telescopes)



Proving the PDL
J(πt+1) − J(πt) = 𝔼ξ∼πt+1 [

H

∑
h

r(sh, ah) + Vπt(sh+1) − Vπt(sh)]
= 𝔼ξ∼πt+1 [

H

∑
h

r(sh, ah) + Vπt(sh+1) − 𝔼a′￼∼πt(sh)[Q
πt(sh, a′￼)]]

= 𝔼ξ∼πt+1 [
H

∑
h

𝔼a′￼∼πt+1(sh)[Q
πt(sh, a′￼)] − 𝔼a′￼∼πt(sh)[Q

πt(sh, a′￼)]]



Recap: Policy Iteration
Initialize with arbitrary , 

while true:

 compute  // Policy Evaluation (how?)

 // Policy Improvement

if :  break;

Return 

π0 t = 0

∀s ∈ 𝒮, a ∈ 𝒜, Qπt(s, a)

πt+1(s) = arg max
a∈𝒜

Qπt(s, a)

πt+1 = πt

t ← t + 1

πt

Q: why is 
(monotonic improvement)?

J(πt+1) ≥ J(πt)

A: local improvements + PDL
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Function Approximation in RL
• For problems with small state / action spaces (i.e. tabular problems), 

we can represent policies, value functions,  functions as lookup 
tables in memory.

• However, for problems with large or continuous state spaces, we 
instead need to fit functions to approximate these functions in 
memory.

• e.g. policies: NN that maps from state to mean / variance of a 
Gaussian, often called an actor

• e.g.  functions: NN that maps from state / action pairs to a real 
number, often called a critic

Q

Q



Fitted -IterationQ

for :

Return 

∀s ∈ 𝒮, a ∈ 𝒜, Q⋆
H(s, a) = r(s, a)

h = H − 1,…,1

Q⋆
h (s, a) = r(s, a) + γ ∑

s′￼∈𝒮

T(s′￼|s, a) max
a′￼∈𝒜

Q⋆
h+1(s′￼, a′￼)

π⋆
h (s) = arg max

a∈𝒜
Q⋆

h (s, a)

Receive some dataset 

Initialize  , 

for 

Return 

𝒟 = {(s, a, r, s′￼)}

Q̂0 ∈ ℱQ t ← 0

t ∈ 1,…, T

Q̂t+1 ← arg min
Q∈ℱQ

ℰ𝒟[(Q(s, a) − (r + max
a′￼∈𝒜

Q̂t(s′￼, a′￼)))2]

πT



Fitted -IterationQ

Q̂t+1 ← arg min
Q∈ℱQ

ℰ𝒟[(Q(s, a) − (r + max
a′￼∈𝒜

Q̂t(s′￼, a′￼)))2]Q̂t(s′￼, a′￼)

“target network”

max
a′￼∈𝒜

source of pain 2
ℰ𝒟

source of pain 1



Approximate Policy Iteration
Initialize with arbitrary , 

while true:

 compute 

if :  break;

Return 

π0 t = 0

∀s ∈ 𝒮, a ∈ 𝒜, Qπt(s, a)

πt+1(s) = arg max
a∈𝒜

Qπt(s, a)

πt+1 = πt

t ← t + 1

πt

Initialize with arbitrary , 

for 

Sample  

Fit 

if :  break;

Return 

π0 t = 0

t ∈ 1,…, T

𝒟t = {(sh, ah, Q̂ =
H

∑
τ=h

r(sτ, aτ)) ∼ πt}

Q̂t ← arg min
Q∈ℱQ

𝔼𝒟t
[(Q(s, a) − Q̂)2]

πt+1(s) = arg max
a∈𝒜

Q̂t(s, a)

πt+1 = πt

πT same sources of pain!
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The Perils of Function Approximation in RL:

(s, a, Q̂) ∼ dπt

𝒮 × 𝒜

ℝ

Qπt+1(s, a)

Q̂πt(s, a) ≈ πt+1

limited data,
inaccurate 

 exploits thismax
a∈𝒜Qπt(s, a)

No More Monotonic Improvement! 😱😱😱 



Example 1: Gridworld
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Value Iteration with a Quadratic

25

84 draft: modern adaptive control and reinforcement learning

this can be viewed as a violation of the i.i.d assumption on training and test
samples.

The following examples from [3] [Boyan and Moore, 1995] demonstrate
this problem 12. 12 All figures from Boyan et. al

Example: 2D gridworld

Figure 8.1.1 shows the 2D grid world example, which has a linear true value
function J⇤.

Continuous Gridworld
J*(x,y)1

0.8
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20
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0
5

0.60.2 00
0.40.20.2

0.40.4
0.60.6 0.20

0.2 0.4 0.6 0.8 1 0.80.8
101x

y

Figure 8.1.1: The continuous
gridworld domain.

Figure 8.1.2 shows that VI with converges to the true value function.

Iteration 12 Iteration 25 Iteration 40

20 20 20
15 15 151 1 1
10 10 100.8 0.8 0.85 5 5
0 0.6 0 0.6 0 0.6
00 00 00

0.4 0.20.2 0.4 0.20.2 0.40.20.2
0.40.4 0.40.4 0.40.4

0.2 0.60.6 0.2 0.60.6 0.20.60.6
0.80.8 0.80.8 0.80.8

10 10 101 1 1

Figure 8.1.2: Training with
discrete value iteration.

However, figure 8.1.3 shows that Fitted Value Iteration with quadratic
regression fails to converge. The quadratic function, in trying to both be
flat in the middle of state space and bend down toward 0 at the goal corner,
must compensate by underestimating the values at the corner opposite
the goal. These underestimates then enlarge on each iteration, as the one-
step lookaheads indicate that points can lower their expected cost-to-go by
stepping farther away from the goal.

Iteration 17 Iteration 43 Iteration 127

8 10 -2006 1 0 1 1-300
2
4 0.8 -10 0.8 -400 0.8

-20 -5000 0.6 0.6 0.6
00 00 00

0.20.2 0.40.20.2 0.4 0.20.2 0.4 0.40.40.40.4 0.40.4
0.2 0.60.6 0.20.60.6 0.2 0.60.6 0.80.80.80.8 0.80.8 101110 110

Figure 8.1.3: Training with
quadratic regression. The value
function diverges. Fitted Value
Iteration with quadratic regres-
sion underestimates the values
at the corner opposite the goal,
and these underestimates am-
plify at each iteration.
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Example 2: Mountain Car
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Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
-1 0-1 vel

-0.5-0.5
-1 -0.5 0 0.5 -1

0pospos 0
pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.

Iteration 11 Iteration 101 Iteration 201

12 50
11 2 25 2 20
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-0.5-0.5 -0.5-0.5 -0.5-0.5
-1

00 00
-1 -1 00

0.50.5 -20.50.5 -2 0.50.5 -2

Figure 8.1.5: Training with
neural network.



Value Iteration with a 2 Layer NN
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Value Iteration with a 2 Layer NN
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Summary
1. Policy Iteration and -value Iteration have monotonic improvement 

guarantees in the tabular setting, which we can prove via the PDL.

2. Scaling either method to larger problems requires function 
approximation for both policies and -functions.

3. However, these functions can be overly optimistic outside of their 
training distribution, leading to poor performance at test time (i.e. 
covariate shift).

4. Stay tuned: how do we fix this????

Q

Q


