
Lecture 3: N-gram LMs revisited /
Sequence Tagging: HMMs

CS 4740 (and crosslists): Introduction to Natural Language Processing
Claire Cardie, Tanya Goyal

Announcements

‣ HW0 due on Friday on Gradescope, 11.59 p.m.

‣ HW1 will be released Monday, Feb 3.

‣ We will post a mega-thread on Ed to find a partner.

‣ Readings (Jurafsky & Martin, 3rd ed) are posted on the schedule (and are VERY VERY useful)

‣ Waitlist

‣ non-CIS graduate students are unlikely to get into the class

Today

‣ Recap on n-gram language models (LMs)
‣ Learning n-gram models: an example
‣ Complications when building n-gram LMs
‣ Part-of-speech tagging
‣ HMMs for sequence tagging: introduction

‣ A model that computes the probability of a word sequence:
𝑃(𝑤!𝑤"𝑤#. . . 𝑤$)

What is a Language Model?

𝑃(Mayenne	ate	my	shoes	today .) = 10!"#

Mayenne

𝑃(today | Mayenne ate my shoes) = 10!"

‣ A model that computes a probability distribution over possible next words:
𝑃(𝑤$| 𝑤1𝑤"𝑤#. . . 𝑤$%!)

‣ Let 𝒱 be a finite vocabulary of words.

𝒱 ={ the, a, man, telescope, Madrid, two, …}

‣ We can construct (infinite) word sequences 𝐰

𝒱# = { the, a, the a, the fan, the man, the man with a telescope}

‣ Goal: estimate a probability distribution 𝑃(𝐰) over all word sequences 𝐰 ∈ 𝒱#

‣ Given: a dataset of M word sequences (sentences) 𝒟 = {𝐰}$%&'

Language Modeling Problem

● We will often need to distinguish (the counting of)
○ word types

■ distinct words. The finite set, which you predetermine, is
the vocabulary or lexicon.

○ word tokens
■ the words in the “running” text (instances of the vocab

items).
Example: All for one and one for all .

○ 8 tokens (if we choose to have punctuation in our lexicon)
○ 6 word types if we assume capitalization is a distinguisher
○ 5 word types if capitalization differences are ignored

Terminology: the ambiguous term “word”

‣ Goal: estimate a probability distribution 𝑃(𝐰) over all word sequences 𝐰 ∈ 𝒱#

‣ Given: a dataset of M word sequences (sentences) 𝒟 = {𝐰}$%&
'

Language Modeling Problem

Näive option: compute the empirical distribution over the
training data.

Problems?

𝑃(𝐰) =
𝑐(𝐰)
𝑀

Does not generalize to unseen sequences, i.e.
to valid w that do not appear in M. Not
enough data to gather reliable probabilities.

Language Modeling Problem
First, let’s decompose 𝑃(𝐰)

𝑃(𝐰) = 𝑃(𝑤"𝑤#𝑤$. . . 𝑤%)

= 𝑃(𝑤")𝑃(𝑤#|𝑤")𝑃(𝑤$|𝑤#𝑤"). . . 𝑃(𝑤%|𝑤". . . 𝑤%!")

applying chain rule

assumption: probability of a word depends
on previous words only

= ∏
&'"

%
𝑃(𝑤&|𝑤". . . 𝑤&!")

𝑃(I	saw	a	man)
= 𝑃(I)𝑃(saw	|	I)𝑃(a	|	I	saw)𝑃(man	|	I	saw	a)

Language Modeling Problem

𝑃(𝐰) = 𝑃(𝑤"𝑤#𝑤$. . . 𝑤%)

= 𝑃(𝑤")𝑃(𝑤#|𝑤")𝑃(𝑤$|𝑤#𝑤"). . . 𝑃(𝑤%|𝑤". . . 𝑤%!")

Can we now use count-based estimates?

= ∏
&'"

%
𝑃(𝑤&|𝑤". . . 𝑤&!")

If a test sentence w is unseen in the
training data, this will again be zero!

Language Modeling Problem

𝑃(𝐰) = 𝑃(𝑤"𝑤#𝑤$. . . 𝑤%)

Key idea: Markov Assumption

= ∏
&'"

%
𝑃(𝑤&|𝑤". . . 𝑤&!")

Probability of each ”next word" in a sequence only depends
on a fixed number of previous words

N-gram language models: Probability of
each word depends on N-1 previous words.

