
Lecture 5: Viterbi Walkthrough,
HW1 Walkthrough, MEMMs.

CS 4740 (and crosslists): Introduction to Natural Language Processing
Claire Cardie, Tanya Goyal

Announcements

• HW1 released.

• HW1 milestone due on 12 September, 11.59 p.m.

• HW1 due on 21 September, 11.59 p.m.

Today

• Viterbi walkthrough

• HW1 walkthrough

• HMMs vs MEMMs

HW1-programming walkthrough

• Task: NER using HMMs

• Dataset:

• Train/val/test splits

• text_i = ['Alice', 'and', 'Bob', 'walk', 'in', 'Paris']

• NER_i = ['B-PER', 'O', 'B-PER', 'O', 'O', ‘B-LOC’]

Learn an HMM on the
train data

Implement
Viterbi

The ipynb walks you through these, simply
follow that!

Use learnt HMM +
Viterbi to predict NER

tags on val and test

HW1-programming walkthrough

Learn an HMM on the
train data

• text_i = ['alice', 'and', 'bob', 'walk', 'in', 'Paris']

• NER_i = ['B-PER', 'O', 'B-PER', 'O', 'O', ‘B-LOC’]

Implementation: use logprobs

• You will be computing probabilities (e.g. transition probabilities, emission probabilities)

• These numbers can be very small.

• Instead of multiplying probabilities , work in the log space!

•

• Avoids numerical overflow

• Can convert it back to a probability at the end if needed by taking the exp of the logprob.

p1 × p2 × p3 . . . × pn

log(p1 × p2 . . . × pn) = log p1 + log p2 + . . . log pn

HW1-programming walkthrough

Learn an HMM on the
train data

• text_i = ['alice', 'and', 'bob', 'walk', 'in', 'Paris']

• NER_i = ['B-PER', 'O', 'B-PER', 'O', 'O', ‘B-LOC’]

Implementation choice: new/unknown words

• Your vocabulary is predetermined by the words you see in the training data (|V| = 6 when considering the above as the corpus)

• Emission matrix will be of size (#tags, |V|)

• Suppose one document in the validation/test data has text = [“Bobby”, “in”, “Paris”]

• What do we do? There are no cells corresponding to P(“Bobby” | tag) !

• Typical technique: Pre-process your training data to replace low frequency words with <UNK>

• e.g. suppose “Bob” and “Paris” are low frequency words (frequency computed over the whole dataset!)

• ['Alice', 'and', '<UNK>', 'walk', 'in', ‘<UNK>’] — replace with <UNK> and add <UNK> to the vocabulary.

• During prediction, any unseen work (e.g. “Bobby”) can be similarly mapped to <UNK>.

HW1-programming walkthrough

Learn an HMM on the
train data

• text_i = ['alice', 'and', 'bob', 'walk', 'in', 'Paris']

• NER_i = ['B-PER', 'O', 'B-PER', 'O', 'O', ‘B-LOC’]

Implementation choice: smoothing

• An unseen event isn’t necessarily impossible! Safer to have all probs be non-zero.

• E.g. P(‘bob’ | tag=O) = 0

• Consider hypothetical text sentence: ['I', 'bob', 'my', 'head', ….]. P(‘bob’ | tag=O) needs to be non-zero for us to have any
hope of assigning it the ‘O’ tag.

• Smoothing technique we will implement: Add-k smoothing.

HW1-programming walkthrough

Learn an HMM on the
train data

• text_i = ['alice', 'and', 'bob', 'walk', 'in', 'Paris']

• NER_i = ['B-PER', 'O', 'B-PER', 'O', 'O', ‘B-LOC’]

• Implementation choice: storing transition / emission probabilities.

• Option 1: store as a matrix E

• Assign and store an index for each tag (e.g.) and
word (few -> 0, mid -> 1, lot -> 2)

• Then E[0,1] corresponds to (H, mid), etc.

• Option 2: Dictionary E

• Store values in a dictionary with keys (tag, word)

• Get corresponding values via E[(tag, word)]

H → 0,C → 1

HW1-programming walkthrough

Use learnt HMM + Viterbi to
predict NER tags on val and test

• Suppose the text of your val/test data is [[‘bobby’, ‘went’, ‘for’, ‘a’, ‘walk’], [‘I’, ‘went’, ‘to’, ‘Paris’]].

• Iterate through these documents:

• For each, call viterbi(hmm, obs, tags)

Trained HMM model current document tokens

Set of possible tags (9 for the assignment)

• HMMs: Find the tag sequence:

 arg max
t1...tN

P(t1 . . . tN |o1:N) = arg max
t1...tN ∏

i

P(oi | ti) × P(ti | ti−1)

HMM vs MEMMS

• MEMMs (Max Entropy Markov Models) assumptions:

• Tag is independent of all other tags except the previous one.

