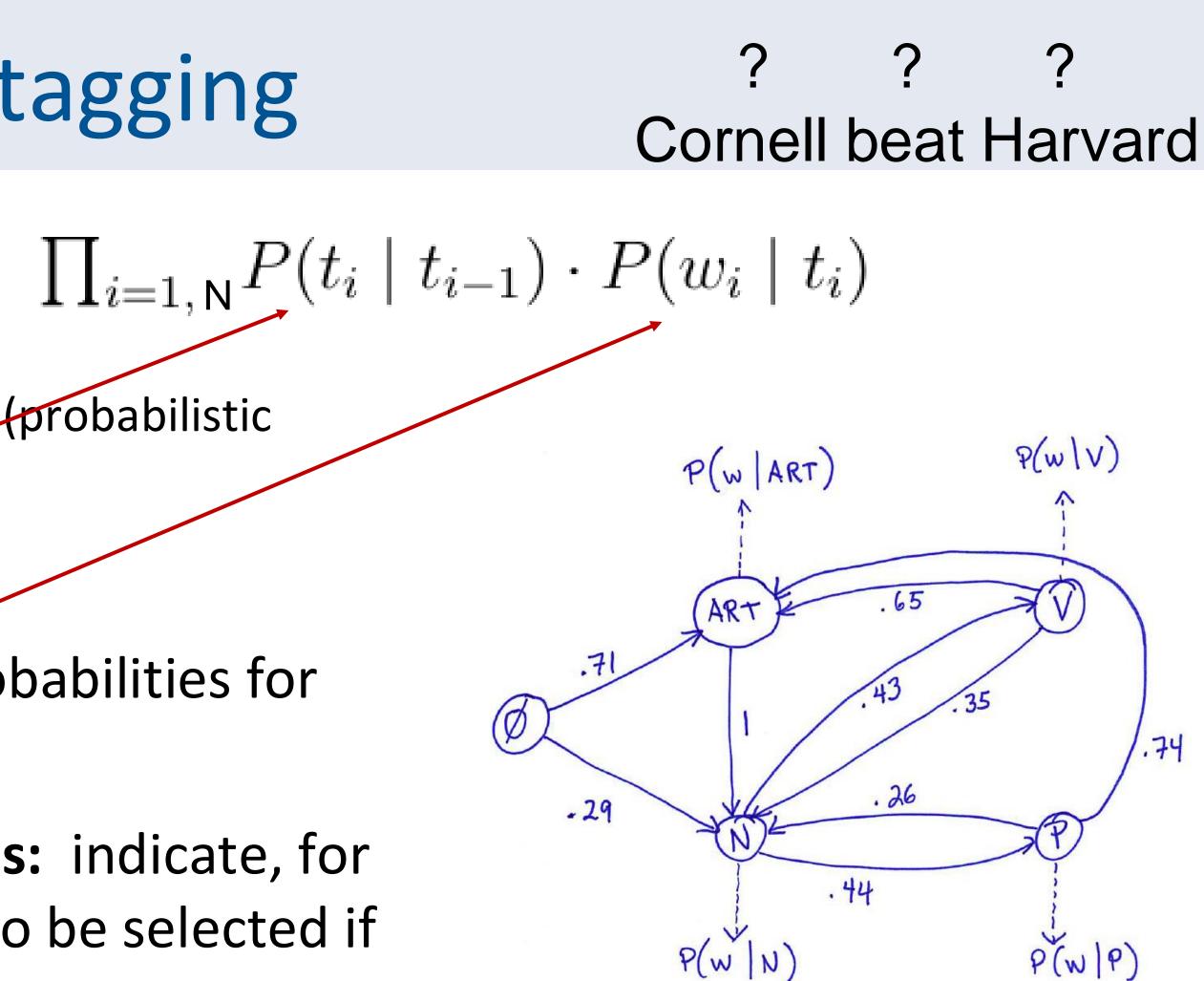
## Lecture 5 (part 1): Viterbi example






Claire Cardie, Tanya Goyal CS 4740 (and crosslists): Introduction to Natural Language Processing

Cornell Bowers CIS **Computer Science** 

## **Recall: HMMs for POS tagging**

$$\underset{t_1..t_N}{\operatorname{argmax}} P(t_1...t_N \mid w_1...w_N) \cong$$

- Equation is modeled by an HMM finite-state machine)
  - States: represent the possible POS
  - Transition probabilities: bigram probabilities for tags
  - Emission (observation) probabilities: indicate, for each word, how likely that word is to be selected if we randomly select a POS

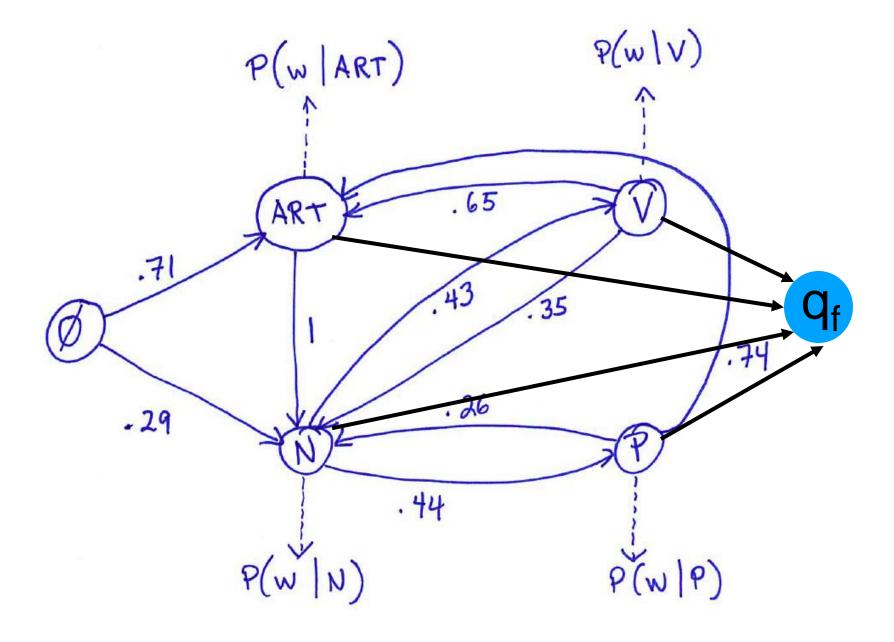


## HMMs

## Given: $Q = q_1 q_2 \dots q_N$ $A = a_{11}a_{12}\ldots a_{n1}\ldots a_{nn}$ $O = o_1 o_2 \dots o_T$ $B = b_i(o_t)$ $q_0, q_F$

a set of N states

a transition probability matrix A, each  $a_{ij}$  representing the probability of moving from state *i* to state j, s.t.  $\sum_{i=1}^{n} a_{ij} = 1 \quad \forall i$ 


from a vocabulary  $V = v_1, v_2, ..., v_V$ 

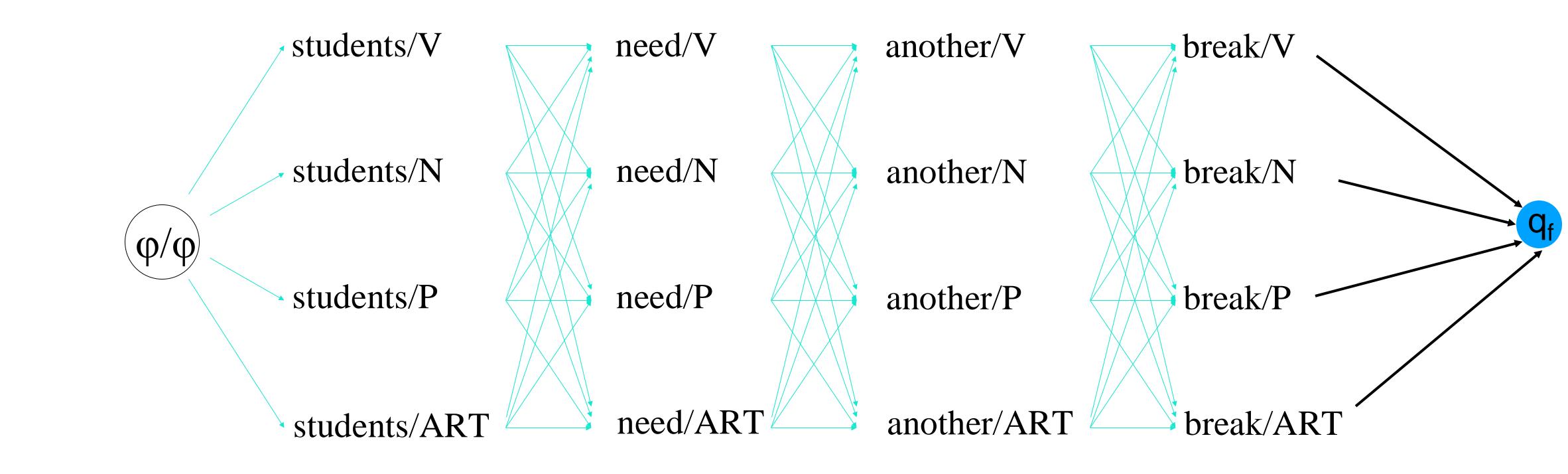
a sequence of **observation likelihoods**, also called emission probabilities, each expressing the probability of an observation  $o_t$  being generated from a state *i* 

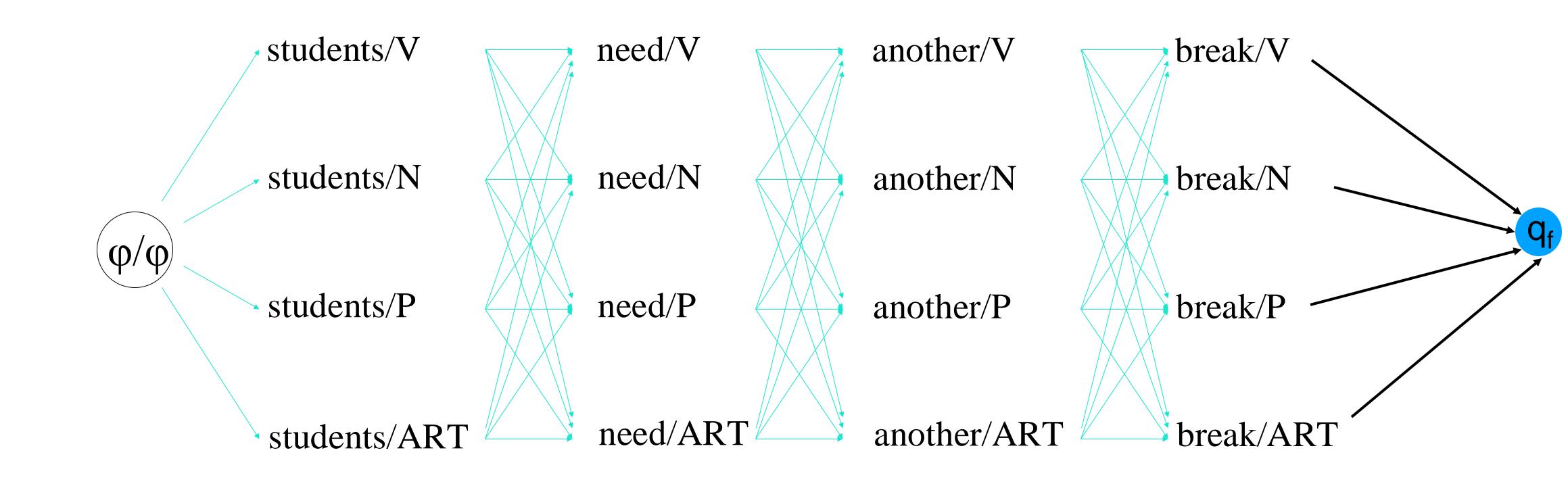
a special start state and end (final) state that are not associated with observations, together with transition probabilities  $a_{01}a_{02}\ldots a_{0n}$  out of the start state and  $a_{1F}a_{2F}\ldots a_{nF}$  into the end state

