More on the Fourier transform

Bharath Hariharan

February 3, 2020

1 Summarizing the Fourier transform

The Fourier basis: The Fourier transform represents a change of basis for im-
ages. Instead of using the canonical basis where each basis element corresponds
to a single pixel, we use the Fourier basis. For an N x N image, there are N2
Fourier basis elements. The m,n-th pixel in the k,[-th basis image is given by:
: kx 4 ; ly
Bw(m,n) — 6227TW+1,271'W (1)
k determines the frequency along the horizontal and ! denotes the frequency
along the vertical. Figure 7?7 shows a few of the Fourier basis.
The Fourier transform: Given an N x N image f, the Fourier transform
gives us the representation of this image in the Fourier basis, F.

F(k,1) = Z Z f(z,y)eiizﬂ%*i%%)
z oy

Note that the Fourier transform is a linear transformation of the image. This
should be the case since it is just a basis change.

The inverse fourier transform: Given the Fourier transform F of an
image, we can get the image using the inverse Fourier transform, which simply
combines the basis elements using the Fourier coefficients:

f(x,y) = ZZF(]C, DBy, (z,y) = Z Zf(x7 y)emw%.t,_iz-,rlﬁy (3)
koot kol

2 Convolution and the Fourier transform

With the Fourier transform, we now have two different representations of images:
one in terms of the canonical basis and one in terms of the Fourier basis. For
any operation we do on the one representation, there will be an equivalent op-
eration that can be done on the other. Thus, we can perform operations on any
representation. Borrowing from signal processing literature, when we perform
operations on the canonical representation, we say that we are working in the
“spatial domain”. When we perform operations on the Fourier representation,
we say that we are working in the “frequency domain”.

Convolution and the Fourier transform: The two domains can also
help us analyze how a particular operation affects the image. In particular let
us look at convolution. Suppose we have an n x n image f. We want to convolve
this with a k x k filter w. We want to understand how this operation affects the
Fourier spectrum of f.

First, because the Fourier basis is dependent on the image size, we will need
to bring both image and filter up to the same size. We will do this by padding
with lots of zeros. In particular, we will pad f with (k —1)/2 zeros on all sides
to get f so that its size becomes (n +k — 1) x (n + k — 1). Similarly, we will
pad w with (n — 1)/2 zeros on all sides to get @ so that its size also becomes
(n+k—1)x (n+k—1). We will now perform “same” convolution with this
padded filter and image. It can be shown that the end result of this operation is
the same as the output of a “full” convolution on the original image and filter.
Denote this result by h.

Now let the Fourier transform of f ,w and h be F ,W and H respectively.
Then the following fact is true for every k, [:

[H (kD] = [F(k,DIIW (%,)] (4)

In other words, when we convolve two images in the spatial domain, we are
multiplying together their amplitude spectra in the frequency domain.

Therefore, to understand the impact of convolution with a particular filter
w, we can construct its padded version w as above and look at the amplitudes of
the corresponding Fourier transform W. If there are frequencies (k, 1) for which
|W (k,1)| is close to 0, then those frequencies will be suppressed in the output.
Conversely, if [W (k,1)| > 1 those frequencies will be enhanced.

Gaussian blurring and the Fourier transform: As an example, let us
consider convolution with Gaussian filters of varying standard deviation. Recall
that as the standard deviation of the filter increases, the amount of blurring
increases and we lose more details. Figure 1 shows Gaussian filters of increasing
standard deviation (top row) and the corresponding amplitude spectrum (bot-
tom row). As can be seen, the amplitude spectrum of a Gaussian filter looks
like a Gaussian!

In addition we can make several observations, First observe that for all
Gaussian filters, the amplitude of the Fourier coefficients is very low for high
frequencies. Thus all Gaussian filters suppress high frequencies. Filters that
suppress high-frequencies while leaving low frequencies mostly intact are called
low-pass filters.

Second, note that while high frequencies are suppressed completely by the
Gaussian filters, all frequencies (except the 0 frequency) are suppressed a little.
Thus, the Gaussian filter does not exactly leave the low frequencies completely
intact.

Third, observe that as the standard deviation of the Gaussian increases,
more high frequencies are suppressed. For very high standard deviations, only
very few low frequencies are preserved.

Figure 1: Top: Gaussian filters. Bottom: Amplitudes of the Fourier transform

Box filters: Figure 2 shows a corresponding visualization for the box filter
(standard mean filter). Here, we have padded all box filters with zeros so that
they are the same size. Similar arguments hold: all filters tend to suppress high
frequencies. Interestingly, box filters do not do as clean a job as Gaussian filters
in this regard: some high frequencies are not suppressed by the box filter. Thus
a box filter is also a low-pass filter, but is less effective.

The ideal low-pass filter? Both the Gaussian filter and the mean filter are
not ideal low-pass filters. The Gaussian filter tends to also downweight a few
of the low frequencies. The box filter additionally fails to suppress some high
frequencies.

What would be an ideal low-pass filter? In the frequency domain, this filter
would have amplitude 1 for the frequencies lower than a threshold, and ampli-
tude 0 for frequencies higher than a threshold. It turns out that this is incredibly
hard to achieve. The closest one can get is the sinc filter:

w(z,y) = u(z)v(y) (5)
_ sin(27(x — w0)/0)
o(y) = sin(27(y — yo)/0) 7)

27 (y —vo)/o

Figure 3 shows this sinc filter of two different sizes. Unfortunately, small sized
filters cannot actually achieve the effect we intend, because the sinc filter doesn’t

Figure 2: Top: Box filters. Bottom: Amplitudes of the Fourier transform

decay to 0 the way a Gaussian filter does. In fact, we need an inifinitely large
kernel. As such the closest we can get to a practical low-pass filter is a Gaussian
filter.

High-pass filtering What if we don’t want to kill the low frequencies but the
high frequencies instead? Figure 4 shows two filters. The first is the difference
between the identity filter and a Gaussian filter. As can be seen this filter
suppresses low frequencies and preserves high frequencies. This filter is thus a
high-pass filter. Observe that to perform high-pass filtering, we don’t need to
specifically use this filter: we can simply subtract the low-pass filtered image
from thee original.

More generally, a difference-of-Gaussian filter (right in Figure 4) will sup-
press both low and high frequencies and leave a band of frequencies in the middle
in-tact. Such a filter is called a band-pass filter.

10
08 F
061 ‘

U’U‘WWWWWW

00 Awwwwwwwwwkﬂ

0
0
b
£l
)
0 10 F B
25
15
5
5
15
5 15 5 5 15

Figure 3: Top: Sinc filters, along with a plot of the intensity of the middle
row. Bottom: Amplitudes of the Fourier transform, along with a plot of the
amplitudes of the middle row.

o

5

10 10

15 15

20 20
0 5 10 15 20

] |
NI T

o L

gt E

=

[

-10

5

10

|

5 15

10 20

-10 5 o 5 10

o 5 10 15 20
] 5 10 15 20

Figure 4: Top: The first filter shows the (identity-Gaussian) filter. Note that the
visualization may be hard to see. The second filter is a difference of Gaussians.
Bottom: Amplitudes of the Fourier transform

