Policy Gradient (continue)

 $\tau = \{s_0, a_0, s_1, a_1, \dots, s_{H-1}, a_{H-1}\}$

 $\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 \,|\, s_0)P(s_1 \,|\, s_0, a_0)\pi_{\theta}(a_1 \,|\, s_1)\dots$

 $|s_1|$

 $\tau = \{s_0, a_0, s_1, a_1, \dots, s_{H-1}, a_H\}$

 $\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 \,|\, s_0)P(s_1 \,|\, s_0, a_0)\pi_{\theta}(a_1 \,|\, s_0)\pi_{\theta}(a_1 \,|\, s_0)\pi$

$$J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \underbrace{\left[\sum_{h=0}^{H-1} r(s_h, a_h)\right]}_{R(\tau)}$$

 $\tau = \{s_0, a_0, s_1, a_1, \dots, s_{H-1}, a_{H-1}\}$

 $\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 \,|\, s_0)P(s_1 \,|\, s_0, a_0)\pi_{\theta}(a_1 \,|\, s_0)\pi_{\theta}(a_1 \,|\, s_0)\pi$

 $\nabla_{\theta} J(\pi_{\theta}) \big|_{\theta = \theta_0} := \mathbb{E}_{\tau \sim \rho_{\theta_0}(\tau)}$

$$J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \underbrace{\left[\sum_{h=0}^{H-1} r(s_h, a_h)\right]}_{R(\tau)}$$

$$\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta_0}(a_h | s_h)\right) R(\tau)$$

$$\nabla_{\theta} J(\pi_{\theta}) |_{\theta = \theta_0} := \mathbb{E}_{\tau \sim \rho_{\theta_0}(\tau)}$$

How to get an unbiased estimate of the PG?

 $P_{\theta_0}(\tau) \left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta_0}(a_h | s_h) \right) R(\tau)$

$$\nabla_{\theta} J(\pi_{\theta}) |_{\theta = \theta_0} := \mathbb{E}_{\tau \sim \rho_{\theta_0}(\tau)}$$

How to get an unbiased estimate of the PG?

 $\rho_{\theta_0}(\tau) \left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta_0}(a_h | s_h) \right) R(\tau)$

 $\tau \sim \rho_{\theta_0}$

$$\nabla_{\theta} J(\pi_{\theta}) |_{\theta = \theta_0} := \mathbb{E}_{\tau \sim \rho_{\theta_0}(\tau)} \left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta_0}(a_h | s_h) \right) R(\tau) \right]$$

How to get an unbiased estimate of the PG?

$$g := \sum_{h=0}^{H-1} \left[\nabla \ln \pi_{\theta_0}(a_h | s_h) R(\tau) \right]$$

 $\tau \sim \rho_{\theta_0}$

$$\nabla_{\theta} J(\pi_{\theta}) |_{\theta=\theta_{0}} := \mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)} \left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta_{0}}(a_{h} | s_{h}) \right) R(\tau) \right]$$

How to get an unbiased estimate of the PG?

$$g := \sum_{h=0}^{H-1} \left[\nabla \ln \pi_{\theta_0}(a_h | s_h) R(\tau) \right]$$

We have: \mathbb{E}

 $\tau \sim \rho_{\theta_0}$

$$\mathsf{E}[g] = \nabla_{\theta} J(\pi_{\theta_0})$$

$$\nabla_{\theta} J(\pi_{\theta}) |_{\theta=\theta_{0}} := \mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)} \left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta_{0}}(a_{h} | s_{h}) \right) R(\tau) \right]$$

How to get an unbiased estimate of the PG?

 \mathcal{T}

$$g := \sum_{h=0}^{H-1} \left[\nabla \ln \pi_{\theta_0}(a_h | s_h) R(\tau) \right]$$

We have: E

$$\sim \rho_{\theta_0}$$

$$\mathsf{E}[g] = \nabla_{\theta} J(\pi_{\theta_0})$$

This formulation has large variance, i.e., $\mathbb{E}\left[\|g - \nabla_{\theta} J(\pi_{\theta_0})\|_2^2\right]$ could be as large as H^3

Today's Question:

How to Make Policy Gradient really useful in practice

3. Reset to address the exploration challenge

Outline:

1. A Q(s, a) based Policy Gradient and Variance reduction

2. Proximal Policy Optimization (it trains ChatGPT!)

 $V_h^{\pi}(s) = \mathbb{E} \left[\sum_{t=h}^{H-1} r(.$

 $Q_h^{\pi}(s, a) = \mathbb{E} \left[\sum_{t=h}^{H-1} r(s_t, a) \right]$ $= r(s, a) + \mathbb{E}_{s}$

