Lecture 5: Viterbi Walkthrough,
HW1 Walkthrough, MEMM:s.

Lornell Bowers C1S
Computer Science

Claire Cardie, Tanya Goyal

CS 4740 (and crosslists): Introduction to Natural Language Processing

Announcements

e HW1 released.
e HW1 milestone due on 12 September, 11.59 p.m.
* HW1 due on 21 September, 11.59 p.m.

Today

* Viterbi walkthrough
 HW1 walkthrough
* HMMs vs MEMMs

HW1-programming walkthrough

e Task: NER using HMMs

e Dataset:

e Train/val/test splits

e text i=['Alice’, 'and', 'Bob’, 'walk’, 'in', 'Paris']

« NER_i=['B-PER','O’, 'B-PER’, 'O’, 'O, 'B-LOC’]

-

Learn an HMM on the
train data

~

)

4)
Implement
Viterbi
_ J

e

_

Use learnt HMM +

Viterbi to predict NER
tags on val and test

~

)

The ipynb walks you through these, simply

follow that!

HW1-programming walkthrough

~

-

Learn an HMM on the
train data

~

Implementation: use logprobs

e text i=/['alice’, 'and’, 'bob’, 'walk’, 'in', 'Paris']

« NER_I =['B-PER','O’, 'B-PER", 'O’, 'O’, 'B-LOC’]

* You will be computing probabilities (e.g. transition probabilities, emission probabilities)

» These numbers can be very small.

* Instead of multiplying probabilities p; X p, X ps... X p,, work in the log space!

* log(p;Xp,...Xp,) =logp, +logp,+...logp,

e Avoids numerical overflow

» Can convert it back to a probability at the end if needed by taking the exp of the logprob.

HW1-programming walkthrough

g R
Learn an HMM on the * text_i=['alice’, 'and’, 'bob’, 'walk’, in', 'Paris']
train data e NER_i =['B-PER', 'O, 'B-PER', 'O",'O", 'B-LOC']
- Y

Implementation choice: new/unknown words

* Your vocabulary is predetermined by the words you see in the training data (|V| = 6 when considering the above as the corpus)

e Emission matrix will be of size (#tags, |V|)

1

 Suppose one document in the validation/test data has text = ["Bobby”, "“in”, “Paris”]

 What do we do? There are no cells corresponding to P("Bobby” | tag) !

» Typical technique: Pre-process your training data to replace low frequency words with <UNK>
e e.g.suppose “Bob” and “Paris” are low frequency words (frequency computed over the whole dataset!)
e ['Alice’, 'and’, '<UNK>', 'walk’, 'in', '<UNK>'] — replace with <UNK> and add <UNK> to the vocabulary.

* During prediction, any unseen work (e.g. “Bobby"”) can be similarly mapped to <UNK>.

HW1-programming walkthrough

~

\-

Learn an HMM on the
train data

~

J

Implementation choice: smoothing

text i =['alice’, 'and’, 'bob’, 'walk’, 'in', 'Paris']

NER_i =['B-PER’, 'O’, 'B-PER", 'O’, 'O’, 'B-LOC’]

An unseen event isn't necessarily impossible! Safer to have all probs be non-zero.

E.g. P('bob’

tag=0) =0

Consider hypothetical text sentence: ['l', 'bob’, 'my’, 'head’,]. P(‘bob’

hope of assigning it the ‘O’ tag.

Smoothing technique we will implement: Add-k smoothing.

tag=0) needs to be non-zero for us to have any

HW1-programming walkthrough

g R
Learn an HMM on the * text_i=['alice’, 'and’, 'bob’, 'walk’, in', 'Paris']
train data e NER_i =['B-PER', 'O, 'B-PER', 'O",'O", 'B-LOC']
- Y

* Implementation choice: storing transition / emission probabilities.

* Option 1: store as a matrix E

few mid ot e Assign and store an index for each tag (e.g. H — 0,C — 1) and

word (few -> 0, mid -> 1, lot -> 2)
» 0.1 0.3 | 0.6 Then E[0O,1] corresponds to (H, mid), etc.
 Option 2: Dictionary E
C (05104 0.1

* Store values in a dictionary with keys (tag, word)

* Get corresponding values via E[(tag, word)]

HW1-programming walkthrough

~ R
Use learnt HMM + Viterbi to

poredict NER tags on val and test
N Y

/

* Suppose the text of your val/test data is [['bobby’, ‘went’, ‘tor’, ‘a’, ‘walk’], ['l', ‘'went’, ‘to’, "Paris’]].
* [terate through these documents:

* For each, call viterbilhmm, obs, tags)

/ \ Set of possible tags (9 for the assignment)

Trained HMM model
current document tokens

HMM vs MEMMS

* HMMs: Find the tag sequence:

arg max P(¢, ... ty|0,.y) = arg max HP(oi |7) X P(¢;| t,_)
oty

H.oo by

« MEMMs (Max Entropy Markov Models) assumptions:
 Tagis independent of all other tags except the previous one.

e Butit can depend on the entire observation!

