## Lecture 4: Viterbi, NER



Claire Cardie, Tanya Goyal

CS 4740 (and crosslists): Introduction to Natural Language Processing

### Announcements

- HW1 released today! Due Fri Feb 21 11:59pm.
  - START IT NOW!!!!!

### Today

- HMMs as a tagging technology: Viterbi
  - You will implement for HW1!!!
- HMMs as a generative model
- Where do the probabilities come from?
- Named entity tagging: the task for HW1!!!

### Recall: HMM POS Tagger ?

? ? ? Cornell beat Harvard

Goal: Find the tag sequence that maximizes  $P(t_1...t_N \mid w_1...w_N)$ 

Need to Bayes flip:

$$= \frac{P(w_1 \dots w_N | t_1 \dots t_N) \cdot P(t_1 \dots t_N)}{-P(w_1 \dots w_N)}$$

 $P(w_1...w_N|t_1...t_N) P(t_1...t_N)$ 

 $P(t_1, \ldots, t_n)$ : approximate using n-gram model bigram  $\prod_{i=1,n} P(t_i | t_{i-1})$ 

trigram  $\prod_{i=1,n} P(t_i \mid t_{i-2}t_{i-1})$ 

 $P(w_1...w_N|t_1...t_N)P(t_1...t_N)$ 

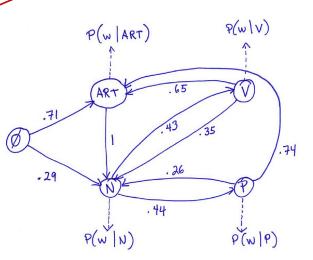
Assume each word appears with a particular tag independent of its neighbors

$$\mathsf{P}(\mathsf{w}_1 \dots \mathsf{w}_n \,|\, \mathsf{t}_1 \dots \mathsf{t}_n) \cong \prod_{i=1,n} \mathsf{P}(\mathsf{w}_i \,|\, \mathsf{t}_i)$$

#### ? ? ? Cornell beat Harvard

$$P(t_1...t_N \mid w_1...w_N) \cong \prod_{i=1,n} P(t_i \mid t_{i-1}) \cdot P(w_i \mid t_i)$$

- Equation is modeled by an HMM (probabilistic finite-state machine)
  - States: represent the possible POS
  - Transition probabilities: bigram probabilities for tags
  - Emission (observation) probabilities: indicate, for each word, how likely that word is to be selected if we randomly select a POS



# Tagging algorithmNVNCornell beat Harvard

#### Given a new sentence to tag

- For every possible tag sequence,
  - · Apply equation to calculate the score
- Select the highest-scoring tag sequence

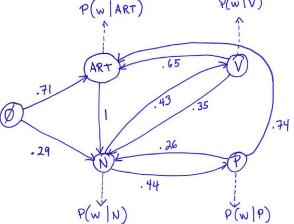
Uh-oh...Too many possible tag sequences to do this!!! Sentence length m=20

Tagset of size T = 15

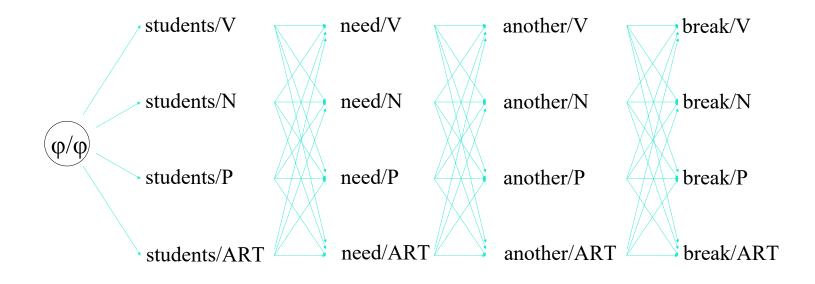
T<sup>m</sup> = 15<sup>20</sup> tag sequences!!!