Value / Q function

$$(s_t, a_t) \mid s_h = s, a_t \sim \pi$$

$$(a_t) | s_h = s, a_h = a, a_t \sim \pi$$

$$\mathbb{E}_{s'\sim\mathcal{T}(s,a)}V_{h+1}^{\pi}(s')$$

Policy Gradient w/ Q_h^{π}

Adjust θ s.t. policy increases (decreases) prob of *a* with high (low) expected reward-to-go

Variance reduction via a Baseline

$$\nabla_{\theta} J(\pi_{\theta}) := \sum_{h=0}^{H-1} \mathbb{E}_{s,a \sim d_{h}^{\pi_{\theta}}} \left[\nabla_{\theta} \right]$$

 $\theta_{\theta} \ln \pi_{\theta}(a_h | s_h) \cdot \left(Q_h^{\pi_{\theta}}(s_h, a_h) - b(s_h) \right)$

Baseline: as long as it is actionindepenent, it does not affect the gradient

Variance reduction via a Baseline

$$\nabla_{\theta} J(\pi_{\theta}) := \sum_{h=0}^{H-1} \mathbb{E}_{s,a \sim d_h^{\pi_{\theta}}} \left[\nabla_{\theta} \right]$$

Just need to show $\mathbb{E}_{s,a \sim \pi_{\theta}(.|s)} \nabla \ln \pi_{\theta}(a \mid s) \cdot b(s) = 0$:

 $\theta_{\theta} \ln \pi_{\theta}(a_h | s_h) \cdot \left(Q_h^{\pi_{\theta}}(s_h, a_h) - b(s_h) \right)$

Baseline: as long as it is actionindepenent, it does not affect the gradient

Value function as a baseline

$$\nabla_{\theta} J(\pi_{\theta}) := \sum_{h=0}^{H-1} \mathbb{E}_{s, a \sim d_h^{\pi_{\theta}}} \left[\nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \cdot \left(Q_h^{\pi_{\theta}}(s_h, a_h) - V_h^{\pi_{\theta}}(s_h) \right) \right]$$

This is called **Advantage** function: $A_{h}^{\pi_{\theta}}(s, a) = Q_{h}^{\pi_{\theta}}(s, a) - V_{h}^{\pi_{\theta}}(s)$

Value function as a baseline

$$\nabla_{\theta} J(\pi_{\theta}) := \sum_{h=0}^{H-1} \mathbb{E}_{s, a \sim d_h^{\pi_{\theta}}} \left[\nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \cdot \left(Q_h^{\pi_{\theta}}(s_h, a_h) - V_h^{\pi_{\theta}}(s_h) \right) \right]$$

1. Advantage can be as small as a constant (e.g., this is the condition where DAgger works better than BC)

This is called **Advantage** function: $A_{h}^{\pi_{\theta}}(s, a) = Q_{h}^{\pi_{\theta}}(s, a) - V_{h}^{\pi_{\theta}}(s)$

Value function as a baseline

$$\nabla_{\theta} J(\pi_{\theta}) := \sum_{h=0}^{H-1} \mathbb{E}_{s, a \sim d_h^{\pi_{\theta}}} \left[\nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \cdot \left(Q_h^{\pi_{\theta}}(s_h, a_h) - V_h^{\pi_{\theta}}(s_h) \right) \right]$$

This is called **Advantage** function: $A_h^{\pi_\theta}(s,a) = Q_h^{\pi_\theta}(s,a) - V_h^{\pi_\theta}(s)$

1. Advantage can be as small as a constant (e.g., this is the condition where DAgger works better than BC)

2. V is not the theoretically optimal baseline, but is used almost in every practical PG alg/implementation

3. How to address the exploration challenge

Outline:

2. Proximal Policy Optimization (it trains ChatGPT!)

Train a robot to "run" forward as fast as possible:

State: joint angles, center of mass, velocity, etc Action: torques on joints **Reward**: distance of moving forward between two steps

Train a robot to "run" forward as fast as possible: State: joint angles, center of mass, velocity, etc Action: torques on joints **Reward**: distance of moving forward between two steps

Train a robot to "run" forward as fast as possible: State: joint angles, center of mass, velocity, etc Action: torques on joints **Reward**: distance of moving forward between two steps

Train a robot to "run" forward as fast as possible: State: joint angles, center of mass, velocity, etc Action: torques on joints **Reward**: distance of moving forward between two steps

Train a robot to "run" forward as fast as possible: State: joint angles, center of mass, velocity, etc Action: torques on joints **Reward**: distance of moving forward between two steps

(BTW, This reveals an issue on reward design—you may study it in Inverse RL lectures)

Naive Policy Gradient can unstable and slow

The potential high-variance in PG can make learning very unstable

Naive Policy Gradient can unstable and slow

GPU usage can be very low...

