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LQR & MPC: find the (near) optimal policy given the transition P



Today

How to learn a good policy when transition  is unknown?𝒯



Outline for today

1. Recap on Gradient descent and stochastic gradient descent

2. Warm up: computing gradient using importance weighting

3. Policy Gradient formulations 



Stochastic Gradient Descent

Given an objective function ,  (e.g., )J(θ) : ℝd ↦ ℝ J(θ) = 𝔼x,y( fθ(x) − y)2

SGD minimizes the above objective function as follows:



Stochastic Gradient Descent

Given an objective function ,  (e.g., )J(θ) : ℝd ↦ ℝ J(θ) = 𝔼x,y( fθ(x) − y)2

SGD minimizes the above objective function as follows:

Initialize , for t = 0, … : θ0



Stochastic Gradient Descent

Given an objective function ,  (e.g., )J(θ) : ℝd ↦ ℝ J(θ) = 𝔼x,y( fθ(x) − y)2

SGD minimizes the above objective function as follows:

Initialize , for t = 0, … : θ0

θt+1 = θt − ηgt



Stochastic Gradient Descent

Given an objective function ,  (e.g., )J(θ) : ℝd ↦ ℝ J(θ) = 𝔼x,y( fθ(x) − y)2

SGD minimizes the above objective function as follows:

Initialize , for t = 0, … : θ0

θt+1 = θt − ηgt

where 𝔼[gt] = ∇θJ(θt)



Stochastic Gradient Descent

Given an objective function ,  (e.g., )J(θ) : ℝd ↦ ℝ J(θ) = 𝔼x,y( fθ(x) − y)2

SGD minimizes the above objective function as follows:

Initialize , for t = 0, … : θ0

θt+1 = θt − ηgt

where 𝔼[gt] = ∇θJ(θt)



Convergence of SGD

Under some regularity condition of the objective, SGD converges to a stationary point, i.e., 



Convergence of SGD

Under some regularity condition of the objective, SGD converges to a stationary point, i.e., 

J(θ)

Stationary point: ∥∇J(θ)∥2 = 0



Convergence of SGD

Under some regularity condition of the objective, SGD converges to a stationary point, i.e., 

For convex function, it guarantees convergence to the global optimal

J(θ)

Stationary point = global optimal point



SGD in general is amazing!

Works really well for training large neural networks, desipte non-convexity!

implicit regularization — models trained via SGD can generalize better

Easy to implement, take advtange of modern GPUs



Question:
Can we develop something like SGD for RL?
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Warm Up 
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where  is large

θ
Pθ
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Using same idea, now let’s move on to RL…
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∇J(θ) = 𝔼τ∼ρθ(τ) (
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∑
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SG ascent:   (or other off-shelf optimizers like AdaGrad / Adam)θt+1 = θt + ηgt
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REINFORCE (a direct application of our warm up example):

1. Importance Weighting Trick

3. Known result on SGD implies Policy Gradient at least converges to stationary points