### ? **Cornell beat Harvard**

- a sequence of T observations, each one drawn



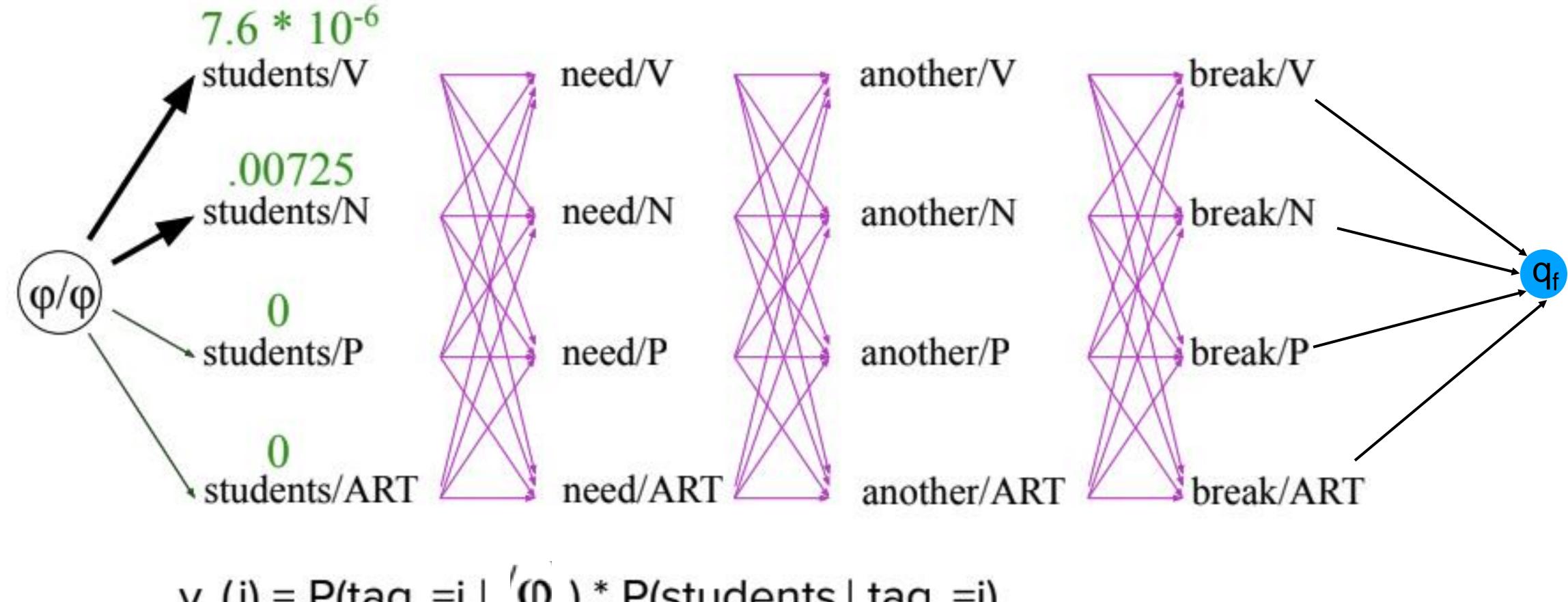

## Viterbi Algorithm Allows Efficient Search for the Most Likely Sequence


- need to enumerate all possible sequences
- Viterbi algorithm
  - scoring) tag sequence ending with each possible tag
  - sequence once we reach the end of the sentence

Key idea: Markov assumptions mean that we do not

- Sweep forward, one word at a time, finding the most likely (highest-- With the right bookkeeping, we can then "read off" the most likely tag