 $\prod_{i=1,n} P(t_i \mid t_{i-1}) \cdot P(w_i \mid t_i)$ 

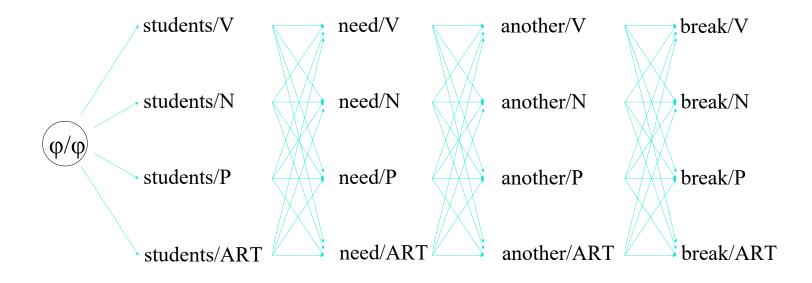


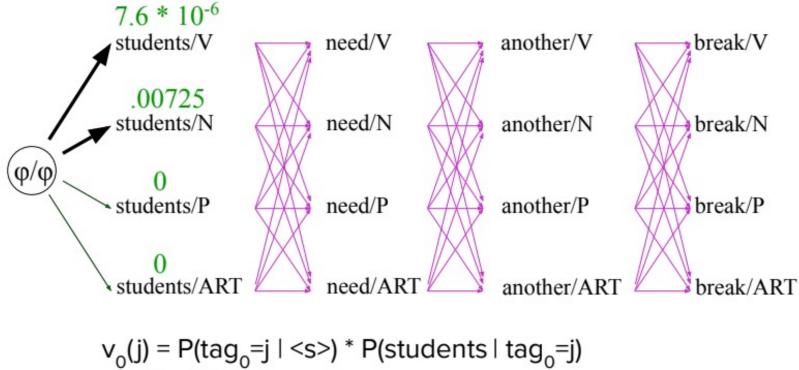
## How do we avoid computing the probabilities for all possible paths?



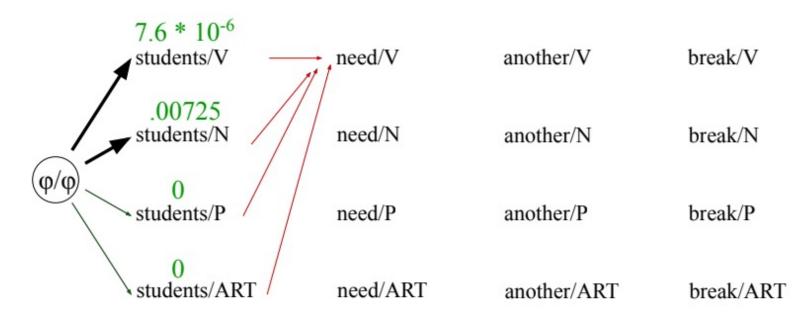
#### Viterbi Algorithm Allows Efficient Search for the Most Likely Sequence

- Key idea: Markov assumptions mean that we do not need to enumerate all possible sequences
- Viterbi algorithm
  - Sweep forward, one word at a time, finding the most likely (highestscoring) tag sequence ending with each possible tag
  - With the right bookkeeping, we can then "read off" the most likely tag sequence once we reach the end of the sentence

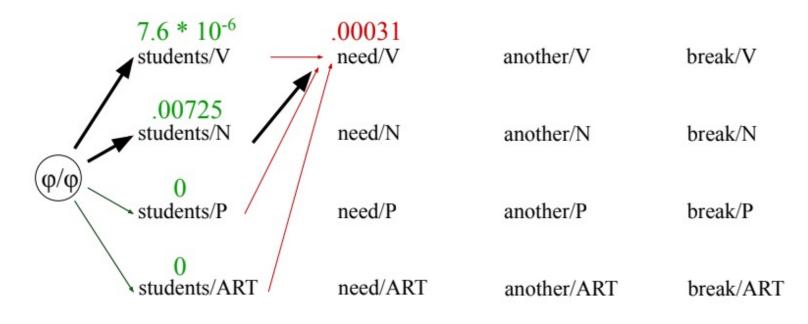




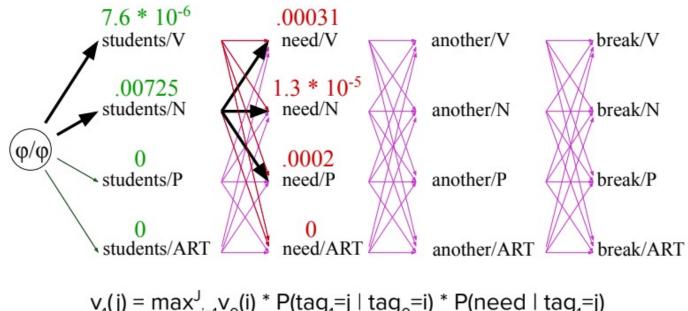
 $v_0(j) = r(tag_0 - j + (s^2)) + (students + tag_0 - vb_0(j) = <s >$ 



