Policy Gradient

Wen Sun

Tail 5\{1'.(71'5 5"{5&;'
- TR
Horn Status

_‘g,‘,, 3

NECROPHOS

Al

-
A

i ‘ ‘
/¥

‘1.'6 0/1700

Applications that use policy gradient methods

RE
31601688, A

/

171411714 -
— 87971193 +15.4

ol

-

: 4 -
pod 4 ‘ ’ & %

). 2 \ . A
® 2 &Y gﬂ e 7 ey
v - : A ‘ : 500 &

5 \

Tell me how ChatGPT works.

ChatGPT is a large language model that uses deep learning techniques to generate
human-like text. It is based on the GPT (Generative Pre-trained Transformer) architecture,
which uses a transformer neural network to process and generate text. The model is pre-
trained on a massive dataset of text, such as books, articles, and websites, so it can
understand the patterns and structure of natural language. When given a prompt or a
starting point, the model uses this pre-trained knowledge to generate text that continues

the given input in a coherent and natural way.

Applications that use policy gradient methods

Objective: J(7) :=

Recap: MDPs

M={T,r,H,u,S,A}

where s, ~ U

H-1

- Z r(s,, a,)

h=0

S0 ™~ Ky Spaq ™ 97(511, ah), a, ~ 7(- ‘Sh)

Recap: MDPs

M={T,r,H,u,S,A}

where s, ~ U
H-1
Objective: J(x) := [Z r(sy, ap) | So ~ W Spay ~ T (S, ap), ay ~ 7w(- | sp)
h=0

LQR & MPC: find the (near) optimal policy given the transition P

Today

How to learn a good policy when transition & is unknown?

Outline for today

1. Recap on Gradient descent and stochastic gradient descent
2. Warm up: computing gradient using importance weighting

3. Policy Gradient formulations

Stochastic Gradient Descent

Given an objective function J(6) : R = R, (e.g., J(0) = =y (o) — y)?)

SGD minimizes the above objective function as follows:

Stochastic Gradient Descent

Given an objective function J(6) : R = R, (e.g., J(0) = =y (o) — y)?)

SGD minimizes the above objective function as follows:

Initialize @, fort =0, ... :

Stochastic Gradient Descent

Given an objective function J(6) : R = R, (e.g., J(0) = =y (o) — y)?)

SGD minimizes the above objective function as follows:

Initialize @, fort =0, ... :

0.1 =0,—ng,

Stochastic Gradient Descent

Given an objective function J(6) : R = R, (e.g., J(0) = =y (o) — y)?)

SGD minimizes the above objective function as follows:

Initialize @, fort =0, ... :

0.1 =0,—ng,

where E[g.] = V,J(0,)

Stochastic Gradient Descent

Given an objective function J(6) : R = R, (e.g., J(0) = =y (o) — y)?)

Gradient Descent

SGD minimizes the above objective function as follows:

Initialize &, fort =0, ... : e e e D)

0.1 =0,—ng,

where

Stochastic Gradient Descent

—[g,] = VHJ(Ht)

s

Convergence of SGD

Under some regularity condition of the objective, SGD converges to a stationary point, i.e.,

Convergence of SGD

Under some regularity condition of the objective, SGD converges to a stationary point, i.e.,

J(O)

\ T

Stationary point: || VJ(0)]||, = O

Convergence of SGD

Under some regularity condition of the objective, SGD converges to a stationary point, i.e.,

For convex function, it guarantees convergence to the global optimal

J(O0)

1/

Stationary point = global optimal point

SGD in general is amazing!

Works really well for training large neural networks, desipte non-convexity!

implicit regularization — models trained via SGD can generalize better

Easy to implement, take advtange of modern GPUs

Question:

Can we develop something like SGD for RL?