# Avoid computing the probabilities for all possible paths

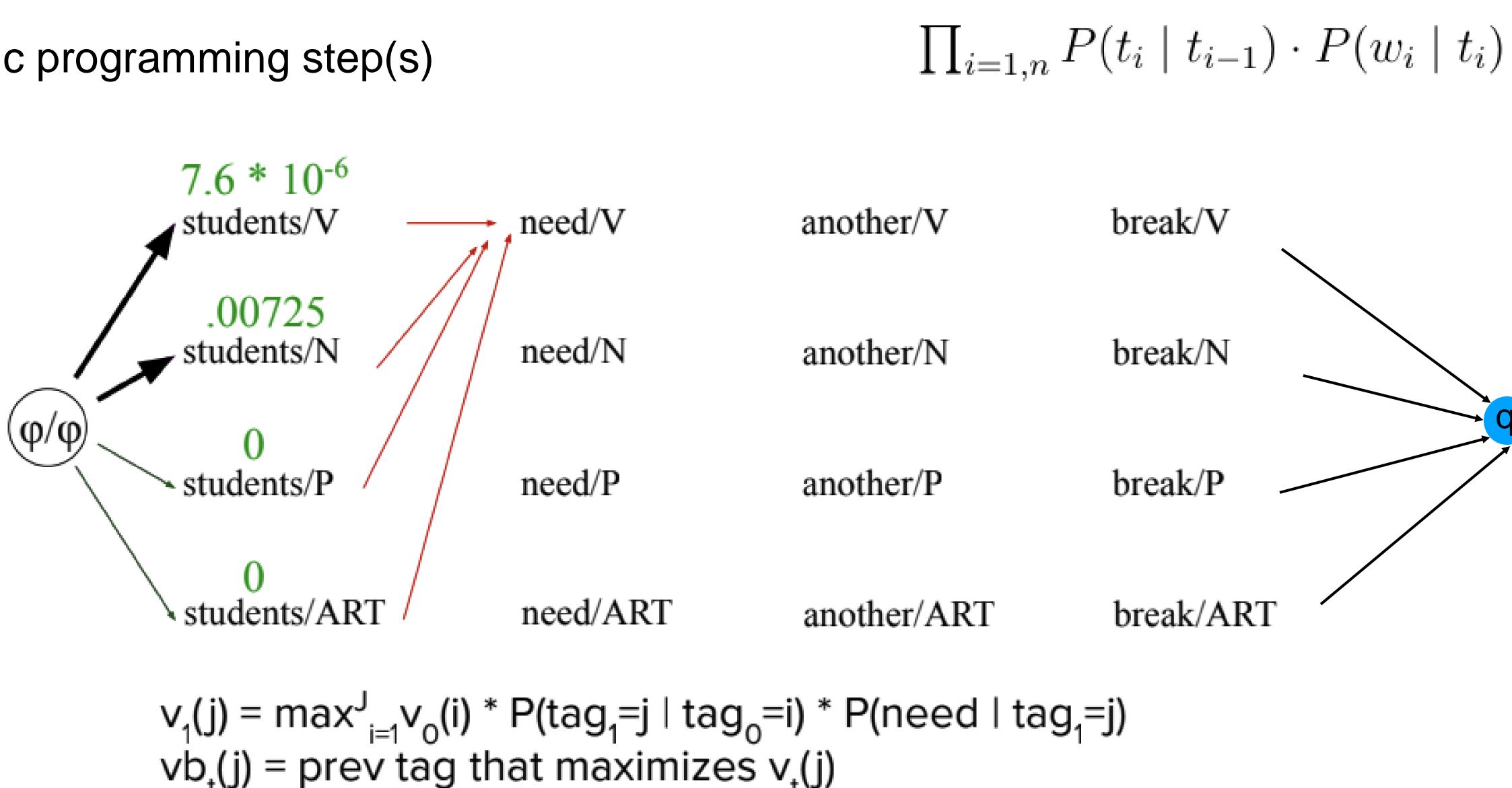




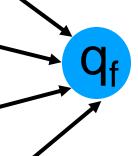

 $\prod_{i=1,n} P(t_i \mid t_{i-1}) \cdot P(w_i \mid t_i)$ 

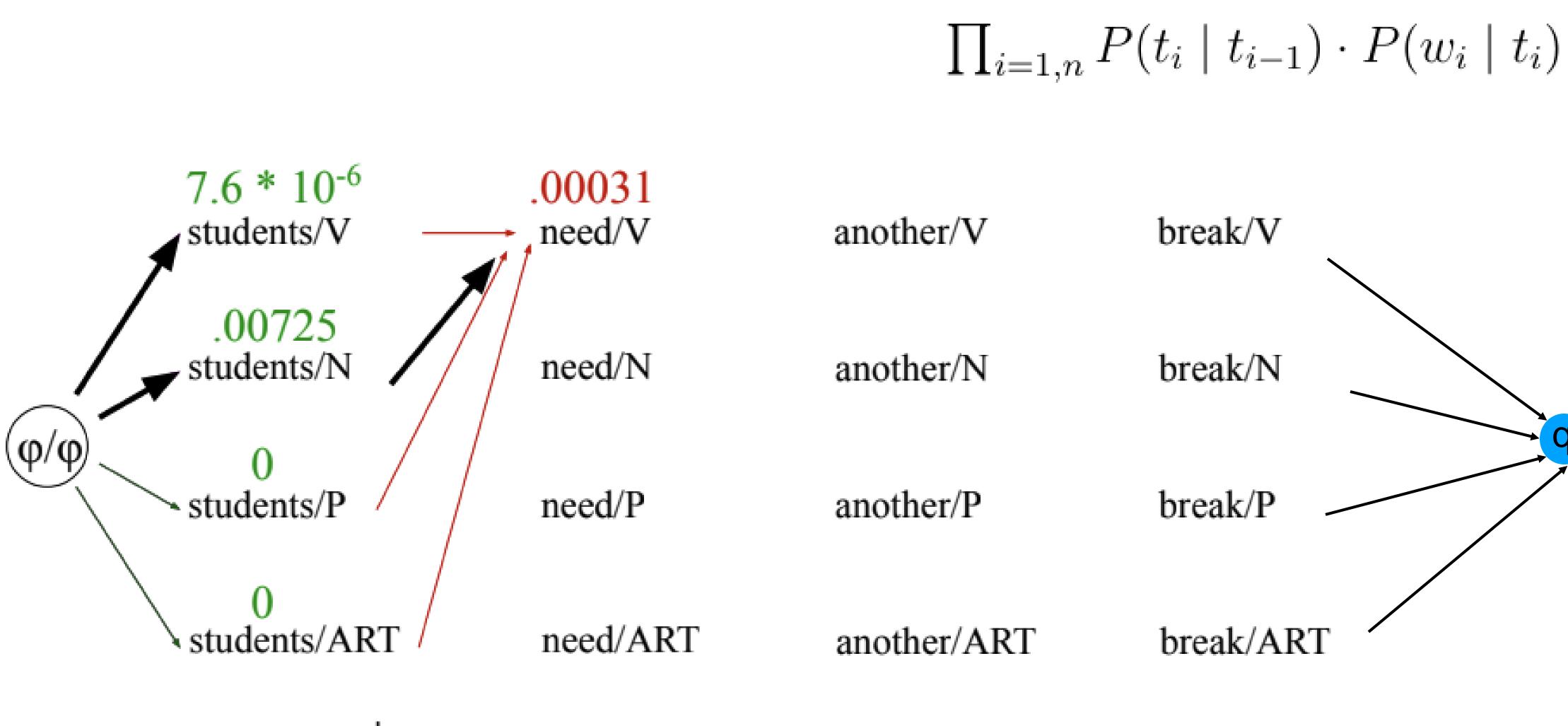



### Initialization step



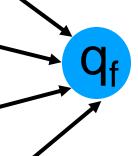

$$\prod_{i=1,n} P(t_i \mid t_{i-1}) \cdot P(w_i)$$

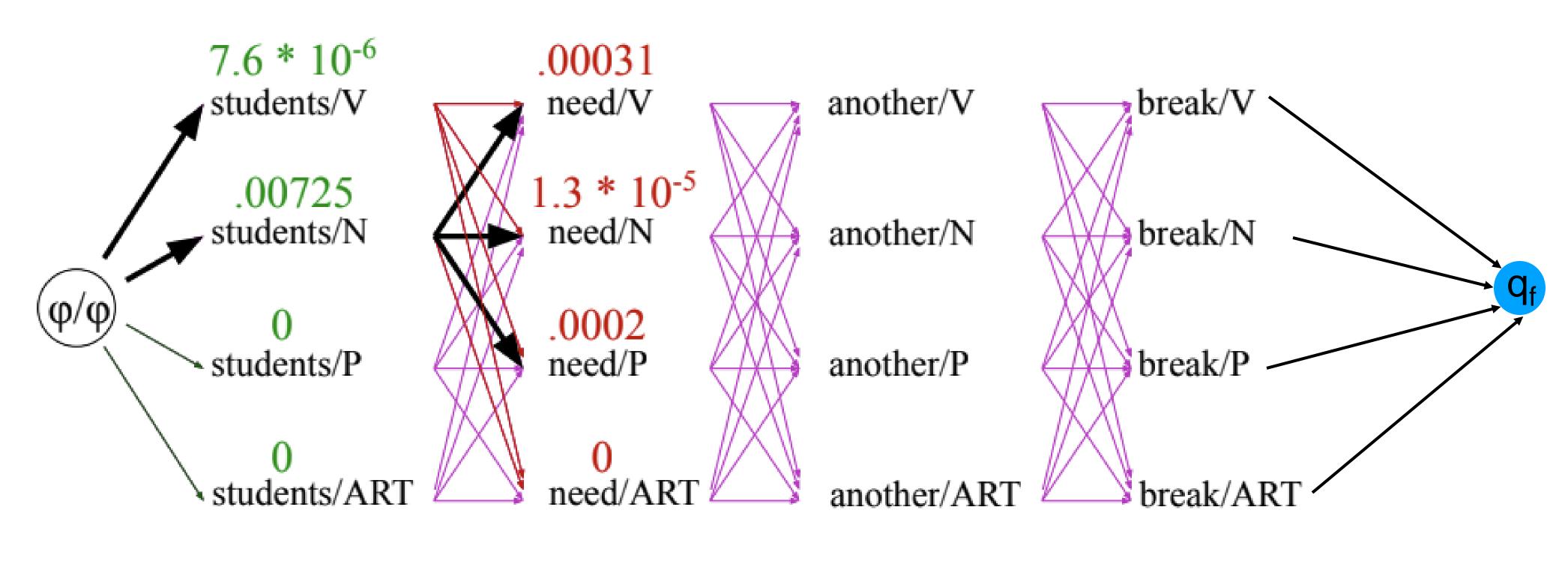

(students | tag<sub>o</sub>=j)




### Dynamic programming step(s)



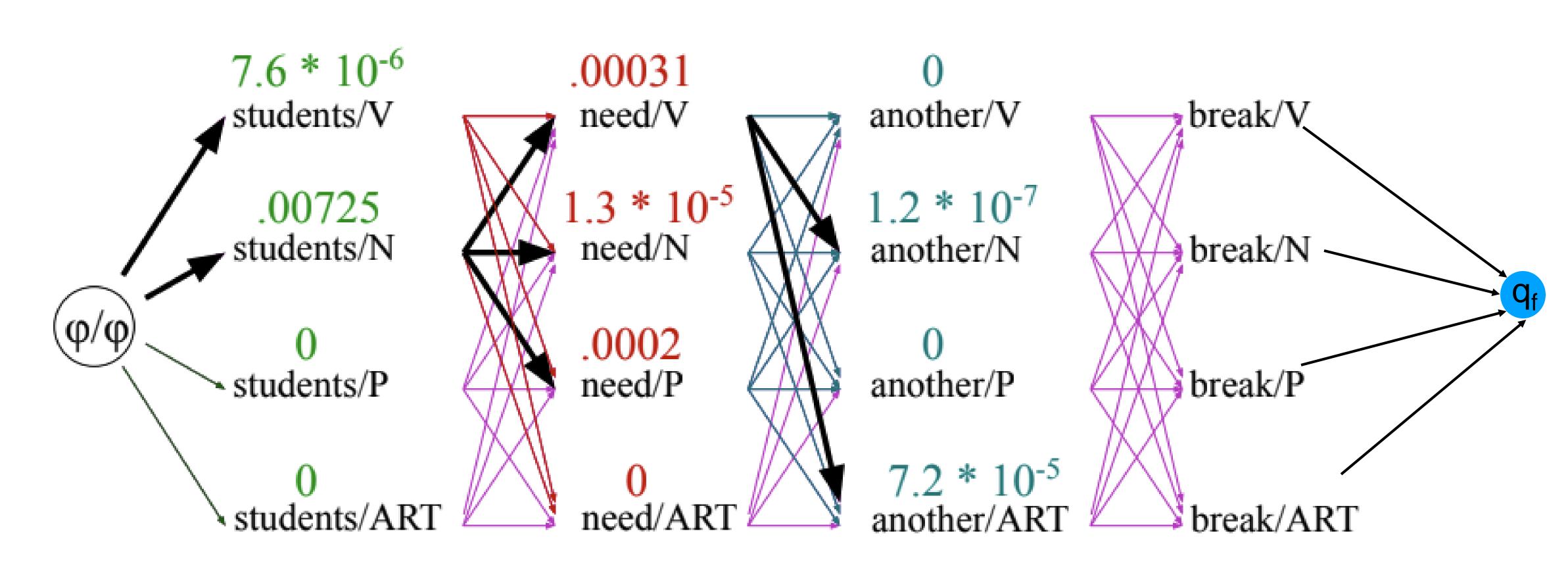





 $v_1(j) = \max_{i=1}^{J} v_0(i) * P(tag_1=j | tag_0=i) * P(need | tag_1=j)$  $vb_{i}(j) = prev tag that maximizes v_{i}(j)$ 








 $v_1(j) = \max_{i=1}^{J} v_0(i) * P(tag_1=j | tag_0=i) * P(need | tag_1=j)$  $vb_t(j) = prev tag that maximizes v_t(j)$ 

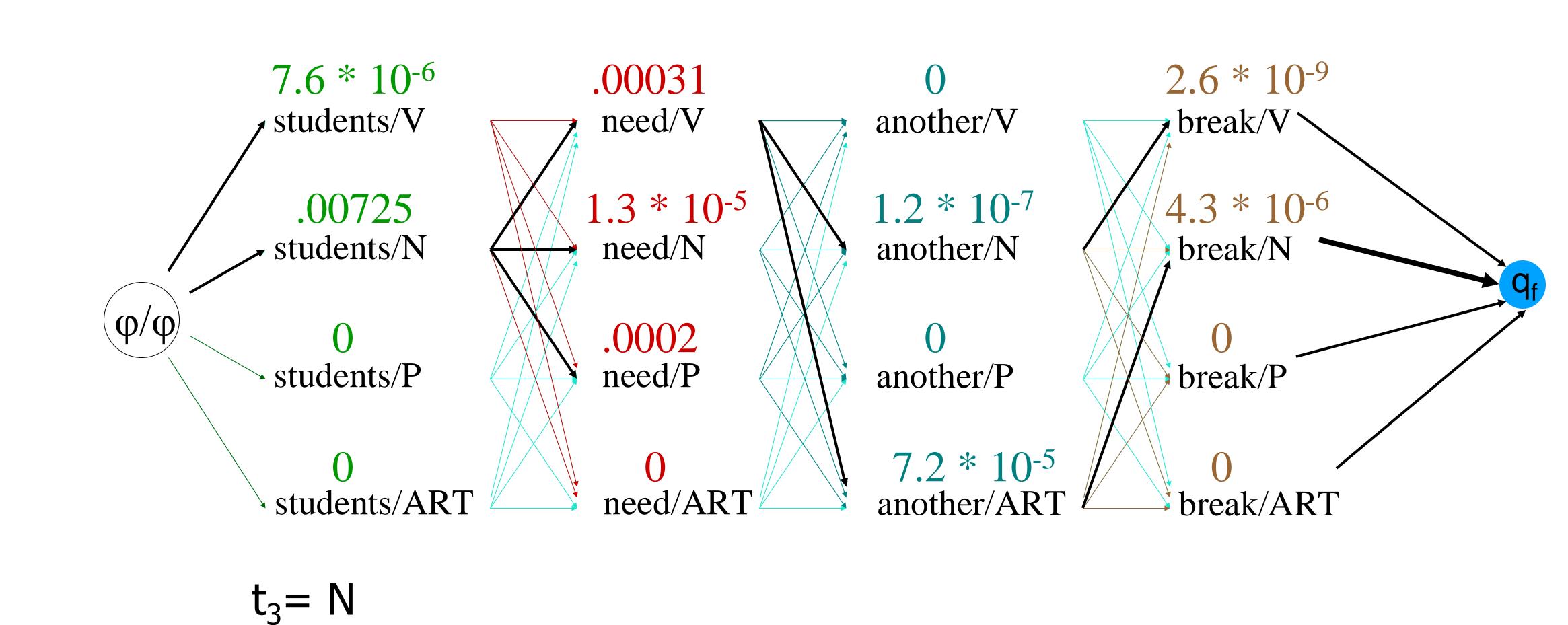
$$\prod_{i=1,n} P(t_i \mid t_{i-1}) \cdot P(w_i)$$