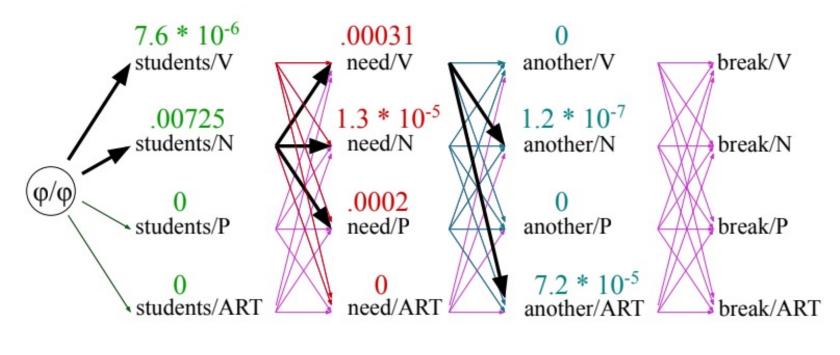
 $v_1(j) = \max_{i=1}^{J} v_0(i) * P(tag_1=j | tag_0=i) * P(need | tag_1=j)$  $vb_t(j) = prev tag that maximizes v_t(j)$ 



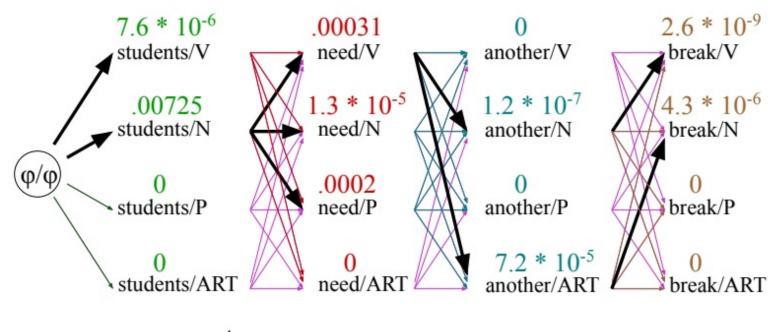
 $v_1(j) = \max_{i=1}^{J} v_0(i) * P(tag_1=j | tag_0=i) * P(need | tag_1=j)$  $vb_t(j) = prev tag that maximizes v_t(j)$ 



 $v_1(j) = \max_{i=1}^{J} v_0(i) * P(tag_1=j | tag_0=i) * P(need | tag_1=j)$  $vb_t(j) = prev tag that maximizes v_t(j)$ 

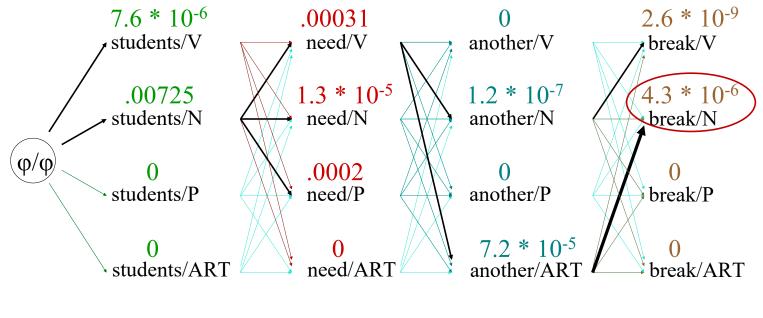


 $v_2(j) = \max_{i=1}^{J} v_1(i) * P(tag_2=j | tag_1=i) * P(another | tag_2=j) vb_t(j) = prev tag that maximizes <math>v_t(j)$ 