Hoo by Hoo by

argmax P(t, ...1y| 0,.n) = arg max HPI\/IEI\/II\/I(tiVi—l , 01.N)
fy

Why condition on the whole input?

argmax P(t,...ty| o) = argmax | | PmeMME | Ti—1 5 01.0)

Hooly Hooly

<s>/START |/PP am/VBP sitting/VBG in/IN Mindy/NNP ‘s/POS restaurant/NN
eating/VBG the/DT getilte/NN tish/NN ./PERIOD </s>/END

* Human analysts condition on the whole observation or sequence!

* “Token ends in’'ing’ —> Likely a verb. | can make this guess even it | have
never seen this token betfore”

e "Starts with a capital letter and not at the sentence start —> Could be a
proper noun (but not if itis I')"

e “Token is really long (lots of letters)? —> Probably not a preposition.”

Features

e “Token ends in’ing’ —> Likely a verb.”

o “Token is really lony (lots of letters)? —> Probably not a preposition.”

AN

Length of the token?| | Does the token end in a “ing”? 0/1

NN\

* For a possible tag, some “features” ot a token raise the chance of that tag and

some lower it.

* We should combine information components of the form:
Function that produces counts of occurrence of the “teature”
... multiplied by ...

a weight indicating how much positive/negative evidence the

presence of that feature gives to the tag.

Formalizing features and evidence weights

e “Token endsin’ing’ —> Likely a verb.”

» “Token isreally long (lots of letters)? —> Probably not a preposition.”

PMEMM @ 1itiz1> 010

fit, t._i,01.8.1) = Tif 0, ends in “ing”.

The weight of this teature is say 3
for tag VERB.

The weight of this teature is -1 for
prepositions

Does the token end in a "ing”? 0/1

— Extract features from these.

Length of the token?

][2(tl" ti—l’ OIZN’ l) = ‘ength Of Oi

The weight of this teature is 0 for

VERB

The weight of this tfeature is -2 for

prepositions

Formalizing features and evidence weights

 How do we compute PMEMM(ti‘ti—l’OliN)

» For given tag ¢, and your fixed collection of {f,} and {w,} of feature functions
and weights for that tag.

e Classic technique: take the exponent of the sum of weighted-feature values,
and then normalize.

exp(Zk W;? Jiltis 615 013 1)
o PMEMM; 151, 01.0) = 7

Formalizing features and evidence weights

Features: f(t,t,_i,0..n,1) = 11t 0, endsin “ing", f(¢t,t_1,0,.51) = length of o,

Weights for VERB = [w,“*%, w,*¥] = [3,0],
Weights for PP = [wf)P, wfp] =[—1, — 2]}

0.y = | am sitting in Pyienm(t3 | VERB, 04.4)

Step: Extract Step2: Compute Exponentials
features

fz =/ Pyevm(is = PP IVERB, 01.y) = exp((—1) X 1 + (=2) X 7)/Z

. HMMs: v(f) = max

. MEMMSs: v(f) = max

HMMs vs MEMMs as taggers via Viterbi

Pyavm(E | prevy) Pavm(o; | D[v;_q(prevy)

No emission/transition matrices

Pyvpmms(t] prevy, 03[vi i (prevy)

possible prevs

possible prev,

Logistic Regression Model

ex Wy it 1, 0155 1 . . - .
p(zk k- Jilli ti1, 01 1) Multinomial logistic regression model

e P(t;|t;_1,01.y) =

/

* Applicable to all text classification tasks:
* |Input: some text x (e.g. documents, sentences)

* Qutput: label y (finite set of labels)

o Classifier: Assign P(y|x)forally ey

Text Classification

Task Input X Output x

“The movie was great”

“The actor is great, movie {positive, negative}
is dull”

Sentiment
Analysis

Topic (politics, sports e Define features that
News articles ' '

Identification health etc.) make sense for the

task.

IIW° 1OM.||. 7, . .
”CS474I(? e . 1spam, not-spamj Learn weights.
announcemen (hOW???)

Spam / Not spam

Slide Acknowledgements

> Earlier versions of this course offerings including materials from Claire
Cardie, Marten van Schijndel, Lillian Lee.