 $v_2(j) = \max_{i=1}^{J} v_1(i) * P(tag_2=j | tag_1=i) * P(another | tag_2=j)$  $vb_{t}(j) = prev tag that maximizes v_{t}(j)$ 

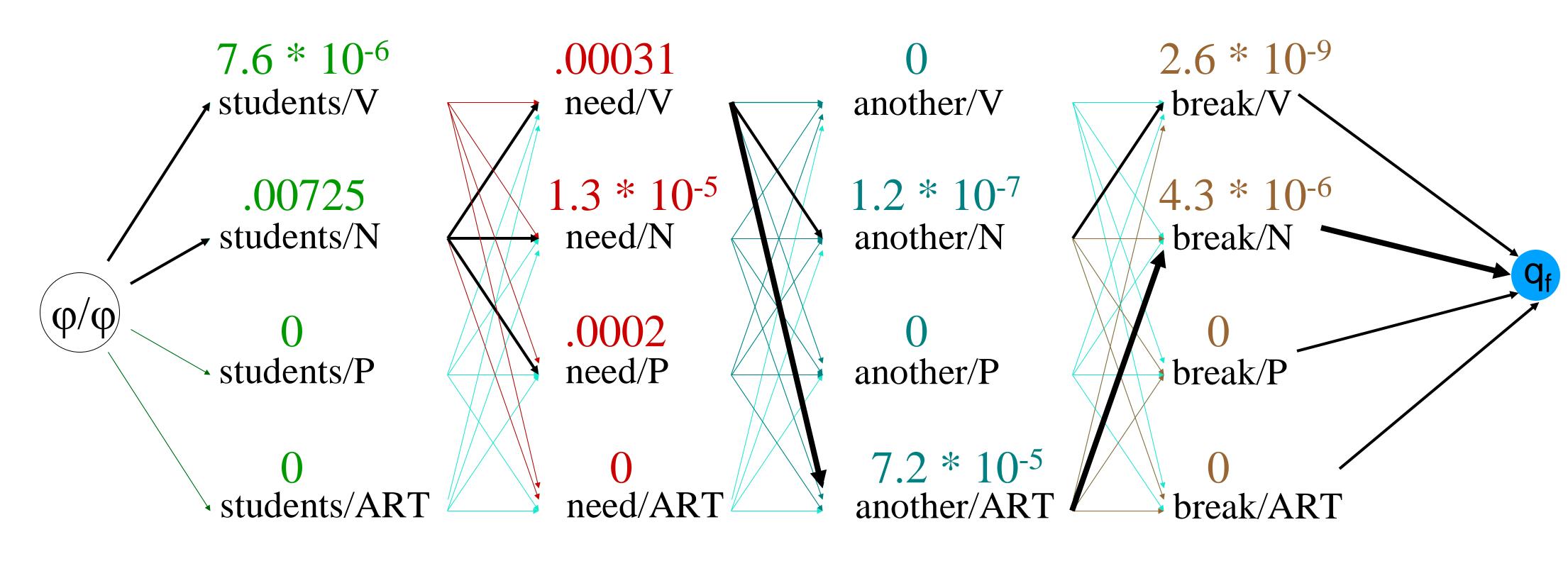
 $\prod_{i=1,n} P(t_i \mid t_{i-1}) \cdot P(w_i \mid t_i)$ 



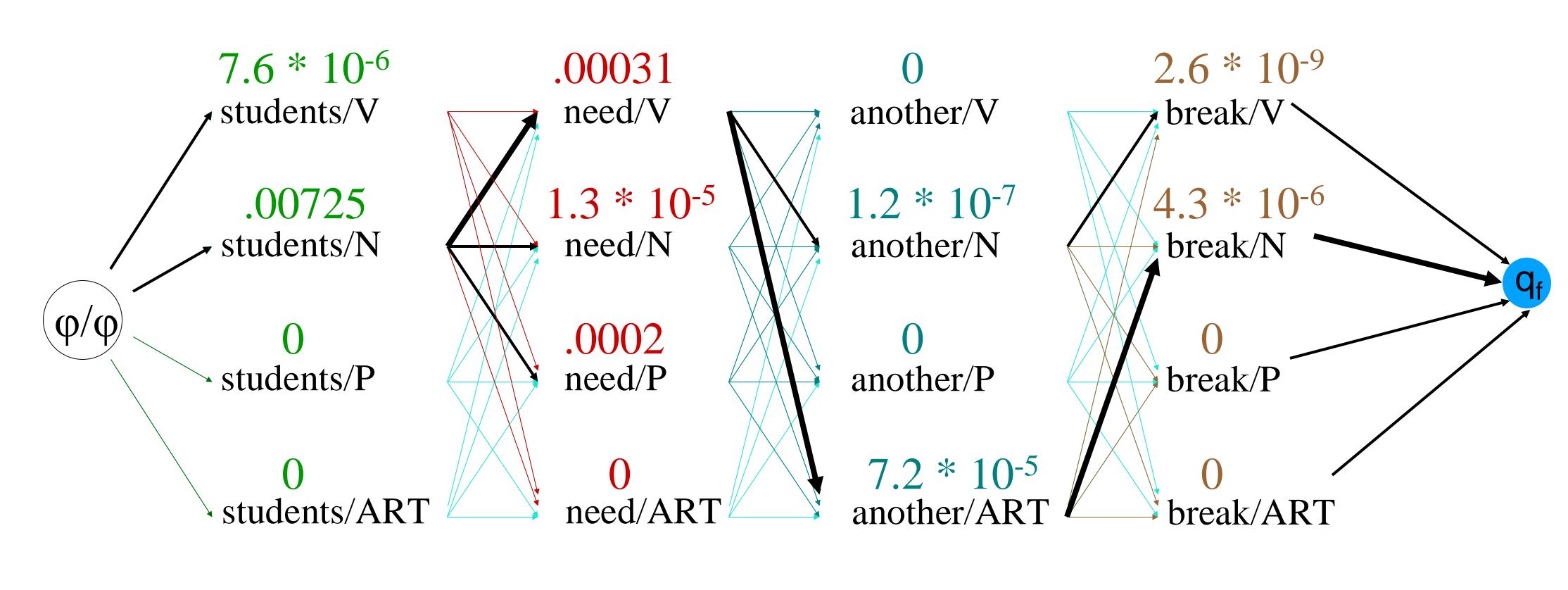




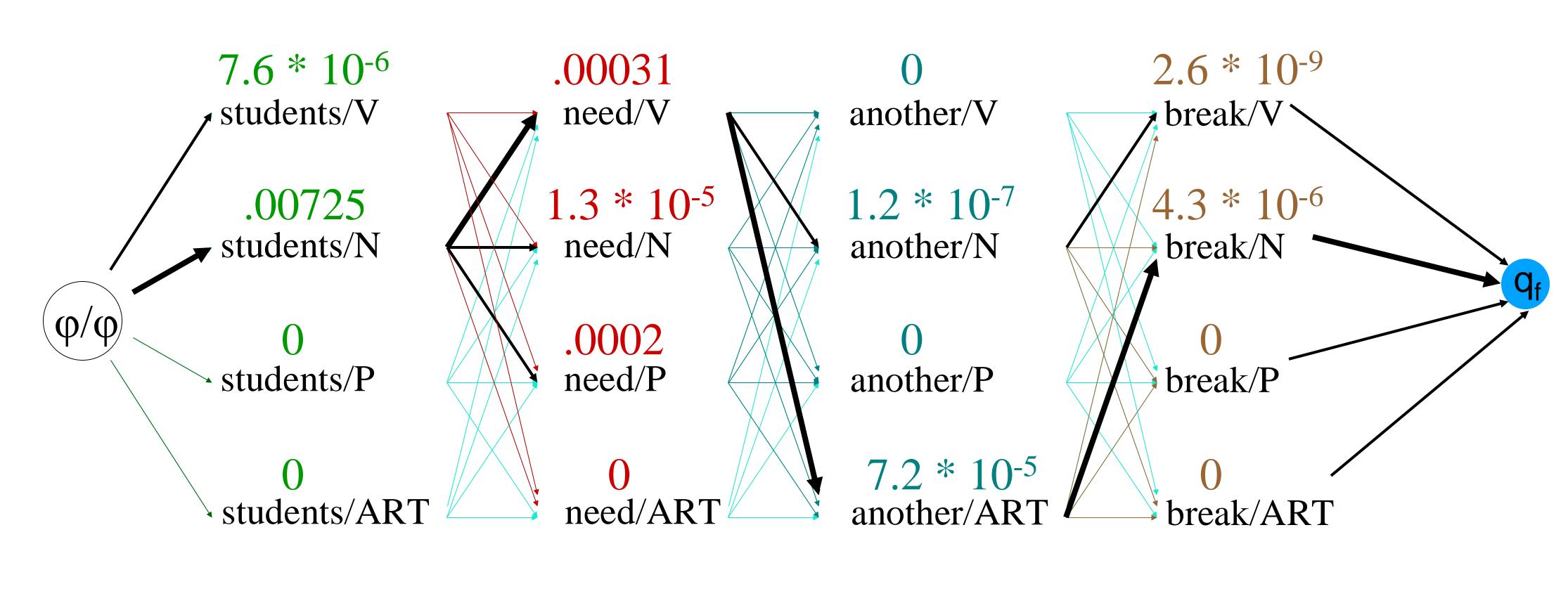
 $v_3(j) = \max_{i=1}^{J} v_2(i) * P(tag_3=j | tag_2=i) * P(break | tag_3=j)$  $vb_t(j) = prev tag that maximizes v_t(j)$ 