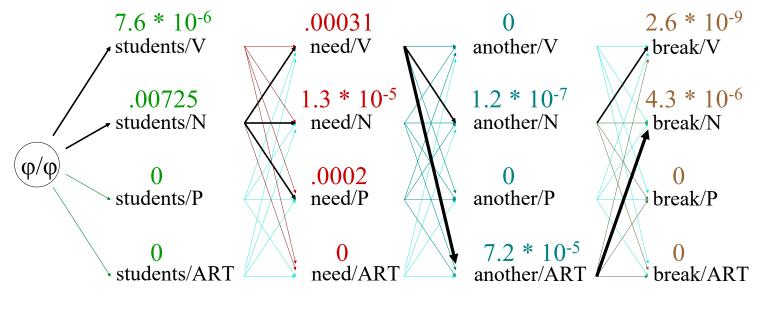


 $v_3(j) = \max_{i=1}^{J} v_2(i) * P(tag_3=j | tag_2=i) * P(break | tag_3=j) vb_t(j) = prev tag that maximizes <math>v_t(j)$ 

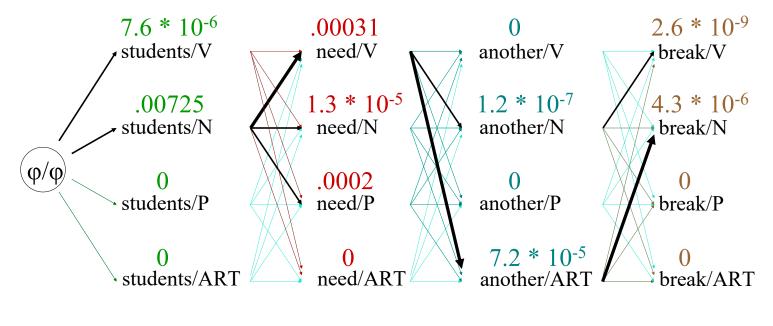
 To assign the maximum probability tag sequence, follow the backpointers that led to the largest product at v<sub>3</sub>!



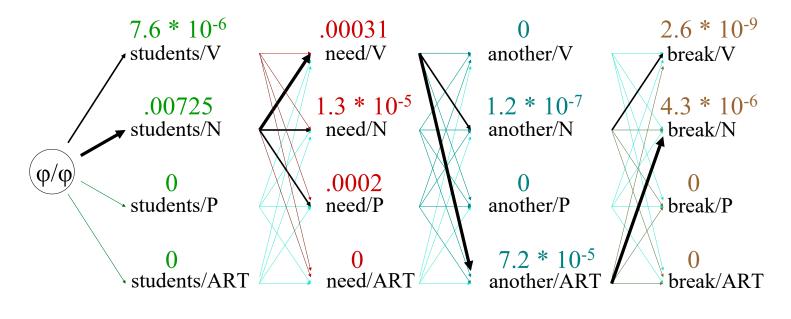
t<sub>3</sub>= N



t<sub>3</sub>= N, t<sub>4</sub>= ART



t<sub>3</sub>= N, t<sub>2</sub>= ART, t<sub>1</sub>= V



t<sub>3</sub>= N, t<sub>2</sub>= ART, t<sub>1</sub>= V, t<sub>0</sub>= N

### Time/space complexity

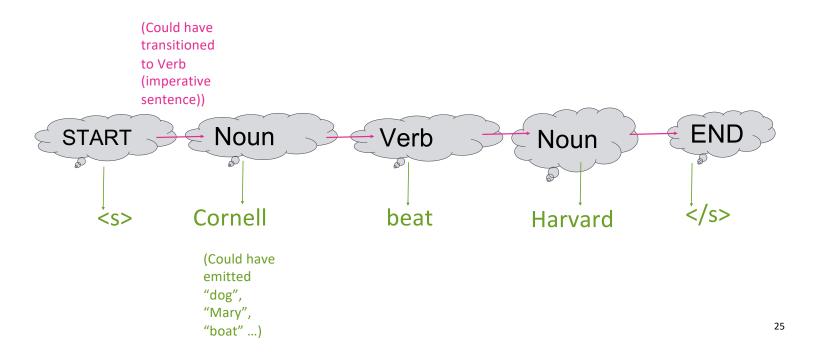
- Space # of POS length of categories sentence
  - Two c x n matrices
  - (and data structure for transition and lexical generation probabilities)
- Time
  - O(c<sup>2</sup>n) for forward pass
  - O(n) for backward pass
  - Much better than the  $O(c^n)$  brute force option

### Today

- HMMs as a tagging technology: Viterbi
  - You will implement for HW1!!!
- HMMs as a generative model
- Where do the probabilities come from?
- Named entity tagging: the task for HW1!!!