Unigram model → 𝑃(𝑤$|𝑤&. . . 𝑤$!&) := P(wi)

Bigram model → 𝑃(𝑤$|𝑤&. . . 𝑤$!&) := P(wi | wi-1)

Trigram model → 𝑃(𝑤$|𝑤&. . . 𝑤$!&) := P(wi | wi-2wi-1)

Example

P(lost|Not all those who wander are)

According to our various models, that probability is equal to …
● Unigram model → P(lost)
● Bigram model → P(lost | are)
● Trigram model → P(lost | wander are)

Sequence probability according to a bigram LM

‣ Goal: compute P(w1 w2 … wn-1 wn), with implicit w0 := <s>

≅ P(w1) P(w2|w1) P(w3|w2) ... P(wn|wn-1)

= P(w1|<s>) P(w2|w1) P(w3|w2) ... P(wn|wn-1)

shorthand for

One way to “learn” an n–gram model

● “Raw count” approach
Unigrams ???
Bigrams →

Trigrams ???
General case

Maximum Likelihood
Estimation (MLE)

Training a bigram model requires…

These are the model’s parameters.

Bigram counts
Unigram counts

Today

‣ Recap on n-gram language models (LMs)
‣ Learning n-gram models: an example
‣ Complications when building n-gram LMs
‣ Part-of-speech tagging
‣ HMMs for sequence tagging: introduction

MLE “Raw count” bigram construction:
Example with a small training dataset

<s> I get what I eat and
I eat what I get </s>

<s> I
I get
get what
what I
I eat
eat and
and I
eat what
get </s>

1
2
1
2
2
1
1
1
1

<s>
I
get
what
eat
and
</s>

1
4
2
2
2
1
1

16

To the left is our
training data:

Top: original form
(training corpus).

Bottom:
distillation into
counts of 2-word
and 1-word
sequences.

“Raw count” bigram construction:
An example

<s> I get what I eat and
I eat what I get </s>

<s> I
I get
get what
what I
I eat
eat and
and I
eat what
get </s>

1
2
1
2
2
1
1
1
1

<s>
I
get
what
eat
and
</s>

1
4
2
2
2
1
1

17

p(what | get) = ??

“Raw count” bigram construction:
An example

<s> I get what I eat and
I eat what I get </s>

<s> I
I get
get what
what I
I eat
eat and
and I
eat what
get </s>

1
2
1
2
2
1
1
1
1

<s>
I
get
what
eat
and
</s>

1
4
2
2
2
1
1

18

p(what | get) = ??

“Raw count” bigram construction:
An example

<s> I get what I eat and
I eat what I get </s>

<s> I
I get
get what
what I
I eat
eat and
and I
eat what
get </s>

1
2
1
2
2
1
1
1
1

<s>
I
get
what
eat
and
</s>

1
4
2
2
2
1
1

19

p(what | get) = ??

“Raw count” bigram construction:
An example

<s> I get what I eat and
I eat what I get </s>

<s> I
I get
get what
what I
I eat
eat and
and I
eat what
get </s>

1
2
1
2
2
1
1
1
1

<s>
I
get
what
eat
and
</s>

1
4
2
2
2
1
1

20

p(what | get) = ??

“Raw count” bigram construction:
An example

<s> I get what I eat and
I eat what I get </s>

<s> I
I get
get what
what I
I eat
eat and
and I
eat what
get </s>

1
2
1
2
2
1
1
1
1

<s>
I
get
what
eat
and
</s>

1
4
2
2
2
1
1

21

p(what | get) = ??

“Raw count” bigram construction:
An example

<s> I get what I eat and
I eat what I get </s>

<s> I
I get
get what
what I
I eat
eat and
and I
eat what
get </s>

1
2
1
2
2
1
1
1
1

<s>
I
get
what
eat
and
</s>

1
4
2
2
2
1
1

22

p(what | get) = ½

Applying the Bigram Model

1
2
1
2
2
1
1
1
1

1
4
2
2
2
1
1

p (<s> I get what)
= p(I | <s>) x p(get | I) x p(what | get)
= 1/1 x 2/4 x ½ = 0.25

<s>
I
get
what
eat
and
.

<s> I
I get
get what
what I
I eat
eat and
and I
eat what
get .

<s> I get what I eat and
I eat what I see .

1
2
1
2
2
1
1
1
1

1
4
2
2
2
1
1

p (<s>I get what)
= p(I | <s>) x p(get | I) x p(what | get)
= 1/1 x 2/4 x ½ = 0.25

<s>
I
get
what
eat
and
.