 $\prod_{i=1,n} P(t_i \mid t_{i-1}) \cdot P(w_i \mid t_i)$ 



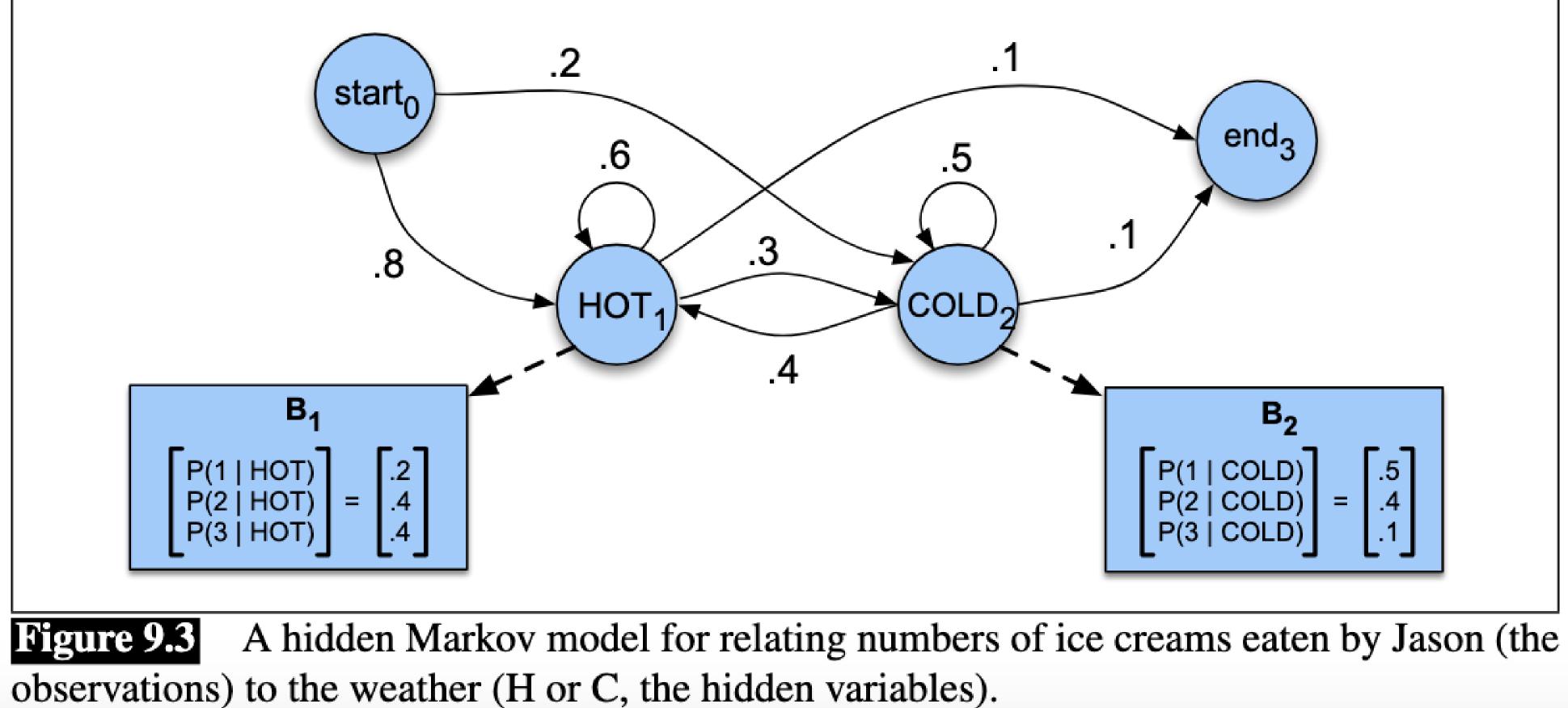



### Termination: follow backpointers






 $t_3 = N, t_4 = ART$ 




 $t_3 = N, t_2 = ART, t_1 = V$ 



 $t_3 = N, t_2 = ART, t_1 = V, t_0 = N$ 

## An Example: weather/ice-cream HMM



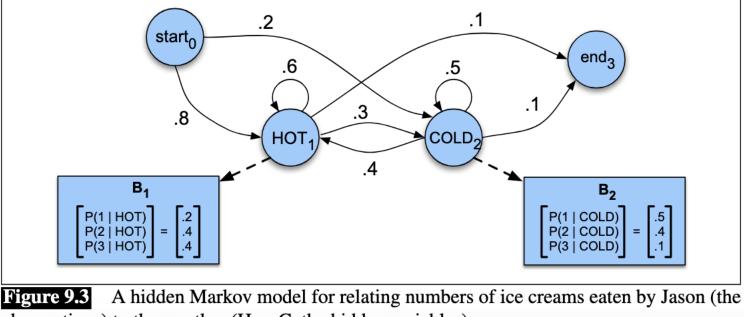
## An Example: weather/ice-cream HMM

$$Q = q_1 q_2 \dots q_N$$
$$A = q_1 q_2 \dots q_N$$

 $A = a_{11}a_{12}...a_{n1}...a_{nn}$ 

$$O = o_1 o_2 \dots o_T$$

 $B = b_i(o_t)$ 


 $q_0, q_F$ 

a set of N states

a transition probability matrix A, each  $a_{ij}$  representing the probability of moving from state *i* to state j, s.t.  $\sum_{i=1}^{n} a_{ij} = 1 \quad \forall i$ a sequence of T observations, each one drawn from a vocabulary  $V = v_1, v_2, ..., v_V$ 

a sequence of **observation likelihoods**, also called **emission probabilities**, each expressing the probability of an observation  $o_t$  being generated from a state *i* 

a special start state and end (final) state that are not associated with observations, together with transition probabilities  $a_{01}a_{02}\ldots a_{0n}$  out of the start state and  $a_{1F}a_{2F}\ldots a_{nF}$  into the end state

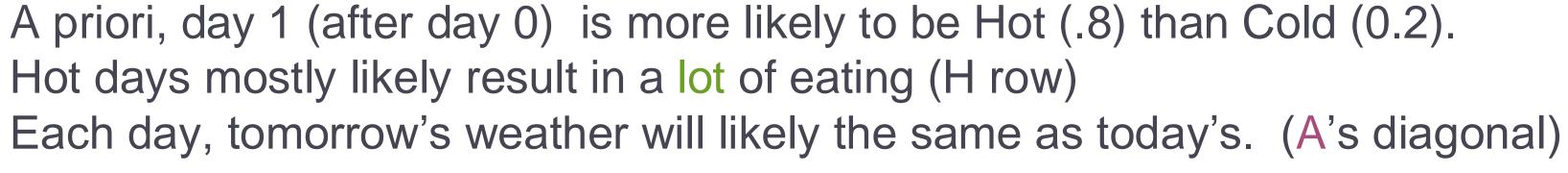


observations) to the weather (H or C, the hidden variables).

### ? $1(few) \quad 3(lots) \quad 2(mid)$



## **Intuitions: weather/ice-cream HMM**


States:  $q_0 = START$ ,  $q_1 = Cold day$ ,  $q_2 = Hot day$ ,  $q_F =$ END

Vocabulary: "few" (ice creams eaten), "mid", "lot" A, the transitions matrix B, the emission "rows"

|                       | H   | С   | q <sub>F</sub> |
|-----------------------|-----|-----|----------------|
| Н                     | 0.7 | 0.2 | 0.1            |
| С                     | 0.4 | 0.5 | 0.1            |
| <b>q</b> <sub>0</sub> | 0.8 | 0.2 |                |

- Hot days mostly likely result in a lot of eating (H row)

Visual indexing convention: lower-left is (0,0).Row numbering increases <u>upward.</u> START)



## We also omitted row 3 (nothing transitions from $q_F = END$ ) and column 0 (nothing transitions into $q_0 =$



## **Example: weather/ice-cream HMM**

States:  $q_0 = START$ ,  $q_1 = Cold day$ ,  $q_2 = Hot day$ ,  $q_F =$ END

Vocabulary: "few" (ice creams eaten), "mid", "lot" A, the transitions matrix B, the emission "rows"

|                | Η   | С   | q <sub>F</sub> |   |   | few | mid | lot |
|----------------|-----|-----|----------------|---|---|-----|-----|-----|
| Н              | 0.7 | 0.2 | 0.1            |   | н | 0.1 | 0.3 | 0.6 |
| С              | 0.4 | 0.5 | 0.1            | - | С | 0.5 | 0.4 | 0.1 |
| q <sub>0</sub> | 0.8 | 0.2 |                |   |   |     | 1   |     |

**Q1:** if today is cold, what is the probability that a "lot" are eaten today? **Q2**: ... and what's the probability that tomorrow is cold? **Q3:** If the eating records show "mid mid few", what was the weather then?

Visual indexing convention: lower-left is (0,0).Row numbering increases <u>upward.</u> We also omitted row 3 (nothing transitions from  $q_F = END$ ) and column 0 (nothing transitions into  $q_0 =$ START).



## **Example: weather/ice-cream HMM**

States:  $q_0 = START$ ,  $q_1 = Cold day$ ,  $q_2 = Hot day$ ,  $q_F =$ END

Vocabulary: "few" (ice creams eaten), "mid", "lot" A, the transitions matrix B, the emission "rows"

|                       | Η   | С   | q <sub>F</sub> |
|-----------------------|-----|-----|----------------|
| Н                     | 0.7 | 0.2 | 0.1            |
| С                     | 0.4 | 0.5 | 0.1            |
| <b>q</b> <sub>0</sub> | 0.8 | 0.2 |                |

Visual indexing convention: lower-left is (0,0).Row numbering increases <u>upward.</u> We also omitted row 3 (nothing transitions from  $q_F = END$ ) and column 0 (nothing transitions into  $q_0 =$ START)

Viterbi question: Given observation "<s> mid mid few </s>", what state sequence assigns the highest likelihood?

@thissillygirlskitche

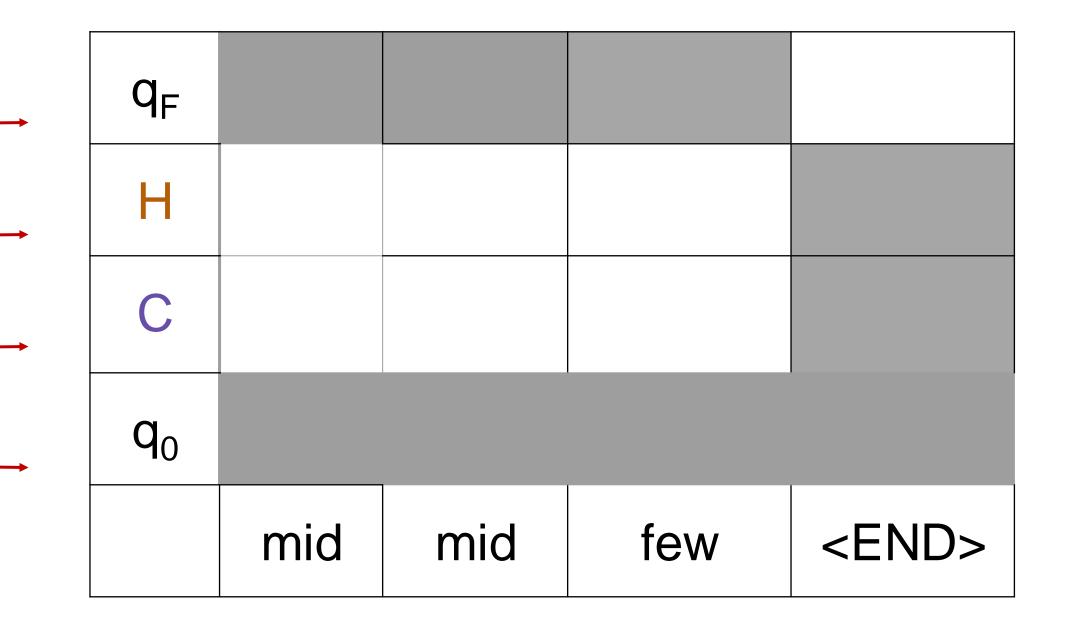


|   | few | mid | lot |
|---|-----|-----|-----|
| Н | 0.1 | 0.3 | 0.6 |
| С | 0.5 | 0.4 | 0.1 |

# The Viterbi chart v(state, observation)

This stores "the max prob of getting to us to this observation and this state".