#### **HMMs as sentence generators**

When in an underlying state (POS), generate a token. Then, choose a next underlying state.



#### Today

- HMMs as a tagging technology: Viterbi
  - You will implement for HW1!!!
- HMMs as a generative model
- Where do the probabilities come from?
- Named entity tagging: the task for HW1!!!

#### Where do HMM transitions/emission probs come from?

Assume that we have *labelled data*: For every observed token  $x_i$ , the (usually hidden) true tag  $c_i$  is given.

<s>/<s> I/PP am/VBP sitting/VBG in/IN Mindy/NNP 's/POS restaurant/NN eating/VBG the/DT gefilte/NN fish/NN ./. </s>/</s>

Looks like VBG generates things like "sitting" and "eating"; and a period (.) can be followed by </s>.

Warning: training data might omit <s>, <s>, </s>, </s>. You'll want to insert them (implicitly or explicitly).

#### "Raw count" method for setting transition and emission probs

$$P_{HMM}(w_j \mid c) := \frac{\text{count (word } w_j \text{ in training with tag } c)}{\text{count (word tokens in training with tag } c)}$$

$$P_{HMM}(c' \mid c) := \frac{\text{count } (c \text{ followed by } c')}{\text{count } (c)}$$

# Smoothing: "lack of evidence is not evidence of lack"

An unseen event isn't necessarily impossible! Safer to have all probs be non-zero.

One common smoothing technique: add-k.

P(b | a) := [Count(a b) + k] ... ...divided by the normalization term: sum over all possible b' of [C(a b') + k]

### Today

- HMMs as a tagging technology: Viterbi
  - You will implement for HW1!!!
- HMMs as a generative model
- Where do the probabilities come from?
- Named entity tagging: the task for HW1!!!

### Named Entity Recognition

Identify all:

- Named locations, named persons, named organizations, dates, times, monetary amounts...
- Fixed set of NE types

| Туре          | Tag      | Sample Categories                 | Example sentences                           |
|---------------|----------|-----------------------------------|---------------------------------------------|
| People        | PER      | people, characters                | Turing is a giant of computer science.      |
| Organization  | ORG      | companies, sports teams           | The <b>IPCC</b> warned about the cyclone.   |
| Location      | LOC      | regions, mountains, seas          | The Mt. Sanitas loop is in Sunshine Canyon. |
| Geo-Political | GPE      | countries, states, provinces      | Palo Alto is raising the fees for parking.  |
| Entity        |          |                                   |                                             |
| Facility      | FAC      | bridges, buildings, airports      | Consider the Golden Gate Bridge.            |
| Vehicles      | VEH      | planes, trains, automobiles       | It was a classic Ford Falcon.               |
| Figure 17.1 A | A list o | f generic named entity types with | the kinds of entities they refer to.        |

### **NER** output

Citing high fuel prices, [ $_{ORG}$  United Airlines] said [ $_{TIME}$  Friday] it has increased fares by [ $_{MONEY}$  \$6] per round trip on flights to some cities also served by lower-cost carriers. [ $_{ORG}$  American Airlines], a unit of [ $_{ORG}$  AMR Corp.], immediately matched the move, spokesman [ $_{PER}$  Tim Wagner] said. [ $_{ORG}$  United], a unit of [ $_{ORG}$  UAL Corp.], said the increase took effect [ $_{TIME}$  Thursday] and applies to most routes where it competes against discount carriers, such as [ $_{LOC}$  Chicago] to [ $_{LOC}$  Dallas] and [ $_{LOC}$  Denver] to [ $_{LOC}$  San Francisco].