Outline for today

1. Recap on Gradient descent and stochastic gradient descent
2. Warm up: computing gradient using importance weighting

3. Policy Gradient formulations

Warm Up: Importance Weighting

J() = E,_p, [f0)]

Warm Up: Importance Weighting

J() = E,_p, [f0)]

VoJ(0) = VyE,_p f(x)

Warm Up: Importance Weighting

J() = E,_p, [f0)]

VoJ(0) = VyE,_p f(x)

Suppose that | have a sampling distribution p, s.t., max Py(x)/p(x) < oo

X

Warm Up: Importance Weighting

J() = E,_p, [f0)]

VoJ(0) = VyE,_p f(x)

Suppose that | have a sampling distribution p, s.t., max Py(x)/p(x) < oo

X

V,J(0) = V,E _ vy, Lo
PO = Voo, f0) = V ==)

Warm Up: Importance Weighting

J() = E,_p, [f0)]

VoJ(0) = VyE,_p f(x)

Suppose that | have a sampling distribution p, s.t., max Py(x)/p(x) < oo

X

P V,P
VQJ(H) = \/6’ _XNPQf('x) = v@ —x~p pg(ix)) f(X) — Lx~p Z(j)(X) f(X)

Warm Up: Importance Weighting

J(0) =

V@J(H) — \/6’

—x~P 0 [f(X)]
— X~ Pef (X)

Suppose that | have a sampling distribution p, s.t., max Py(x)/p(x) < oo

V@J(H) — \/6)

=, f00) =V,

_x~p

Py(x)

p(X)

Jx) =

Warm Up: Importance Weighting

J(0) =

V@J(H) — \/6’

—x~P 0 [f(X)]
X~ Pef (X)

Suppose that | have a sampling distribution p, s.t., max Py(x)/p(x) < oo

V@J(H) — \/6’

=, f00) =V,

_x~p

Py(x)

p(X)

Jx) =

N

2

=1

To compute gradient at €y: VJ(6)) (in short of V,J(6) ‘9=90)

Vo Py(x;)

p(x;)

J(x

l

)

Warm Up: Importance Weighting

J() = E,_p, [f0)]

VoJ(0) = VyE,_p f(x)

Suppose that | have a sampling distribution p, s.t., max Py(x)/p(x) < oo

J(x;)

P (x) VP (x) 1 & VoPy(x))
V J 9 — \/ — — \/ — — | N — E

To compute gradient at €y: VJ(6)) (in short of V,J(6) ‘9=90)

We can set sampling distribution p = Py

Warm Up: Importance Weighting

J() = E,_p, [f0)]

VoJ(0) = VyE,_p f(x)

Suppose that | have a sampling distribution p, s.t., max Py(x)/p(x) < oo

J(x;)

P (x) VP (x) 1 & VoPy(x))
V J 9 — \/ — — \/ — — | N — E

To compute gradient at €y: VJ(6)) (in short of V,J(6) ‘9=90)

We can set sampling distribution p = Py

Vol @) = Epop, lvgln P, (x) f(x)]

Warm Up

V@J(H) ‘9=90 — _XNPQO Vgln PHO(X) 'f(X)

Jx), 0, =0,+nVyJ,)

PQ\/

Warm Up

V@J(H) ‘9=(90 — _xNPQO V@ln PQO(X) 'f(X)

0, =0,+nVyJ6,)

Warm Up

VHJ (9) ‘(9:90 — _XNPQO Vé’ln P Qo(x) f (X)

J(x), 0, =0y +1nVyJ(6y)
/
— - Update distribution (via updating 6) such that
N P, has high probability mass at regions
P, where f(x) is large

Warm Up

VoJ(0) lgeg, = Evnp, Vol Py,(x) - f0)

Jx), 0, =0y +1nVyJ(6))
/
— — Update distribution (via updating 6) such that
_\ P, has high probability mass at regions
P, where f(x) is large
Py

Using same idea, now let’s move on to RL...

Outline for today

1. Recap on Gradient descent and stochastic gradient descent
2. Warm up: computing gradient using importance weighting

3. Policy Gradient formulations

Examples of Policy Parameterization

Parameterized policy 7,(- | s) € A(A), Vs

Discrete actions (e.g., LLM) Continues actions (e.g., control, diffusion model)

Examples of Policy Parameterization

Parameterized policy 7,(- | s) € A(A), Vs

Discrete actions (e.g., LLM) Continues actions (e.g., control, diffusion model)

fé S XA R,e.q., MLP,
transformer

Examples of Policy Parameterization

Parameterized policy 7,(- | s) € A(A), Vs

Discrete actions (e.g., LLM) Continues actions (e.g., control, diffusion model)

fé S XA R,e.q., MLP,
transformer
exp(fy(s, a))
2. €xp(fy(s,a’))

my(a | 5) =

Examples of Policy Parameterization

Parameterized policy 7,(- | s) € A(A), Vs

Discrete actions (e.g., LLM) Continues actions (e.g., control, diffusion model)