V Matrix Row 3 (Paths that go through State 3)


V Matrix Row 2 (Paths that go through State 2)

V Matrix Row 1 (Paths that go through State 1)

V Matrix Row 0 (Paths that go through State 0)

| (                     | 4<br>Tranciti | onc) |                |
|-----------------------|---------------|------|----------------|
|                       | Transiti      | 5    | 9 <sub>F</sub> |
| Н                     | 0.7           | 0.2  | 0.1            |
| С                     | 0.4           | 0.5  | 0.1            |
| <b>q</b> <sub>0</sub> | 0.8           | 0.2  |                |

| B (Emissions) |     |     |     |  |  |
|---------------|-----|-----|-----|--|--|
|               | few | mid | lot |  |  |
| Н             | 0.1 | 0.3 | 0.6 |  |  |
| С             | 0.5 | 0.4 | 0.1 |  |  |




# The backpointer matrix

|     | <b>q</b> <sub>F</sub> |     |     |     |                     |
|-----|-----------------------|-----|-----|-----|---------------------|
|     | Η                     |     |     |     |                     |
| V = | С                     |     |     |     |                     |
|     | q <sub>0</sub>        |     |     |     |                     |
|     |                       | mid | mid | few | <end< td=""></end<> |

|                | Η   | С   | q <sub>F</sub> |
|----------------|-----|-----|----------------|
| н              | 0.7 | 0.2 | 0.1            |
| С              | 0.4 | 0.5 | 0.1            |
| q <sub>0</sub> | 0.8 | 0.2 |                |

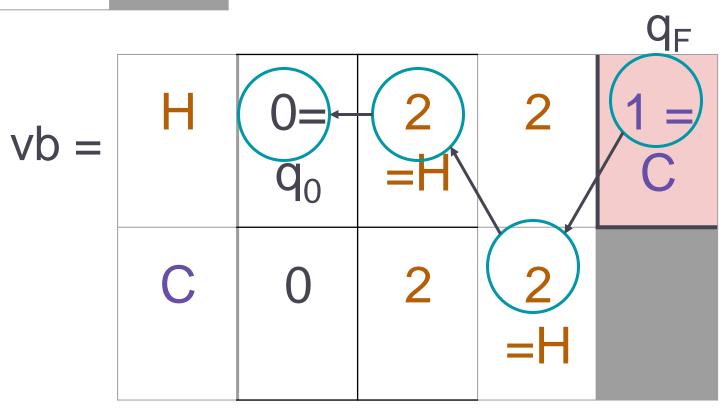
|   | few | mid | lot |
|---|-----|-----|-----|
| Η | 0.1 | 0.3 | 0.6 |
| С | 0.5 | 0.4 | 0.1 |

 $\mathsf{q}_\mathsf{F}$ 



| Η |  |  |
|---|--|--|
| С |  |  |

)>


## **Preview.** The goal is the backpointers.

- Initialize 1)  $v_1(j) = a_{0j}b_j(o_1)$  $vb_1(j) = 0$   $1 \le j \le J; v=(J,T)$
- 2) Dynamic programming step  $v_t(j) = \max_{i=1}^{J} v_{t-1}(i) a_{ii} b_i(o_t)$   $1 \le j \le J; 1 < t \le T$  $vb_t(j) = argmax_{i,t-1}[v_t(j)]$
- Termination 3)  $P(O|\Theta,Q) = v_T(F) = max_{i=1}^{J}v_T(i)a_{iF}$  $\operatorname{argmax}_{O}[P(O|\Theta,Q)] = vb_{T}(F)$

Read off the best tag sequence "backwards" from q<sub>F</sub> in vb to find that it is H H C. (Actually,  $q_0 H H C q_F$ )

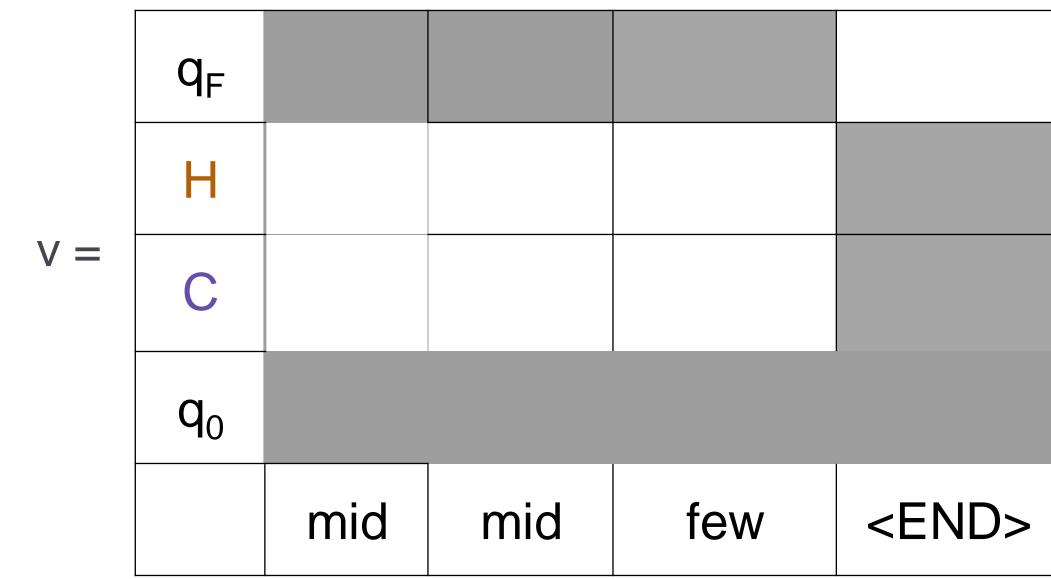
|                | Н   | С   | q <sub>F</sub> |
|----------------|-----|-----|----------------|
| Н              | 0.7 | 0.2 | 0.1            |
| С              | 0.4 | 0.5 | 0.1            |
| q <sub>0</sub> | 0.8 | 0.2 |                |

|   | few | mid | lot |
|---|-----|-----|-----|
| Η | 0.1 | 0.3 | 0.6 |
| С | 0.5 | 0.4 | 0.1 |



| ( | ٩ <sub>F</sub> |      |        |          | 0.000504    |
|---|----------------|------|--------|----------|-------------|
|   | Н              | 0.24 | 0.0504 | 0.003528 |             |
|   | С              | 0.08 | 0.0192 | 0.00504  |             |
| ( | q <sub>o</sub> |      |        |          |             |
|   |                | mid  | mid    | few      | <end></end> |

V =


## **The Viterbi Algorithm** (HMM)

- Initialize 1)  $v_1(j) = a_{0j}b_j(o_1)$  $vb_1(j) = 0$   $1 \le j \le J; v=(J,T)$
- Dynamic programming step 2)  $v_t(j) = \max_{i=1}^{J} v_{t-1}(i) a_{ij} b_j(o_t)$   $1 \le j \le J; 1 < t \le T$  $vb_t(j) = argmax_{i,t-1}[v_t(j)]$
- Termination 3)  $P(O|\Theta,Q) = v_T(F) = max_{i=1}^{J}v_T(i)a_{iF}$  $\operatorname{argmax}_{Q}[P(O|\Theta,Q)] = vb_{T}(F)$

|                       | Η   | С   | q <sub>F</sub> |
|-----------------------|-----|-----|----------------|
| Н                     | 0.7 | 0.2 | 0.1            |
| С                     | 0.4 | 0.5 | 0.1            |
| <b>q</b> <sub>0</sub> | 0.8 | 0.2 |                |

|   | few | mid | lot |
|---|-----|-----|-----|
| Η | 0.1 | 0.3 | 0.6 |
| С | 0.5 | 0.4 | 0.1 |

Η vb =С





## **Initializing v matrix**

- Initialize 1)  $v_1(j) = a_{0j}b_j(o_1)$  $vb_1(j) = 0$   $1 \le j \le J; v=(J,T)$
- 2) Dynamic programming step  $v_t(j) = max_{i=1}^{J}v_{t-1}(i)a_{ij}b_j(o_t)$   $1 \le j \le J; 1 < t \le T$  $vb_t(j) = argmax_{i,t-1}[v_t(j)]$
- Termination 3)  $P(O|\Theta,Q) = v_T(F) = max_{i=1}^{J}v_T(i)a_{iF}$  $\operatorname{argmax}_{Q}[P(O|\Theta,Q)] = vb_{T}(F)$

|   |                       | Η   | С   | q <sub>F</sub> |
|---|-----------------------|-----|-----|----------------|
| K | Н                     | 0.7 | 0.2 | 0.1            |
|   | С                     | 0.4 | 0.5 | 0.1            |
|   | <b>q</b> <sub>0</sub> | 0.8 | 0.2 |                |

|   | few | mid | lot |
|---|-----|-----|-----|
| Н | 0.1 | 0.3 | 0.6 |
| С | 0.5 | 0.4 | 0.1 |

| vb = | Η | 0                     |  |  |
|------|---|-----------------------|--|--|
|      | С | 0 =<br>q <sub>0</sub> |  |  |

|     | q <sub>F</sub> |         |     |     |             |
|-----|----------------|---------|-----|-----|-------------|
|     | Η              | 0.8*0.3 |     |     |             |
|     | С              | 0.2*0.4 |     |     |             |
| V = | q <sub>0</sub> |         |     |     |             |
|     |                | mid     | mid | few | <end></end> |



## (do the multiply)

- Initialize 1)
  - $v_1(j) = \mathbf{a}_{0j}\mathbf{b}_j(o_1)$  $vb_1(j) = 0$   $1 \le j \le J; v=(J,T)$
- Dynamic programming step 2)  $v_t(j) = \max_{i=1}^{J} v_{t-1}(i) a_{ij} b_j(o_t)$   $1 \le j \le J; 1 < t \le T$  $vb_t(j) = argmax_{i,t-1}[v_t(j)]$
- Termination 3)  $P(O|\Theta,Q) = v_T(F) = max_{i=1}^{J}v_T(i)a_{iF}$  $\operatorname{argmax}_{Q}[P(O|\Theta,Q)] = vb_{T}(F)$

|                | Н   | С   | q <sub>F</sub> |
|----------------|-----|-----|----------------|
| н              | 0.7 | 0.2 | 0.1            |
| С              | 0.4 | 0.5 | 0.1            |
| q <sub>0</sub> | 0.8 | 0.2 |                |

|   | few | mid | lot |
|---|-----|-----|-----|
| Η | 0.1 | 0.3 | 0.6 |
| С | 0.5 | 0.4 | 0.1 |

| vb = | Η | 0 |  |  |
|------|---|---|--|--|
|      | С | 0 |  |  |

|     | <b>q</b> <sub>F</sub> |      |     |     |             |
|-----|-----------------------|------|-----|-----|-------------|
|     | Η                     | 0.24 |     |     |             |
|     | С                     | 0.08 |     |     |             |
| V = | <b>q</b> <sub>0</sub> |      |     |     |             |
| v — |                       | mid  | mid | few | <end></end> |