<s> I
I get
get what
what I
I eat
eat and
and I
eat what
get .

<s> I get what I eat and
I eat what I see .

Another note about a different
sequence:

P(<s> I get what I get .) will NOT be
0, even though it isn’t in the data!

The model does generalize to(some)
unseen sequences.

Applying the Bigram Model

Examples:
- <s> eat and see
- I eat

But unseen bigrams will cause a sequence
to be assigned probability 0.

25

1
2
1
2
2
1
1
1
1

<s> I
I get
get what
what I
I eat
eat and
and I
eat what
get .

<s> I get what I eat and
I eat what I see .

And that is where smoothing comes in…

‣ See notes from lecture 2…

Today

‣ Recap on n-gram language models (LMs)
‣ Learning n-gram models: an example
‣ Complications when building n-gram LMs
‣ Part-of-speech tagging
‣ HMMs for sequence tagging: introduction

● Depends on tokenization
○ Should we treat punctuation marks as words
○ Important for many NLP tasks

■ Grammar-checking, spelling error detection, author
identification, part-of-speech tagging

○ Contractions
■ Isn’t vs. is n’t vs. isn ‘ t

● Language-dependent
○ Freundschaftsbezeigungen = demonstration of

friendship

Counting Words in Corpora

28

● Decisions will have an effect on performance!

● Typically, the goal is to reduce the vocabulary size. Why?

● And at the same time, we want to preserve those
distinctions/differences that matter for the downstream
applications.

Counting Words in Corpora

29

● Depends also on text normalization – string
transformations that remove distinctions irrelevant
to downstream applications

● Capitalization
○ Should They and they be treated as the same word?

■ For most statistical NLP applications, yes
■ Sometimes capitalization information is maintained as a feature
■ E.g. spelling error correction, part-of-speech tagging

● Special fonts: Italics, bold
○ Usually ignore.

● Inflected forms
○ Should walks and walk be treated as the same word?

■ No…for most n-gram based systems

Counting Words in Corpora

30

● Spoken Language Corpora
○ Utterances don’t usually have punctuation, but they

do have other phenomena that we might or
might not want to treat as words:

I do uh main mainly business data processing
○ Fragments
○ Filled pauses → um and uh behave more like

words, so most speech recognition systems treat
them as such

Counting Words in Corpora

31

● Avoids numerical underflow
● Adding is faster than multiplying
● Can convert back to a probability at the end if necessary by

taking the exp of the logprob.

Advice: Compute everything in log space

32

● We didn’t explicitly store 0-count bigrams in the “distilled”
form of the corpus into counts.

● Assume that any bigram not represented in your data
structure has a count of 0.

Advice: if space is an issue

33

Today

‣ Recap on n-gram language models (LMs)
‣ Learning n-gram models: an example
‣ Complications when building n-gram LMs
‣ Part-of-speech tagging
‣ HMMs for sequence tagging: introduction

Using n-gram models to generate language

‣ Assume a (trained) bigram model
1. Generate a random bigram b

that starts with <s> (according to
its bigram probability).
‣ Let w be the 2nd word of b.
‣ Output w.

2. Generate a random bigram b
that starts with w (according to
its bigram probability).
‣ Let x be the 2nd word of b.
‣ Output x.

… until some stopping criterion.

Using n-gram models to generate language

‣ Assume a (trained) bigram model
1. Generate a random bigram b

that starts with <s> (according to
its bigram probability).
‣ Let w be the 2nd word of b.
‣ Output w.

2. Generate a random bigram b
that starts with w (according to
its bigram probability).
‣ Let x be the 2nd word of b.
‣ Output x.

… until some stopping criterion.

Sampling (for unigrams)

People generate language with more intention

‣ We’ll next look at a statistical model that adopts this notion of
language generation: Hidden Markov Model

‣ In NLP it is most often used when we want to perform sequence
tagging.

Sequence Tagging/Labeling

Goal: Assign tags (labels) to discrete elements in a
sequence

E.g. part-of-speech tags

E.g. sentence
E.g. words

Part of speech tagging

“There are 10 parts of speech and they are all troublesome” –
Mark Twain

● POS tags are also known as word classes, morphological
classes or lexical tags

● Typically larger than Twain’s 10:
Penn Treebank: 45
Brown Corpus: 87
C7 Target: 146
Universal dependency tagset: 15

Part of speech tagging

● Goal: Given a part-of-speech tagset, assign the correct part
of speech tag to each word/token in a sentence

● The planet Jupiter and its moons are in effect a mini-solar
system.