• But it can depend on the entire observation!

arg max
t1...tN

P(t1 . . . tN |o1:N) = arg max
t1...tN ∏

i

PMEMM(ti |ti−1 , o1:N)

Why condition on the whole input?

arg max
t1...tN

P(t1 . . . tN |o1:N) = arg max
t1...tN ∏

i

PMEMM(ti |ti−1 , o1:N)

<s>/START I/PP am/VBP sitting/VBG in/IN Mindy/NNP ’s/POS restaurant/NN
eating/VBG the/DT gefilte/NN fish/NN ./PERIOD </s>/END

• Human analysts condition on the whole observation or sequence!

• “Token ends in `ing’ —> Likely a verb. I can make this guess even if I have
never seen this token before”

• “Starts with a capital letter and not at the sentence start —> Could be a
proper noun (but not if it is `I’)”

• “Token is really long (lots of letters)? —> Probably not a preposition.”

Features
• “Token ends in `ing’ —> Likely a verb.”

• “Token is really long (lots of letters)? —> Probably not a preposition.”

• For a possible tag, some “features” of a token raise the chance of that tag and
some lower it.

• We should combine information components of the form:

	 	 Function that produces counts of occurrence of the “feature”

 ... multiplied by …

	 	 a weight indicating how much positive/negative evidence the
presence of that feature gives to the tag.

Does the token end in a “ing”? 0/1Length of the token?

Formalizing features and evidence weights

• “Token ends in `ing’ —> Likely a verb.”

• “Token is really long (lots of letters)? —> Probably not a preposition.”

Does the token end in a “ing”? 0/1

Length of the token?

 = 1 if ends in “ing”.

The weight of this feature is say 3
for tag VERB.

The weight of this feature is -1 for
prepositions

f1(ti, ti−1, o1:N, i) oi

PMEMM(ti | ti−1, o1:N)
Extract features from these.

 = length of

The weight of this feature is 0 for
VERB

The weight of this feature is -2 for
prepositions

f2(ti, ti−1, o1:N, i) oi

Formalizing features and evidence weights

PMEMM(ti | ti−1, o1:N)• How do we compute

• For given tag and your fixed collection of { } and { } of feature functions
and weights for that tag.

• Classic technique: take the exponent of the sum of weighted-feature values,
and then normalize.

•

ti fk wk

PMEMM(ti | ti−1, o1:N) =
exp(∑k wti

k . fk(ti, ti−1, o1:N, i))

Z

Formalizing features and evidence weights

Features: = 1 if ends in “ing”, = length of f1(ti, ti−1, o1:N, i) oi f2(ti, ti−1, o1:N, i) oi

PMEMM(t3 |VERB, o1:N)o1:N = I am sitting in

Step1: Extract
features

f1 = 1
f2 = 7

Weights for VERB ,

Weights for PP

= [wVERB
1 , wVERB

2] = [3,0]

= [wPP
1 , wPP

2] = [−1, − 2]

Step2: Compute Exponentials

PMEMM(t3 = VERB |VERB, o1:N) = exp(3 × 1 + 0 × 7)/Z

PMEMM(t3 = PP |VERB, o1:N) = exp((−1) × 1 + (−2) × 7)/Z

HMMs vs MEMMs as taggers via Viterbi

• HMMs:

• MEMMs:

vi(t) = max
possible prevt

PHMM(t |prevt) PHMM(oi | t) vi−1(prevt)

vi(t) = max
possible prevt

PMEMMs(t |prevt, o1:N) vi−1(prevt)

No emission/transition matrices

Logistic Regression Model

• P(ti | ti−1, o1:N) =
exp(∑k wk . fk(ti, ti−1, o1:N, i))

Z
Multinomial logistic regression model

• Applicable to all text classification tasks:

• Input: some text x (e.g. documents, sentences)

• Output: label y (finite set of labels)

• Classifier: Assign for all P(y |x) y ∈ y

Text Classification

Task Input x Output x

Sentiment
Analysis

“The movie was great”
“The actor is great, movie

is dull”
{positive, negative}

Topic
Identification News articles {politics, sports,

health, etc.}

Spam / Not spam “Win $10Million”
“CS4740 announcement” {spam, not-spam}

• Define features that
make sense for the
task.

• Learn weights.
(how???)

Slide Acknowledgements

‣ Earlier versions of this course offerings including materials from Claire
Cardie, Marten van Schijndel, Lillian Lee.