## Next column!

- Initialize 1)  $v_1(j) = a_{0j}b_j(o_1)$  $vb_1(j) = 0$   $1 \le j \le J; v=(J,T)$
- 2) Dynamic programming step  $v_t(j) = max_{j=1}^J v_{t-1}(i)a_{ij}b_j(o_t)$   $1 \le j \le J; 1 < t \le T$  $vb_t(j) = argmax_{i,t-1}[v_t(j)]$
- Termination 3)  $P(O|\Theta,Q) = v_T(F) = max_{i=1}^{J}v_T(i)a_{iF}$  $\operatorname{argmax}_{Q}[P(O|\Theta,Q)] = vb_{T}(F)$

|                | Н   | С   | q <sub>F</sub> |
|----------------|-----|-----|----------------|
| Н              | 0.7 | 0.2 | 0.1            |
| С              | 0.4 | 0.5 | 0.1            |
| q <sub>0</sub> | 0.8 | 0.2 |                |

|   | few | mid | lot |
|---|-----|-----|-----|
| Η | 0.1 | 0.3 | 0.6 |
| С | 0.5 | 0.4 | 0.1 |

V =

| vb = | Η | 0 |  |  |
|------|---|---|--|--|
|      | С | 0 |  |  |

| q <sub>F</sub> |      |                                    |     |             |
|----------------|------|------------------------------------|-----|-------------|
| Н              | 0.24 | max(0.24*0.7*0.3,0<br>.08*0.4*0.3) |     |             |
| С              | 0.08 | max(0.24*0.2*0.4,<br>0.08*0.5*0.4) |     |             |
| q <sub>0</sub> |      |                                    |     |             |
|                | mid  | mid                                | few | <end></end> |



## (do the math on the product)

- Initialize 1)  $v_1(j) = a_{0j}b_j(o_1)$  $vb_1(j) = 0$   $1 \le j \le J; v=(J,T)$
- 2) **Dynamic programming step**  $v_t(j) = \max_{i=1}^{J} v_{t-1}(i) a_{ij} b_j(o_t)$   $1 \le j \le J; 1 < t \le T$  $vb_t(j) = argmax_{i,t-1}[v_t(j)]$
- Termination 3)  $P(O|\Theta,Q) = v_T(F) = max_{i=1}^{J}v_T(i)a_{iF}$  $\operatorname{argmax}_{O}[P(O|\Theta,Q)] = vb_{T}(F)$

|                | Н   | С   | q <sub>F</sub> |
|----------------|-----|-----|----------------|
| н              | 0.7 | 0.2 | 0.1            |
| С              | 0.4 | 0.5 | 0.1            |
| q <sub>0</sub> | 0.8 | 0.2 |                |

|   | few | mid | lot |
|---|-----|-----|-----|
| Η | 0.1 | 0.3 | 0.6 |
| С | 0.5 | 0.4 | 0.1 |

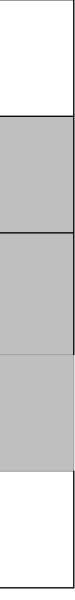
q<sub>F</sub>

| vb = | F4 | 0 |  |  |
|------|----|---|--|--|
|      | С  | 0 |  |  |

V =

| 9 <sub>F</sub>        |      |                                       |     |  |
|-----------------------|------|---------------------------------------|-----|--|
| Н                     | 0.24 | max( <mark>0.0504</mark> ,<br>0.0096) |     |  |
| С                     | 0.08 | max(0.0192,<br>0.016)                 |     |  |
| <b>q</b> <sub>0</sub> |      |                                       |     |  |
|                       | mid  | mid                                   | few |  |




## Get backpointers to be previous state

V =

- 1) Initialize  $v_1(j) = a_{0j}b_j(o_1)$  $vb_1(j) = 0$   $1 \le j \le J; v=(J,T)$
- 2) Dynamic programming step  $v_t(j) = \max_{i=1}^{J} v_{t-1}(i) a_{ij} b_j(o_t)$   $1 \le j \le J$ ; 1 < t $vb_t(j) = argmax_{i,t-1}[v_t(j)]$
- 3) Termination  $P(O|\Theta,Q) = v_{T}(F) = \max_{i=1}^{J} v_{T}(i)a_{iF}$   $argmax_{O}[P(O|\Theta,Q)] = vb_{T}(F)$

| es | st                    | Η   | С    | q <sub>F</sub> |   |   | fe | W  | n | nid                   |  |
|----|-----------------------|-----|------|----------------|---|---|----|----|---|-----------------------|--|
|    | Η                     | 0.7 | 0.2  | 0.1            |   | Н | 0  | .1 | С | ).3                   |  |
|    | С                     | 0.4 | 0.5  | 0.1            |   | С | 0  | .5 | С | ).4                   |  |
|    | <b>q</b> <sub>0</sub> | 0.8 | 0.2  |                |   |   |    |    |   |                       |  |
|    |                       |     |      |                |   |   |    |    |   | <b>q</b> <sub>F</sub> |  |
|    |                       |     | vh – | Η              | 0 |   | 2  |    |   |                       |  |

|   |                       | vb = | = H 0      | 2       |    |   |  |  |
|---|-----------------------|------|------------|---------|----|---|--|--|
| t | ≤ T                   |      | <b>C</b> 0 | 2<br>=H |    |   |  |  |
|   | q <sub>F</sub>        |      |            |         |    |   |  |  |
|   | Η                     | 0.24 | 0.0504     |         |    |   |  |  |
|   | С                     | 0.08 | 0.0192     |         |    |   |  |  |
|   | <b>q</b> <sub>0</sub> |      |            |         |    |   |  |  |
|   |                       | mid  | mid        |         | fe | W |  |  |



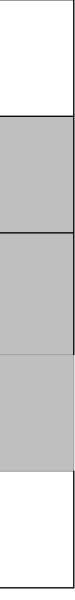
lot

0.6

0.1

## Done w/ 2nd "mid" column

- 1) Initialize  $v_1(j) = a_{0j}b_j(o_1)$  $vb_1(j) = 0$   $1 \le j \le J; v=(J,T)$
- 2) Dynamic programming step  $v_t(j) = \max_{i=1}^{J} v_{t-1}(i) a_{ij} b_j(o_t)$   $1 \le j \le J; 1 < t \le T$  $vb_t(j) = argmax_{i,t-1}[v_t(j)]$
- 3) Termination  $P(O|\Theta,Q) = v_{T}(F) = \max_{i=1}^{J} v_{T}(i)a_{iF}$   $argmax_{O}[P(O|\Theta,Q)] = vb_{T}(F)$


|                | H   | С   | q <sub>F</sub> |   |
|----------------|-----|-----|----------------|---|
| н              | 0.7 | 0.2 | 0.1            | H |
| С              | 0.4 | 0.5 | 0.1            | С |
| q <sub>0</sub> | 0.8 | 0.2 |                |   |

V =

|   | few | mid | lot |
|---|-----|-----|-----|
| Н | 0.1 | 0.3 | 0.6 |
| С | 0.5 | 0.4 | 0.1 |

| vb = | Η | 0 | 2 |  |
|------|---|---|---|--|
|      | С | 0 | 2 |  |

| <b>q</b> <sub>F</sub> |      |        |     |  |
|-----------------------|------|--------|-----|--|
| Η                     | 0.24 | 0.0504 |     |  |
| С                     | 0.08 | 0.0192 |     |  |
| q <sub>0</sub>        |      |        |     |  |
|                       | mid  | mid    | few |  |



## Next column (for observation "few")

- 1) Initialize  $v_1(j) = a_{0j}b_j(o_1)$  $vb_1(j) = 0$   $1 \le j \le J; v=(J,T)$
- 2) Dynamic programming step  $v_{t}(j) = \max_{i=1}^{J} v_{t-1}(i) a_{ij} b_{j}(o_{t}) \quad 1 \leq j \leq J; \ 1 < t \leq T$   $vb_{t}(j) = \arg\max_{i,t-1}[v_{t}(j)]$

V =

3) Termination  $P(O|\Theta,Q) = v_{T}(F) = \max_{i=1}^{J} v_{T}(i)a_{iF}$   $argmax_{Q}[P(O|\Theta,Q)] = vb_{T}(F)$ 

|                | Н   | С   | q <sub>F</sub> |   | few | mid |
|----------------|-----|-----|----------------|---|-----|-----|
| Η              | 0.7 | 0.2 | 0.1            | Н | 0.1 | 0.3 |
| С              | 0.4 | 0.5 | 0.1            | С | 0.5 | 0.4 |
| q <sub>0</sub> | 0.8 | 0.2 |                |   |     |     |

|      |   |   |   | <br><b>q</b> <sub>F</sub> |
|------|---|---|---|---------------------------|
| vb = | Н | 0 | 2 |                           |
|      | С | 0 | 2 |                           |

lot

0.6

0.1

| - | <b>q</b> <sub>F</sub> |      |            |                                        |                     |
|---|-----------------------|------|------------|----------------------------------------|---------------------|
|   | Η                     | 0.24 | 0.050<br>4 | max(0.0504*0.7*0.1,<br>0.0192*0.4*0.1) |                     |
|   | С                     | 0.08 | 0.019<br>2 | max(0.0504*0.2*0.5,<br>0.0192*0.5*0.5) |                     |
|   | <b>q</b> <sub>0</sub> |      |            |                                        |                     |
|   |                       | mid  | mid        | few                                    | <end< th=""></end<> |



# (compute the products)

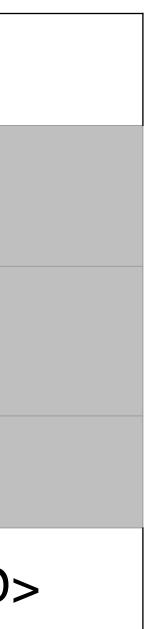
- 1) Initialize  $v_1(j) = a_{0j}b_j(o_1)$  $vb_1(j) = 0$   $1 \le j \le J; v=(J,T)$
- 2) Dynamic programming step  $v_t(j) = \max_{i=1}^{J} v_{t-1}(i) a_{ij} b_j(o_t)$   $1 \le j \le J; 1 < t \le T$  $vb_t(j) = argmax_{i,t-1}[v_t(j)]$