Collect a large dataset

Collect a large dataset

 $\blacktriangleright \mathscr{D} = \left\{ s, a, A^{\pi_{\theta_t}}(s, a) \right\}$

Collect a large dataset

 $\blacktriangleright \mathscr{D} = \left\{ s, a, A^{\pi_{\theta_t}}(s, a) \right\}$

Now let's do multiple epoches of min-batch gradient update on the dataset

Construct a batch Supervised Learning style objective using $\mathcal{D} = \{s, a, A^{\pi_{\theta_t}}(s, a)\}$

$$\max_{\theta} \mathscr{C}(\theta) = \max_{\theta} \mathbb{E}_{s \sim d^{\pi_{\theta_t}}}$$

 ${}_{t}\mathbb{E}_{a\sim\pi_{\theta}(\cdot|s)}\cdot A^{\pi_{\theta_{t}}}(s,a)$

$$\max_{\theta} \mathscr{C}(\theta) = \max_{\theta} \mathbb{E}_{s \sim d^{\pi_{\theta_{t}}}} \mathbb{E}_{a \sim \pi_{\theta}(\cdot|s)} \cdot A^{\pi_{\theta_{t}}}(s, a)$$

W trick $\rightarrow \mathbb{E}_{s \sim d^{\pi_{\theta_{t}}}} \mathbb{E}_{a \sim \pi_{\theta_{t}}(\cdot|s)} \frac{\pi_{\theta}(\cdot|s)}{\pi_{\theta_{t}}(a|s)} \cdot A^{\pi_{\theta_{t}}}(s, a)$

Construct a batch Supervised Learning style objective using $\mathscr{D} = \{s, a, A^{\pi_{\theta_t}}(s, a)\}$

$$\max_{\theta} \mathscr{C}(\theta) = \max_{\theta} \mathbb{E}_{s \sim d^{\pi_{\theta_{t}}}} \mathbb{E}_{a \sim \pi_{\theta}(\cdot|s)} \cdot A^{\pi_{\theta_{t}}}(s, a)$$

$$\mathsf{IW trick} \to \mathbb{E}_{s \sim d^{\pi_{\theta_{t}}}} \mathbb{E}_{a \sim \pi_{\theta_{t}}(\cdot|s)} \frac{\pi_{\theta}(\cdot|s)}{\pi_{\theta_{t}}(a|s)} \cdot A^{\pi_{\theta_{t}}}(s, a)$$

$$\approx \sum_{s,a}$$

Construct a batch Supervised Learning style objective using $\mathcal{D} = \{s, a, A^{\pi_{\theta_t}}(s, a)\}$

 $\sum_{a} \frac{\pi_{\theta_t}(a \mid s)}{\pi_{\theta_t}(a \mid s)} \cdot A^{\pi_{\theta_t}}(s, a)$

Construct a batch Supervised Learning style objective using $\mathcal{D} = \{s, a, A^{\pi_{\theta_t}}(s, a)\}$

 $\hat{\ell}(\theta) = \sum_{s,a} \frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_t}(a \mid s)} \cdot A^{\pi_{\theta_t}}(s, a)$

$$\hat{\ell}(\theta) = \sum_{s,a}$$

- Construct a batch Supervised Learning style objective using $\mathcal{D} = \{s, a, A^{\pi_{\theta_t}}(s, a)\}$
 - $\frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_t}(a \mid s)} \cdot A^{\pi_{\theta_t}}(s, a)$
 - Trick 1: clipping to make sure π_{θ} stay close to $\pi_{\theta_{\tau}}$ (ensuring stability in training)

$$\hat{\ell}(\theta) = \sum_{s,a} \frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_t}(a \mid s)} \cdot A^{\pi_{\theta_t}}(s, a)$$

$$\hat{\ell}_{clip}(\theta) = \sum_{s,a} \operatorname{clip}\left(\frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_t}(a \mid s)}, 1 - \epsilon, 1 + \epsilon\right) \cdot A^{\pi_{\theta_t}}(s, a)$$

