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LQR & MPC: find the (near) optimal policy given the transition P



Today

How to learn a good policy when transition  is unknown?𝒯



Outline for today

1. Recap on Gradient descent and stochastic gradient descent

2. Warm up: computing gradient using importance weighting

3. Policy Gradient formulations 
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Convergence of SGD

Under some regularity condition of the objective, SGD converges to a stationary point, i.e., 

For convex function, it guarantees convergence to the global optimal

J(θ)

Stationary point = global optimal point



SGD in general is amazing!

Works really well for training large neural networks, desipte non-convexity!

implicit regularization — models trained via SGD can generalize better

Easy to implement, take advtange of modern GPUs



Question:
Can we develop something like SGD for RL?
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Warm Up 
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θ
Pθ
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Using same idea, now let’s move on to RL…
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We derived the most classic PG formulation:

∇J(θ) = 𝔼τ∼ρθ(τ) (
H−1

∑
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SG ascent:   (or other off-shelf optimizers like AdaGrad / Adam)θt+1 = θt + ηgt
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REINFORCE (a direct application of our warm up example):

1. Importance Weighting Trick

3. Known result on SGD implies Policy Gradient at least converges to stationary points