V =

3) Termination  $P(O|\Theta,Q) = v_{T}(F) = \max_{i=1}^{J} v_{T}(i)a_{iF}$   $argmax_{O}[P(O|\Theta,Q)] = vb_{T}(F)$ 

|                       | Н   | С   | q <sub>F</sub> |   | few | mid |  |
|-----------------------|-----|-----|----------------|---|-----|-----|--|
| Н                     | 0.7 | 0.2 | 0.1            | Н | 0.1 | 0.3 |  |
| С                     | 0.4 | 0.5 | 0.1            | С | 0.5 | 0.4 |  |
| <b>q</b> <sub>0</sub> | 0.8 | 0.2 |                |   |     |     |  |

q<sub>F</sub>


lot

0.6

0.1

| vb = | Η | 0 | 2 |  |
|------|---|---|---|--|
|      | С | 0 | 2 |  |

| <b>Q</b> <sub>F</sub> |      |        |                            |                       |
|-----------------------|------|--------|----------------------------|-----------------------|
| Н                     | 0.24 | 0.0504 | max(0.003528,<br>0.000768) |                       |
| С                     | 0.08 | 0.0192 | max(0.00504,<br>0.0048)    |                       |
| <b>q</b> <sub>0</sub> |      |        |                            |                       |
|                       | mid  | mid    | few                        | <end:< th=""></end:<> |



# Put the argmax into vb.

- 1) Initialize  $v_1(j) = a_{0j}b_j(o_1)$  $vb_1(j) = 0$   $1 \le j \le J; v=(J,T)$
- 2) Dynamic programming step  $v_t(j) = \max_{i=1}^{J} v_{t-1}(i) a_{ij} b_j(o_t)$   $1 \le j \le J$ ;  $1 < t \le T$  $vb_t(j) = argmax_{i,t-1}[v_t(j)]$
- 3) Termination  $P(O|\Theta,Q) = v_{T}(F) = \max_{i=1}^{J} v_{T}(i)a_{iF}$   $argmax_{Q}[P(O|\Theta,Q)] = vb_{T}(F)$

|                       | Н   | С   | q <sub>F</sub> |   |
|-----------------------|-----|-----|----------------|---|
| Н                     | 0.7 | 0.2 | 0.1            | F |
| С                     | 0.4 | 0.5 | 0.1            | C |
| <b>q</b> <sub>0</sub> | 0.8 | 0.2 |                |   |

V =

|   | few | mid | lot |
|---|-----|-----|-----|
| Н | 0.1 | 0.3 | 0.6 |
| С | 0.5 | 0.4 | 0.1 |

| $q_F$ |
|-------|
|-------|

| vb = | Η | 0 | 2 | 2       |  |
|------|---|---|---|---------|--|
|      | С | 0 | 2 | 2<br>=H |  |

| <b>q</b> <sub>F</sub> |      |        |          |             |
|-----------------------|------|--------|----------|-------------|
| Н                     | 0.24 | 0.0504 | 0.003528 |             |
| С                     | 0.08 | 0.0192 | 0.00504  |             |
| q <sub>0</sub>        |      |        |          |             |
|                       | mid  | mid    | few      | <end></end> |



## **Termination time**

V =

- 1) Initialize  $v_1(j) = a_{0j}b_j(o_1)$  $vb_1(j) = 0$   $1 \le j \le J; v=(J,T)$
- 2) Dynamic programming step  $v_t(j) = \max_{i=1}^{J} v_{t-1}(i) a_{ij} b_j(o_t)$   $1 \le j \le J$ ;  $1 < t \le T$  $vb_t(j) = argmax_{i,t-1}[v_t(j)]$
- 3) Termination  $P(O|\Theta,Q) = v_{T}(F) = max_{i=1}^{J}v_{T}(i)a_{iF}$   $argmax_{O}[P(O|\Theta,Q)] = vb_{T}(F)$

|                       | Н   | С   | q <sub>F</sub> |   |   | few | mid | lot |
|-----------------------|-----|-----|----------------|---|---|-----|-----|-----|
| Н                     | 0.7 | 0.2 | 0.1            | _ | Н | 0.1 | 0.3 | 0.6 |
| С                     | 0.4 | 0.5 | 0.1            |   | С | 0.5 | 0.4 | 0.1 |
| <b>q</b> <sub>0</sub> | 0.8 | 0.2 |                |   |   |     | 0   |     |

|      |   |   |   |   | <b>Y</b> F |
|------|---|---|---|---|------------|
| vb = | Н | 0 | 2 | 2 |            |
|      | С | 0 | 2 | 2 |            |

| q <sub>F</sub> |      |        |          | max(0.1*0.003<br>0.1*0.00504 |
|----------------|------|--------|----------|------------------------------|
| Н              | 0.24 | 0.0504 | 0.003528 |                              |
| С              | 0.08 | 0.0192 | 0.00504  |                              |
| q <sub>0</sub> |      |        |          |                              |
|                | mid  | mid    | few      | <end></end>                  |



# (compute the product)

- 1) Initialize  $v_1(j) = a_{0j}b_j(o_1)$  $vb_1(j) = 0$   $1 \le j \le J; v=(J,T)$
- 2) Dynamic programming step  $v_t(j) = \max_{i=1}^{J} v_{t-1}(i) a_{ij} b_j(o_t)$   $1 \le j \le J$ ;  $1 < t \le T$  $vb_t(j) = argmax_{i,t-1}[v_t(j)]$

V =

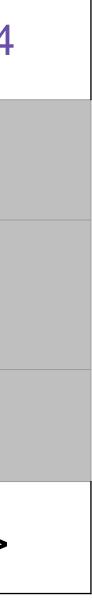
3) Termination  $P(O|\Theta,Q) = v_{T}(F) = \max_{i=1}^{J} v_{T}(i)a_{iF}$   $argmax_{O}[P(O|\Theta,Q)] = vb_{T}(F)$ 

|                       | Н   | С   | q <sub>F</sub> |   | few | mid            | lot |
|-----------------------|-----|-----|----------------|---|-----|----------------|-----|
| Н                     | 0.7 | 0.2 | 0.1            | Н | 0.1 | 0.3            | 0.6 |
| С                     | 0.4 | 0.5 | 0.1            | С | 0.5 | 0.4            | 0.1 |
| <b>q</b> <sub>0</sub> | 0.8 | 0.2 |                |   |     | <b>C</b>       |     |
|                       |     |     |                |   |     | Q <sub>F</sub> |     |

| vb = | Η | 0 | 2 | 2 |  |
|------|---|---|---|---|--|
|      | С | 0 | 2 | 2 |  |

| <b>q</b> <sub>F</sub> |      |        |          | max( <mark>0.0003528</mark><br>0.000504) |
|-----------------------|------|--------|----------|------------------------------------------|
| Η                     | 0.24 | 0.0504 | 0.003528 |                                          |
| С                     | 0.08 | 0.0192 | 0.00504  |                                          |
| q <sub>0</sub>        |      |        |          |                                          |
|                       | mid  | mid    | few      | <end></end>                              |




### **Final backpointer!** (the red-bkgd square, in wrong rov b/c of slide space constraints)

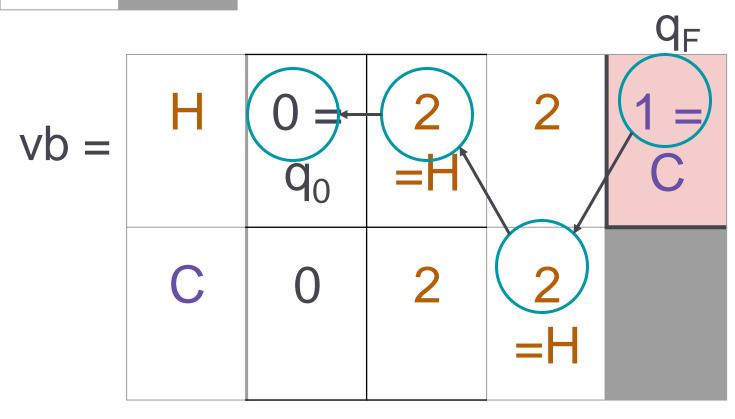
- 1) Initialize  $v_1(j) = a_{0j}b_j(o_1)$  $vb_1(j) = 0$   $1 \le j \le J; v=(J,T)$
- 2) Recursion  $\begin{aligned} v_t(j) &= \max_{i=1}^{J} v_{t-1}(i) \mathbf{a}_{ij} \mathbf{b}_j(\mathbf{o}_t) & 1 \leq j \leq J; \ 1 < t \leq T \\ v \mathbf{b}_t(j) &= \operatorname{argmax}_{i,t-1}[v_t(j)] \end{aligned}$
- 3) Termination  $P(O|\Theta,Q) = v_{T}(F) = \max_{i=1}^{J} v_{T}(i)a_{iF}$   $argmax_{O}[P(O|\Theta,Q)] = vb_{T}(F)$

|   |                       | Η   | С   | q <sub>F</sub> |   | few | mid | lot |
|---|-----------------------|-----|-----|----------------|---|-----|-----|-----|
| W | H                     | 0.7 | 0.2 | 0.1            | Н | 0.1 | 0.3 | 0.6 |
|   | С                     | 0.4 | 0.5 | 0.1            | С | 0.5 | 0.4 | 0.1 |
|   | <b>q</b> <sub>0</sub> | 0.8 | 0.2 |                |   |     |     |     |

| vb = | H | 0 | 2 | 2 |  |
|------|---|---|---|---|--|
| _    | С | 0 | 2 | 2 |  |

|     | $q_F$                 |      |        |          | 0.000504    |
|-----|-----------------------|------|--------|----------|-------------|
|     | H                     | 0.24 | 0.0504 | 0.003528 |             |
| V = | С                     | 0.08 | 0.0192 | 0.00504  |             |
|     | <b>q</b> <sub>0</sub> |      |        |          |             |
|     |                       | mid  | mid    | few      | <end></end> |




## **Reconstruct the best** tag sequence

- Initialize 1)  $v_1(j) = a_{0j}b_j(0_1)$  $vb_1(j) = 0$   $1 \le j \le J; v=(J,T)$
- 2) Dynamic programming step  $v_t(j) = \max_{i=1}^{J} v_{t-1}(i) a_{ij} b_j(o_t)$   $1 \le j \le J; 1 < t \le T$  $vb_t(j) = argmax_{i,t-1}[v_t(j)]$
- Termination 3)  $P(O|\Theta,Q) = v_T(F) = max_{i=1}^{J}v_T(i)a_{iF}$  $\operatorname{argmax}_{O}[P(O|\Theta,Q)] = vb_{T}(F)$

The best tag sequence: H H C

|                | Н   | С   | q <sub>F</sub> |
|----------------|-----|-----|----------------|
| н              | 0.7 | 0.2 | 0.1            |
| С              | 0.4 | 0.5 | 0.1            |
| q <sub>0</sub> | 0.8 | 0.2 |                |

|   | few | mid | lot |
|---|-----|-----|-----|
| Η | 0.1 | 0.3 | 0.6 |
| С | 0.5 | 0.4 | 0.1 |



|     | q <sub>F</sub> |      |        |          | 0.000504    |
|-----|----------------|------|--------|----------|-------------|
|     | Н              | 0.24 | 0.0504 | 0.003528 |             |
| V = | С              | 0.08 | 0.0192 | 0.00504  |             |
|     | q <sub>0</sub> |      |        |          |             |
|     |                | mid  | mid    | few      | <end></end> |