Construct a batch Supervised Learning style objective using $\mathcal{D} = \{s, a, A^{\pi_{\theta_t}}(s, a)\}$

Trick 1: clipping to make sure π_{θ} stay close to $\pi_{\theta_{t}}$ (ensuring stability in training)

$$\hat{\ell}(\theta) = \sum_{s,a} \frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_t}(a \mid s)} \cdot A^{\pi_{\theta_t}}(s, a)$$

$$\hat{\ell}_{clip}(\theta) = \sum_{s,a} \operatorname{clip}\left(\frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_t}(a \mid s)}, 1 - \epsilon, 1 + \frac{1}{\pi_{\theta_t}(a \mid s)}\right)$$

Construct a batch Supervised Learning style objective using $\mathcal{D} = \{s, a, A^{\pi_{\theta_t}}(s, a)\}$

Trick 1: clipping to make sure π_{θ} stay close to $\pi_{\theta_{\tau}}$ (ensuring stability in training)

$$\hat{\ell}(\theta) = \sum_{s,a} \frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_t}(a \mid s)} \cdot A^{\pi_{\theta_t}}(s, a)$$

$$\hat{\ell}_{clip}(\theta) = \sum_{s,a} \operatorname{clip}\left(\frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_t}(a \mid s)}, 1 - \epsilon, 1 + \epsilon\right) \cdot A^{\pi_{\theta_t}}(s, a)$$

Stop updating $\pi_{\theta}(a \mid s)$ if it is too different from $\pi_{\theta}(a \mid s)$

Construct a batch Supervised Learning style objective using $\mathcal{D} = \{s, a, A^{\pi_{\theta_t}}(s, a)\}$

Trick 1: clipping to make sure π_{θ} stay close to $\pi_{\theta_{\tau}}$ (ensuring stability in training)

Trick 2, take the min of the clipped and uncipped (original) obj

$$\hat{\ell}_{final}(\theta) = \sum_{s,a} \min \left\{ \frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{t}}(a \mid s)} \cdot A^{\pi_{\theta_{t}}}(s, a), \quad \operatorname{clip}\left(\frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{t}}(a \mid s)}, 1 - \epsilon, 1 + \epsilon\right) \cdot A^{\pi_{\theta_{t}}}(s, a) \right\}$$
Original obj

e in action probabilities

Trick 2, take the min of the clipped and uncipped (original) obj

$$\hat{\ell}_{final}(\theta) = \sum_{s,a} \min \left\{ \frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_t}(a \mid s)} \cdot A^{\pi_{\theta_t}}(s, a), \right.$$
Original obj

We compute $\theta_{t+1} \approx \arg \max_{\theta} \hat{\ell}_{final}(\theta)$, via performing a few epoches of minbatch SG ascent (or Adam/Adagrad) on $\hat{\ell}_{final}$

$$\operatorname{clip}\left(\frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{t}}(a \mid s)}, 1 - \epsilon, 1 + \epsilon\right) \cdot A^{\pi_{\theta_{t}}}(s, a) \right\}$$

clipped obj which ensures no abrupt change in action probabilities

3. How to address the exploration challenge

Outline:

Policy gradient cannot do exploration...

Initialization: S_0

Length of chain is H

Policy gradient cannot do exploration...

Initialization: S_0

Length of chain is H

Probability of random walk hitting reward 1 is $(1/3)^{-H}$

Policy gradient cannot do exploration...

Unless we take exponentially many trajs, empirical policy gradient is zero

Initialization: S_0

Length of chain is H

Probability of random walk hitting reward 1 is $(1/3)^{-H}$

1. Instead of starting from randomly initialized policy, starting from a good pre-trained policy

1. Instead of starting from randomly initialized policy, starting from a good pre-trained policy

BC -> PG (e.g., GPT3->ChatGPT)

1. Instead of starting from randomly initialized policy, starting from a good pre-trained policy

BC -> PG (e.g., GPT3->ChatGPT)

2. Reset based on some informative state distribution (e.g., explorative distribution, expert demos)

1. Instead of starting from randomly initialized policy, starting from a good pre-trained policy

BC -> PG (e.g., GPT3->ChatGPT)

2. Reset based on some informative state distribution (e.g., explorative distribution, expert demos)

e.g., start uniform randomly along the chain instead of just s_0

Summary

PG can stuck at local optimal; use BC or reset to help PG succeed

The advantage A^{π} based policy gradient formulation

PPO: the cliping trick to stabilize training; fast, efficient, and scalable