]fg S XA R,e.q., MLP,
transformer
exp(fy(s,a))
2. €xp(fy(s,a’))

(- | 8) = N (ugs), °1)

my(a | 5) =

Examples of Policy Parameterization

Parameterized policy 7,(- | s) € A(A), Vs

Discrete actions (e.g., LLM) Continues actions (e.g., control, diffusion model)

f@ S XA R,e.q., MLP,
transformer
exp(fy(s,a))
2. €xp(fy(s,a’))

(- | 8) = N (ugs), °1)

/

Mean is modeled by
MLP

my(a | 5) =

Examples of Policy Parameterization

Parameterized policy 7,(- | s) € A(A), Vs

Discrete actions (e.g., LLM) Continues actions (e.g., control, diffusion model)

]fg S XA R,e.q., MLP,
transformer
exp(fy(s,a))
2. €xp(fy(s,a’))

(- | 8) = N (ugs), °1)

[\

Mean is modeled by STD
MLP

my(a | 5) =

Derivation of Policy Gradient: REINFORCE

T = {So, ao, Sl,al, }

PQ(T) = /4(50)779(510 | 30)97 (51 | 50> ao)ﬂg(al | 51)- T (SH_1 ‘SH_29 aH_z)ﬂ(aH_1 ‘SH_1)

Derivation of Policy Gradient: REINFORCE

T = {So, ao, Sl,al, }

PQ(T) = /4(50)779(510 | 30)97 (51 | 50> ao)ﬂg(al | 51)- T (SH_1 ‘SH_29 aH_z)ﬂ(aH_1 ‘SH_1)

H-1
J(mg) =k, [2 r(sy,, ah)]

h=0

R(z)

Derivation of Policy Gradient: REINFORCE

T = {So, ao, Sl,al, }

PQ(T) = /4(50)779(510 | 30)97 (51 | 50> ao)ﬂg(al | 51)- T (SH_1 ‘SH_29 aH_z)ﬂ(aH_1 ‘SH_1)

H-1
J(mg) =k, [2 r(sy,, ah)]

h=0

R(z)

Vol(4) = ooy o) | Vol o (ORE)]

Derivation of Policy Gradient: REINFORCE

T = {So, ao, Sl,al, }

PQ(T) = /4(50)779(510 | 30)97 (51 | 50> ao)ﬂg(al | 51)- T (SH_1 ‘SH_29 aH_z)ﬂ(aH_1 ‘SH_1)

H-1
J(mg) =k, [2 r(sy,, ah)]

h=0

R(z)

Vol(4) = ooy o) | Vol o (ORE)]

e (0 [Ve(ln p(sg) + In ﬂgo(ao | sg) +1InT (s |59, ap) +) R(T)]

Derivation of Policy Gradient: REINFORCE

T = {So, ao, Sl,al, }

PQ(T) = /4(50)779(510 | 30)97 (51 | 50> ao)ﬂg(al | 51)- T (SH_1 ‘SH_29 aH_z)ﬂ(aH_1 ‘SH_1)

H-1
J(mg) =k, [2 r(sy,, ah)]

h=0

R(z)

Vol(4) = ooy o) | Vol o (ORE)]

e (0 [Ve(ln p(sg) + In ﬂgo(ao | sg) +1InT (s |59, ap) +) R(T)]

A [Vy(In 7401 59) + In @y).) R(T)]

Derivation of Policy Gradient: REINFORCE

T = {S(), ao, Sl,al, }

PQ(T) = /4(50)779(“0 | 50)97 (51 | 50> ao)ﬂg(al | 51)- T (SH_1 ‘SH_za aH_z)ﬂ(aH_1 ‘SH_1)

H-1
J(mg) =k, [Z r(sy,, ah)]

h=0

R(z)

Vol(4) = ooy o) | Vol o (ORE)]

