Policy Gradient
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Applications that use policy gradient methods
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Tell me how ChatGPT works.

ChatGPT is a large language model that uses deep learning techniques to generate
human-like text. It is based on the GPT (Generative Pre-trained Transformer) architecture,
which uses a transformer neural network to process and generate text. The model is pre-
trained on a massive dataset of text, such as books, articles, and websites, so it can
understand the patterns and structure of natural language. When given a prompt or a
starting point, the model uses this pre-trained knowledge to generate text that continues

the given input in a coherent and natural way.




Applications that use policy gradient methods




Objective: J(7) :=

Recap: MDPs

M={T,r,H,u,S,A}

where s, ~ U

H-1

- Z r(s,, a,)

h=0
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Recap: MDPs

M={T,r,H,u,S,A}

where s, ~ U
H-1
Objective: J(x) := [ Z r(sy, ap) | So ~ W Spay ~ T (S, ap), ay ~ 7w( - | sp)
h=0

LQR & MPC: find the (near) optimal policy given the transition P



Today

How to learn a good policy when transition & is unknown?



Outline for today

1. Recap on Gradient descent and stochastic gradient descent
2. Warm up: computing gradient using importance weighting

3. Policy Gradient formulations
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Stochastic Gradient Descent

Given an objective function J(6) : R = R, (e.g., J(0) = =y (o) — y)?)

Gradient Descent

SGD minimizes the above objective function as follows:

Initialize &, fort =0, ... : e e e D)

0.1 =0,—ng,

where

Stochastic Gradient Descent

—[g,] = VHJ(Ht)

s



Convergence of SGD

Under some regularity condition of the objective, SGD converges to a stationary point, i.e.,



Convergence of SGD

Under some regularity condition of the objective, SGD converges to a stationary point, i.e.,

J(O)

\ T

Stationary point: || VJ(0)]||, = O



Convergence of SGD

Under some regularity condition of the objective, SGD converges to a stationary point, i.e.,

For convex function, it guarantees convergence to the global optimal

J(O0)

1/

Stationary point = global optimal point



SGD in general is amazing!

Works really well for training large neural networks, desipte non-convexity!

implicit regularization — models trained via SGD can generalize better

Easy to implement, take advtange of modern GPUs



Question:

Can we develop something like SGD for RL?
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Warm Up: Importance Weighting

J() = E,_p, [f0)]

VoJ(0) = VyE,_p f(x)

Suppose that | have a sampling distribution p, s.t., max Py(x)/p(x) < oo
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To compute gradient at €y:  VJ(6)) (in short of V,J(6) ‘9=90)

We can set sampling distribution p = Py

Vol @) = Epop, lvgln P, (x) f(x)]
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Warm Up

VoJ(0) lgeg, = Evnp, Vol Py,(x) - f0)

Jx), 0, =0y +1nVyJ(6))
/
— — Update distribution (via updating 6) such that
_\ P, has high probability mass at regions
P, where f(x) is large
Py

Using same idea, now let’s move on to RL...
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Derivation of Policy Gradient: REINFORCE

T = {So, ao, Sl,al, }

PQ(T) = /4(30)779(61() | 50)97 (S1 | S0 ao)ﬂg(al | S1)- T (SH_1 ‘SH_Za aH_z)ﬂ(aH_1 ‘SH_1)

H-1
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Adjust policy’s parameters
s.t. larger reward traj has
higher likelihood

H-1
) Volny(a,ls)
h=0

) R(7)
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Summary so far for Policy Gradients

We derived the most classic PG formulation:

H-1
VJ(Q) e _TN,OQ(T) Z V@ln ﬂg(ah ‘ Sh) R(T)
h=0

Increase the likelihood of sampling an trajectory with higher total reward
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H-1 1
VJ(H) m— _TN,DQ(T) Z V@ln ﬂe(dh ‘ Sh)(

h=0

Reward-to-go



Further simplification on PG

7l

H-1
VIO) =E, .0 | ), Volnzya,ls)
h=0

Reward-to-go

(Change action distribution at /& only affects rewards later on...)



Put things together — Policy Gradient Algorithm

H-1 H-1
VJ(©O) =E,.., z V,ln ny(a, | Sh)( Z r(s,, at)>

Initialize a policy Tg, (e.g., random initialization)

Fort=01to T:




Put things together — Policy Gradient Algorithm

H-1 H-1
VJO) =E,.., Z V,ln ny(a, | Sh)< Z r(s,, at)>

Initialize a policy Tg, (e.g., random initialization)
Fort=0to T:

Sample K i.i.d traj Tl, ey ¥ from Ty




Put things together — Policy Gradient Algorithm

H-1 H-1
VJO) =E,.., Z V,ln ny(a, | Sh)( Z r(s,, at)>

Initialize a policy Tg, (e.g., random initialization)
Fort=0to T:
Sample K i.i.d traj Tl, ey 7% from Ty

K H

1 H-1
Form SG: g, = Z Z Voln my(ay, | sh)( Z r(s, ati)) /K
0

=1 | h= I=h




Put things together — Policy Gradient Algorithm

H-1 H-1
VJO) =E,.., Z V,ln ny(a, | Sh)< Z r(s,, at)>

h=0 1=h

Initialize a policy Tg, (e.g., random initialization)

Fort=0to T:
Sample K i.i.d traj Tl, ey 7% from Ty
K | H-1 H-1
Form SG: g, = Z Voln my(ay, | s,) Z r(s,,a) || /K
SG ascent: 0, = 0, + ng, (or other off-shelf optimizers like AdaGrad / Adam)
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Summary for today

1. Importance Weighting Trick

2. Policy Gradient:

REINFORCE (a direct application of our warm up example):

H-1
VJ@O,) =E._. e [( Z V,ln ﬂ@t(ah | Sh)> R(T)]

h=0

3. Known result on SGD implies Policy Gradient at least converges to stationary points