Part of speech tagging

● Goal: Given a part-of-speech tagset, assign the correct part
of speech tag to each word/token in a sentence

● The/DT planet/NN Jupiter/NNP and/CC its/PPS moons/NNS
are/VBP in/IN effect/NN a/DT mini-solar/JJ system/NN ./.

Part of speech tagging

● Traditionally needed as an initial processing step for a
number of language technology applications:

o Answer extraction in Question Answering
systems

o Base step in identifying syntactic phrases for IR
systems

o Critical for word sense disambiguation

o Information extraction

What makes POS tagging hard?

● Goal: Find the correct tag for the words
given the context

● Noun or Verb?
book that flight
hand me that book

● How do we resolve these ambiguities?

What makes POS tagging hard?
● Most word types are unambiguous wrt POS (85-86%)
● Ambiguous words account for 14-15% of the

vocabulary, BUT they are some of the most common
words of English

● Hence, 55-67% of word tokens in running text are
ambiguous

45

Sometimes hard for people

● Particle vs. preposition
He talked over the deal
He talked over the telephone

● Past tense vs. past participle
The horse walked past the barn
The horse walked past the barn needed more
exercise

● Noun vs adjective
The executive decision

● Noun vs present participle
Fishing can be fun

Penn Treebank Tagset

POS tagging exercise

It is a nice night

It/PP is/VBZ a/DT
nice/JJ night/NN ./.

Buffalo example

Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo
buffalo.

Buffalo buffalo, Buffalo buffalo buffalo, buffalo Buffalo
buffalo.

buffalo buffalo buffalo buffalo buffalo buffalo buffalo
buffalo.

Buffalo example

n1. the city of Buffalo, NY
n2. an animal…the American bison
v. to bully, confuse, deceive, or intimidate

Buffalon1 buffalon2 Buffalon1 buffalon2 buffalov buffalov Buffalon1 buffalon2.

[Those] (Buffalo buffalo) [whom] (Buffalo buffalo) buffalo, buffalo (Buffalo
buffalo).

[Those] buffalo(es) from Buffalo [that are intimidated by] buffalo(es) from
Buffalo intimidate buffalo(es) from Buffalo.

Bison from Buffalo, New York, who are intimidated by other bison in their
community, also happen to intimidate other bison in their community.

THE buffalo FROM Buffalo WHO ARE buffaloed BY buffalo FROM Buffalo,
buffalo (verb) OTHER buffalo FROM Buffalo.

A ship shipping ship shipping shipping ships

52

Among easiest of NLP problems

● State-of-the-art methods achieve ~98% accuracy

● Simple heuristics can go a long way
o ~92% accuracy just by choosing most frequent tag for

word (MLE)
o To improve reliability: need to use some of the local context

● Defining rules for special cases can be time-consuming,
difficult, and prone to errors / omissions

● Thus machine learning (ML) methods are employed

Today

‣ Recap on n-gram language models (LMs)
‣ Learning n-gram models: an example
‣ Complications when building n-gram LMs
‣ Part-of-speech tagging
‣ HMMs for sequence tagging: introduction

HMM POS Tagger

Maximizes

Need to Bayes flip:

=

Problems?

Can ignore the
denominator

Make Independence and Markov Assumptions

Make Independence and Markov Assumptions

Assume each word appears with a particular tag
independent of its neighbors

P(w1 … wn | t1 … tn) ≅

After independence and Markov assumptions:

∝

transition
probabilities

emission
probabilities

≅

Tagging algorithm

Given a new sentence to tag
– For every possible tag sequence,

• Apply equation to calculate the score
– Select the highest-scoring tag sequence

Uh-oh…Too many possible tag sequences to do this!!!
Sentence length m=20
Tagset of size T = 15

Tm = 1520 tag sequences!!!

‣ Stayed tuned for solution in next class…

Take-aways

1. How to construct n-gram LMs
a. the MLE (“raw count”) method
b. bigram LMs, and how to extend to larger n
c. engineering tradeoffs

2. Generating text by sampling from an LM
3. Terminology: types, tokens, vocabulary/lexicon
4. Part-of-speech tagging as a sequence tagging task
5. Probabilistic model for HMM tagger

76

Slide Acknowledgements

‣ Earlier versions of this course offering including materials from Claire
Cardie, Marten van Schijndel, Lillian Lee.