_TNPGO(T) [V9 (hl 71'90(610 ‘ SO) +In 71'90(611 | S1)° X) R(T)] —

e (0 lvg(ln p(sg) + In 72'6)0(610 | sg) +1InT (s |59, ap) +) R(T)]

—7 ~Pp,(7) (

H-1
) Volny(a,ls)
h=0

) R(7)

Derivation of Policy Gradient: REINFORCE

T = {So, ao, Sl,al, }

PQ(T) = /4(30)779(61() | 50)97 (S1 | S0 ao)ﬂg(al | S1)- T (SH_1 ‘SH_Za aH_z)ﬂ(aH_1 ‘SH_1)

H-1
J(mg) =k, [Z r(sy,, ah)]

h=0

R(z)

Vol(4) = ooy o) | Vol o (ORE)]

_TNPGO(T) [V9 (hl 71'90(610 ‘ SO) +In 71'90(611 | S1)° X) R(T)] —

e (0 [VG (ln p(sg) + In 71'6)0(610 | sg) +1InT (s |59, ap) +) R(T)]

—7 ~Pp,(7) (

Adjust policy’s parameters
s.t. larger reward traj has
higher likelihood

H-1
) Volny(a,ls)
h=0

) R(7)

Summary so far for Policy Gradients

We derived the most classic PG formulation:

H-1
VJ(O) = = p(7) (Z Vln my(a, | Sh)) R(7)

h=0

Summary so far for Policy Gradients

We derived the most classic PG formulation:

H-1
VJ(Q) e _TN,OQ(T) Z V@ln ﬂg(ah ‘ Sh) R(T)
h=0

Increase the likelihood of sampling an trajectory with higher total reward

Further simplification on PG

H-1 1
VJ(H) m— _TN,DQ(T) Z V@ln ﬂe(dh ‘ Sh)(

h=0

Reward-to-go

Further simplification on PG

7l

H-1
VIO) =E, .0 |), Volnzya,ls)
h=0

Reward-to-go

(Change action distribution at /& only affects rewards later on...)

Put things together — Policy Gradient Algorithm

H-1 H-1
VJ(©O) =E,.., z V,ln ny(a, | Sh)(Z r(s,, at)>

Initialize a policy Tg, (e.g., random initialization)

Fort=01to T:

Put things together — Policy Gradient Algorithm

H-1 H-1
VJO) =E,.., Z V,ln ny(a, | Sh)< Z r(s,, at)>

Initialize a policy Tg, (e.g., random initialization)
Fort=0to T:

Sample K i.i.d traj Tl, ey ¥ from Ty

Put things together — Policy Gradient Algorithm

H-1 H-1
VJO) =E,.., Z V,ln ny(a, | Sh)(Z r(s,, at)>

Initialize a policy Tg, (e.g., random initialization)
Fort=0to T:
Sample K i.i.d traj Tl, ey 7% from Ty

K H

1 H-1
Form SG: g, = Z Z Voln my(ay, | sh)(Z r(s, ati)) /K
0

=1 | h= I=h

Put things together — Policy Gradient Algorithm

H-1 H-1
VJO) =E,.., Z V,ln ny(a, | Sh)< Z r(s,, at)>

h=0 1=h

Initialize a policy Tg, (e.g., random initialization)

Fort=0to T:
Sample K i.i.d traj Tl, ey 7% from Ty
K | H-1 H-1
Form SG: g, = Z Voln my(ay, | s,) Z r(s,,a) || /K
SG ascent: 0, = 0, + ng, (or other off-shelf optimizers like AdaGrad / Adam)

Summary for today

1. Importance Weighting Trick

2. Policy Gradient:

REINFORCE (a direct application of our warm up example):

Summary for today

1. Importance Weighting Trick

2. Policy Gradient:

REINFORCE (a direct application of our warm up example):

H-1
VJ@O,) =E._. e [(Z V,ln ﬂgt(ah | Sh)> R(T)]

h=0

Summary for today

1. Importance Weighting Trick

2. Policy Gradient:

REINFORCE (a direct application of our warm up example):

H-1
VJ@O,) =E._. e [(Z V,ln ﬂ@t(ah | Sh)> R(T)]

h=0

3. Known result on SGD implies Policy Gradient at least converges to stationary points