#### Named Entity Recognition (NER): note the multiword named entities, like "North America"

| In fact, the Chinese NORP market has the three CARDINAL most influential names of the retail and tech space – Alibaba GPE ,       |       |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|--|
| Baidu ore, and Tencent PERSON (collectively touted as BAT ore), and is betting big in the global AI ore in retail                 |       |  |  |  |  |  |
| industry space . The three CARDINAL giants which are claimed to have a cut-throat competition with the U.S. GPE (in terms of      |       |  |  |  |  |  |
| resources and capital) are positioning themselves to become the 'future Al PERSON platforms'. The trio is also expanding in other |       |  |  |  |  |  |
| Asian NORP countries and investing heavily in the U.S. GPE based AI GPE startups to leverage the power of AI GPE .                |       |  |  |  |  |  |
| Backed by such powerful initiatives and presence of these conglomerates, the market in APAC AI is forecast to be the fastest-     |       |  |  |  |  |  |
| growing one CARDINAL , with an anticipated CAGR PERSON of 45% PERCENT OVER 2018 - 2024 DATE . Lots of erro                        | rs!!! |  |  |  |  |  |
|                                                                                                                                   |       |  |  |  |  |  |
| To further elaborate on the geographical trends, North America 📖 has procured more than 50% PERCENT of the global share           |       |  |  |  |  |  |
|                                                                                                                                   |       |  |  |  |  |  |
| in 2017 DATE and has been leading the regional landscape of Al GPE in the retail market. The U.S. GPE has a significant           |       |  |  |  |  |  |
|                                                                                                                                   |       |  |  |  |  |  |
| in 2017 DATE and has been leading the regional landscape of Al GPE in the retail market. The U.S. GPE has a significant           |       |  |  |  |  |  |

### Ambiguity in NER

| Name               | Possible Categories                                           |
|--------------------|---------------------------------------------------------------|
| Washington         | Person, Location, Political Entity, Organization, Vehicle     |
| Downing St.        | Location, Organization                                        |
| IRA                | Person, Organization, Monetary Instrument                     |
| Louis Vuitton      | Person, Organization, Commercial Product                      |
| Figure 17.2 Common | categorical ambiguities associated with various proper names. |

[PER Washington] was born into slavery on the farm of James Burroughs. [ORG Washington] went up 2 games to 1 in the four-game series. Blair arrived in [LOC Washington] for what may well be his last state visit. In June, [GPE Washington] passed a primary seatbelt law. The [VEH Washington] had proved to be a leaky ship, every passage I made...

Figure 17.3 Examples of type ambiguities in the use of the name Washington.

### **NE Recognition**

- Identify the text **spans** that correspond to the proper names (or dates, times, money expressions)
  How do we describe a **chunk** of text using individualword tags?
- Assign the correct named entity (NE) type

### **BIO tag set for NER**

- Allows distinguishing adjacent NEs
  - We'll fly to **New Orleans Friday**
- $B_{xxx}$ : First (ie. Beginning) token in an NE of type XXX
- I<sub>xxx</sub>: Inside of an entity type XXX
- O: Outside of all NEs

### **BIO Tagging**

٠

0

| B: token that <i>begins</i> a span    | Words      | <b>BIO Label</b> |
|---------------------------------------|------------|------------------|
|                                       | Jane       | B-PER            |
| I: tokens <i>inside</i> a span        | Villanueva | I-PER            |
|                                       | of         | 0                |
| O: tokens outside of any span         | United     | B-ORG            |
| o. tokens outside of any span         | Airlines   | I-ORG            |
|                                       | Holding    | I-ORG            |
|                                       | discussed  | 0                |
| # of tage (where p is #optity types); | the        | 0                |
| # of tags (where n is #entity types): | Chicago    | B-LOC            |
|                                       | route      | 0                |

1 O tag,

n B tags,

*n* I tags

total of 2n+1

### HMMs for NE detection

Just like in POS tagging

- States **Q** 
  - BIO tags
- Observations **0** 
  - Word tokens
- Transition Probabilities **A** 
  - $\circ$  P (BIOtag<sub>i</sub> | BIOtag<sub>i-1</sub>)
- Emission (lexical generation) Probabilities **B** 
  - $\circ$  P (w<sub>i</sub> | BIOtag<sub>i</sub>)

Find most likely BIO tag sequence using Viterbi Reconstruct the NEs from the BIO tags

### Take-aways

- HMMs as a tagging technology: the Viterbi algorithm for efficiently assigning the highest probability tag sequence
- HMMs as a generative model (just 1 slide)
- Where do the probabilities come from? Labeled data
- Named entity tagging: the task for HW1!!!